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The simple harmonic vibration, damping vibration and forced vibration of an oscillator attached to the
massless spring are always discussed in general mechanics courses. In this article, we focus on the heavy-spring
conditions. We first investigate the general situation where both viscous resistance and applied force are con-
sidered under the perspective of the renormalization group theory. Then we use analytic method to study the
damped oscillation of an oscillator attached to the heavy spring, where renormalization method fails to work.
Keywords: mass-spring oscillator, damping vibration, forced oscillation.

A vibração harmônica simples, o amortecimento de vibrações e a vibração forçada de um oscilador ligado a
uma moal sem massa são sempre discutidos em cursos gerais de mecânica. Neste artigo, vamos nos concentrar
nas condições de mola com massa. Nós primeiro investigamos a situação geral em que tanto a resistência viscosa
e a força aplicada são consideradas sob a perspectiva da teoria do grupo de renormalização. Então, nós usamos
um método anaĺıtico para estudar a oscilação amortecida de um oscilador ligado a uma mola com massa, em
que o método de renormalização não funciona.
Palavras-chave: oscilador massa-mola, vibração amortecida, oscilação forçada.

1. Introduction

An oscillation is a common but very important phe-
nomenon in the physical world. If a physical quantity
is displaced from the equilibrium a little, linear negative
feedback may then lead to an oscillation. A familiar ex-
ample is a simple harmonic oscillator. Also, damping
vibrations and forced vibrations of an oscillator are nor-
mally focused [1]. The mass of the spring is neglected in
models. However, the mass of the spring is unnecessar-
ily neglected as to studying mass-spring system itself.
In this article we try to solve the mass-spring system
where the mass of the spring is not negligible.

In 1979, Weinstock studied the normal modes of
the oscillator motion for the oscillator attached to a
heavy spring by virtue of the Stieltjes integral [2]. In
1994, da Silva obtained the normal frequencies of elas-
tic oscillations of a particle suspended on a spring of
non-negligible mass again under the perspective of the
renormalization group theory [3]. A continuous spring
can be regarded as a chain of many small springs cou-
pling an equal amount of small masses. Then mapping
process is repeated by associating two consecutive small

springs into a single one. At last, only the boundary
effect matters. JM Nunes dealt with the problem only
for the simplest situation, without the friction and ap-
plied force, thus the advantage of this method does not
emerge in this case. In fact, we can not only find out the
normal frequencies in the conservative system, but also
obtain the specific equation of motion when external
forces are acted on.

In the next sections, we first explore the most gen-
eral condition, a forced vibration with viscous resis-
tance, using the renormalization method. Then we deal
with a special case analytically where the renormaliza-
tion method fails to work. We investigate the orthogo-
nality of the solutions of the PDEs in base set, and then
obtain the motion of the damping oscillator attached to
a heavy spring.

2. The forced mass-oscillator with
damping

Hang an uniformly distributed spring with mass m ver-
tically. The top side is fastened to stable fixture and
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the bottom side concatenate an object with mass M as
oscillator. The free length of spring is L and the stiff-
ness coefficient is k. To be discretized, the heavy spring
is viewed as a series of small non-mass N equal springs
and each small spring is coupled with a concentrated
object with mass m/N. The natural length and elastic
constant (labeled by s) of each small spring are L/N
and s = kN respectively. The damping on the oscil-
lator M can be calculated as −bvM if the velocity of
oscillator is vM and damping coefficient is b. Besides, a
time-dependent force f (t) is applied on the oscillator.

Figure 1 - A discretization model. The heavy spring with natu-
ral length L, mass m and stiffness coefficient k is divided into N
small springs coupled with concentrated objects.

The positions of objects are denoted by
xn(n = 0, 1, ..., N), then equations of motion can
be set up as

x0 = 0, (1a)

m

N

d2

dt2
xn = s(xn−1 − 2xn + xn+1)+

m

N
g (1 ≤ n ≤ N − 1), (1b)

M
d2

dt2
xN = −s(xN − xN−1 −

L

N
)+

Mg − b
d

dt
xN + f(t). (1c)

We can eliminate the constant terms derived from grav-
ity in the Eq. (1) by changing the coordinates appro-
priately. So that we can use newly defined coordinates
(un = xn− n

NL−
ng
s [M+(2N−n−1) m

2N ], n = 0, 1, ..., N)
to describe the motion (da Silva proposed a way to ap-
proach these newly defined coordinates [3]). The equa-

tions with new coordinates are written as follows,

u0 = 0, (2a)

m

N

d2

dt2
un = s(un−1 − 2un + un+1)

(1 ≤ n ≤ N − 1), (2b)

M
d2

dt2
uN = −s(uN − uN−1)− b

d

dt
uN + f(t). (2c)

If we denote

f̃ =
1

s
F [f(t)] =

1

Nk

∞∫
−∞

f(t)e−iωt dt,

and

Un = F [un(t)] =

∞∫
−∞

un(t)e
−iωt dt (n = 0, 1, ..., N),

then the Eq. (2) can be Fourier transformed as

U0 = 0, (3a)

cUn = Un−1 + Un+1 (1 ≤ n ≤ N − 1), (3b)

CUN = UN−1 + f̃ , (3c)

with c = 2(1− mω2

2N2k ) and C = 1 + iωb−Mω2

Nk .
By Eq. (3), we get c2U2n = c(U2n−1 + U2n+1) =

U2n−2 + 2U2n + U2n+2 and cCUN = cUN−1 + cf̃ =
UN−2 + UN + cf̃ . We combine two small springs into
a bigger small spring. That is, with this mapping pro-
cess, the previous (2n − 1)th and (2n)th springs now
become the nth bigger small spring. The new Fourier
transformed position function of nth spring is denoted
by Un and Un = U2n. So we have

U0 = 0, (4a)

(c2 − 2)Un = Un−1 + Un+1, (4b)

(cC − 1)UN
2
= UN

2 −1 + cf̃ . (4c)

Comparing Eq. (4) and Eq. (3), the equations change
regularly2 after the process of combining two consecu-
tive small springs into bigger spring. So we repeat the
combination to renormalize. If we set N = 2p, then

after pth repeat, Eq. (4c) finally becomes C(p)U1 =

U0+ f̃

p−1∏
κ=0

c(κ). U0 = 0 and the position function of the

oscillator is

uoscillator(t) = F−1[U1(ω)] =
1

2π

∞∫
−∞

f̃

p−1∏
κ=0

c(κ)

C(p)
eiωt dω.

(5)
The next thing to do is to find out the iteration

value C(p) and

p−1∏
κ=0

c(κ). Comparison between Eqs. (3)

2After each iteration, the coefficients of left terms in Eqs. (4b) and (4c) update to c(l+1) = c(l)2 − 2 and C(l+1) = c(l)C(l) − 1 from
c(l) and C(l).
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and (4) gives c(1) = c2 − 2 and C(1) = cC − 1, so
2C(1) − c(1) = c(2C − c) and more generally,

2C(p) − c(p) = (2C − c)

p−1∏
κ=0

c(κ).

Introduce γ and let c ≡ 2 cos γ. c(p) and

p−1∏
κ=0

c(κ) are

easily accessible with this variable substitution, i.e.

c(p) = 2 cos 2pγ,

p−1∏
κ=0

c(κ) =
sin 2pγ

sin γ
. Finally,

C(p) =
1

2
[
sin 2pγ

sin γ
(2C − c) + 2 cos 2pγ].

c ≡ 2 cos γ = 2(1− mω2

2N2k ). Notice that N ≫ 1, so γ ≪ 1

and γ = sin γ = ω
N

√
m
k . By Eq. (5),

⌋

uoscillator(t) =
1

2π

∞∫
−∞

2 sin(ω
√

m
k )f̃

sin(2pγ)(2C − c) + 2 sin γ cos(2pγ)
eiωt dω

=
1

2π

∞∫
−∞

∞∫
−∞

f(t)e−iωt dt

iωb−Mω2 + cot(ω
√

m
k )ω

√
km

eiωt dω.

(6)

Then xoscillator(t) = uoscillator(t)+L+(M + m
2 )

g
k (neglect − mg

2kN because of N ≫ 1) due to uN = xN −L− Ng
s [M +

(N −1) m
2N ]. It’s the motion equation of the oscillator with consideration of mass of spring, external forces including

damping, gravity and applied time-dependent force.3 But one thing to note here is that f (t) can not be 0 or the
solution vanishes. We deal with this condition in following part.

In fact, if g(t) ≡ 1
2π

∞∫
−∞

1

iωb−Mω2+cot(ω
√

m
k )ω

√
km
eiωt dω(≡ 1

2π

∞∫
−∞

G(ω)eiωt dω),4 the motion equation of the

oscillator can be given by the convolution of f (t) and g(t), i.e. uoscillator(t) = f(t) ∗ g(t). From the following
discussion, we will know that the frequencies which satisfy iωb −Mω2 + cot(ω

√
m
k )ω

√
km = 0, which make G(ω)

divergent and lead to resonance, are exactly eigenvalues in no applied force condition (see Eq. (9)).

⌈

3. No applied force condition

Since we can no longer use renormalization method for
no applied force condition, we then use mathematical
physics equations to study this problem. Adopt appro-
priate coordinates as introduced before, and the prob-

lem can be analytically described as follows.5

utt − kL2

m uxx = 0 (t > 0, x ∈ [0, L)),

u(0, t) = 0,

ux(L, t) = −M

kL
utt(L, t)−

b

kL
ut(L, t),

u|t=0 = ϕ(x),
∂u

∂t

∣∣∣∣
t=0

= ψ(x).

(7)

We consider using method of separation of vari-
ables to solve this equation and we take u(x, t) =

X(x) exp(−iµL
√

k
m t) as the ansatz. The equations

3Notice that
∞∫

−∞

∞∫
−∞

f(t)e−iωt dt

iωb−Mω2+cot(ω
√

m
k

)ω
√

km
eiωt dω =

−∞∫
∞

∞∫
−∞

f(t)e−i(−ω)t dt

i(−ω)b−M(−ω)2+cot((−ω)
√

m
k

)(−ω)
√

km
ei(−ω)t d(−ω), so

∞∫
−∞

∞∫
−∞

f(t)e−iωt dt

iωb−Mω2+cot(ω
√

m
k

)ω
√

km
eiωt dω =

∞∫
−∞

∞∫
−∞

f(t)eiωt dt

−iωb−Mω2+cot(ω
√

m
k

)ω
√

km
e−iωt dω and uoscillator(t) is pure real.

4By lim
m→0

cotω
√

m
k

=
√

k
m
/ω, we have lim

m→0
G(ω) = 1

iωb−Mω2+k
, which is consistent with the transfer function G(s) = 1

Ms2+bs+k

for standard 2nd order mass/spring/damper system by Laplace transformation. [4] There is also another conclusion if we add one

more expansion term in cotx (cot ≃ 1
x

− x
3
− x3

45
+ ... within radius of convergence), lim

m→0
cotω

√
m
k

=
√

k
m
/ω − 1

3
ω
√

m
k
, hence

lim
m→0

G(ω) = 1
iωb−Mω2+k− 1

3
mω2 . In no viscous case (b = 0), revised natural circular frequency for spring mass system is ω = k

M+m/3

where spring’s effective mass is m/3, [5] which can be obtained from lim
m→0

G(ω) = 1
−(M+m/3)ω2+k

.

5Take infinitesimal spring with length dx, stiffness coefficient kL
dx

and mass dx
L
m. The position deviation of infinitesimal spring from

equilibrium is denoted by du. Then motion equation of the infinitesimal spring can be given by
∂( kL

dx
du)

∂x
dx = dx

L
m · d2u

dt2
according to

Newton’s second law.
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above then become

X ′′(x) + µ2X(x) = 0, (8a)

X(0) = 0, (8b)

X ′(L) = (iµ
b√
km

+ µ2ML

m
)X(L), (8c)

X(x) = ϕ(x), (8d)

−iµL
√
k

m
X(x) = ψ(x). (8e)

By Eqs. (8a) and (8b), we substitute X(x) = sinµx
into Eq. (8c) and get the eigenvalue equation

cotµL = i
b√
km

+ µ
ML

m
. (9)

We set that Xp(x) and Xq(x) are different solutions
from the base set. To obtain expansion coefficients from
initial conditions (8d) and (8e), we first derive the or-
thogonality relation between bases Xp(x) and Xq(x)
within the boundary condition (8c). According to Eqs.
(8a) and (8c), we have

X ′′
p (x) + µ2

pXp(x) = 0, (10a)

X ′
p(L) = (iµp

b√
km

+ µ2
p

ML

m
)Xp(L), (10b)

X ′′
q (x) + µ2

qXq(x) = 0, (10c)

X ′
q(L) = (iµq

b√
km

+ µ2
q

ML

m
)Xq(L). (10d)

⌋

Calculate Eq. (10b) ×Xq(L)− Eq.(10d) ×Xp(L) and we get

ML

m
(µ2

p − µ2
q)Xp(L)Xq(L) + i(µp − µq)

b√
km

Xp(L)Xq(L)

= Xq(x)X
′
p(x)

∣∣L
0
−
∫ L

0

X ′
p(x)X

′
q(x)dx− Xp(x)X

′
q(x)

∣∣L
0
+

∫ L

0

X ′
p(x)X

′
q(x)dx

=

∫ L

0

Xq(x)X
′′
p (x)dx−

∫ L

0

Xp(x)X
′′
q (x)dx

=− µ2
p

∫ L

0

Xq(x)Xp(x)dx+ µ2
q

∫ L

0

Xp(x)Xq(x)dx.

(11)

From Eq.(11) we eventually reach the following equality under the boundary condition (8c),

∫ L

0

Xq(x)Xp(x)dx+

[
ML

m
+ i

b

(µp + µq)
√
km

]
Xp(L)Xq(L) = 0. (12)

Eq. (12) shows that the solutions in the base set are generalized orthogonal [6]. The squared norms (denoted by
N 2) of the eigenfunctions can be calculated as

N2[Xp(x)] =

∫ L

0

X2
p(x)dx+

[
ML

m
+ i

b

2µp

√
km

]
X2

p(L)

Xp(x)=sinµpx
===========

Eq. (10b)

L

2
− 1

4µp
sin 2µpL+

cosµpL sinµpL

2µp
+
ML

2m
sin2 µpL

=
L

2
+
ML

2m
sin2 µpL.

(13)

So the solution to the Eq. (7) can be written as u(x, t) =
∑

nAn sinµnx exp(−iµnL
√

k
m t); the expansion coefficients

An are determined by ϕ(x) and ψ(x) collectively. We then expand ϕ(x) and ψ(x) based on the orthogonality relation

(12): ϕ(x) =
∑

n Pn sinµnx, ψ(x) = −i
∑

n µnL
√

k
mQn sinµnx where

Pn =

∫ L

0
ϕ(x) sinµnxdx+

[
ML
m + i b

2µn

√
km

]
ϕ(L) sinµnL

N2[Xn(x)]
, (14a)

Qn =

∫ L

0
i

µnL

√
m
k ψ(x) sinµnxdx+

[
ML
m + i b

2µn

√
km

]
i

µnL

√
m
k ψ(L) sinµnL

N2[Xn(x)]
. (14b)
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Let An = αnPn + βnQn, then

ϕ(x) =
∑
n

(αnPn + βnQn) sinµnx, (15a)√
m

k
ψ(x) = −i

∑
n

µnL(αnPn + βnQn) sinµnx. (15b)

Comparing Eq. (15a) + χ Eq. (15b) with ϕ(x) =
∑

n Pn sinµnx, χ
√

m
k ψ(x) = −iχ

∑
n µnLQn sinµnx, we get

Pn[(αn − 1)− iχµnLαn] +Qn[βn − iχµnL(βn − 1)] = 0. (16)

Hence, αn = 1
1−iχµnL

and βn = 1− αn = −iχµnL
1−iχµnL

. Finally An can be given as

An =

∫ L

0
[ϕ(x) + χ

√
m
k ψ(x)] sinµnxdx+ [ML

m + i b
2µn

√
km

][ϕ(L) + χ
√

m
k ψ(L)] sinµnL

N2[Xn(x)](1− iχµnL)
, (17)

where χ is determined by the initial conditions both ϕ(x) and ψ(x).6 For the simple but most common case, if
ψ(x) = 0, i.e. ∂u

∂t

∣∣
t=0

= 0, we have χ = 0 (hence An = Pn). According solutions satisfy Eqs. (7) when t > 0.

⌈

The eigenvalue equation reveals as cotµL = i b√
km

+

µML
m (eigenvalue µ won’t be 0). Notice that −µ is also

eigenvalue if µ is eigenvalue. The corresponding expan-
sion coefficients have the relation P (−µ) = −P (µ) and
Q(−µ) = −Q(µ) due to the Eq. (14). Considering
sin(−µx) = −sinµx,∑

n

Pn sinµnx =
∑

Re(µn)>0

[Pn sinµnx+ Pn sinµnx] =

∑
Re(µn)>0

[Pn sinµnx+ c.c.], (18a)

− i
∑
n

µnL

√
k

m
Qn sinµnx =

− i[
∑

Re(µn)>0

[µnL

√
k

m
Qn sinµnx]− c.c.]. (18b)

Eq. (18) verifies that both ϕ(x) and ψ(x) are pure real
when ansatz

u(x, t) =
∑
n

An sinµnx exp(−iµnL

√
k

m
t),

is taken. Of course u(x, t) =
∑

Re(µn)>0

[An sinµnx

exp(−iµnL

√
k

m
t) + c.c.] is also pure real. We can ob-

tain two types of independent eigen-vibration modes

from this result. Let µn = ξn − iζn
7, then

sinµnx exp(−iµnL

√
k

m
t) =

(sin ξnx cosh ζnx− i cos ξnx sinh ζnx)×

exp(−ζnL
√
k

m
t)[cos(ξnL

√
k

m
t)− i sin(ξnL

√
k

m
t)]

= [sin ξnx cosh ζnx cos(ξnL

√
k

m
t)−

cos ξnx sinh ζnx sin(ξnL

√
k

m
t)] exp(−ζnL

√
k

m
t)−

i[cos ξnx sinh ζnx cos(ξnL

√
k

m
t)+

sin ξnx cosh ζnx sin(ξnL

√
k

m
t)] exp(−ζnL

√
k

m
t).

The two types of independent vibration modes are given

6If ϕ(x) and ψ(x) are dependent, to be more precise, Pn = Qn, χ can be any value. In this case, either Eq. (14a) or Eq. (14b) can
be equally used to calculate the expansion coefficient An, and don’t bother to introduce χ.

7It’s hard to find all µs analytically from cotµL = i b√
km

+ µML
m

but we can use perturbation to investigate since imaginary part in

RHS of eigenvalue equation b√
km

is feeble in generally underdamping conditions. The zero-order approximation, µ(0)tanµ(0)L = m
ML

for zero friction situation (b = 0), is discussed in previous work [2]. Obviously, solutions are real numbers and come in pairs (−µ(0) is
also solution if µ(0) satisfies zero-order eigenvalue equation). Perturbation calculation shows the first order modification is negative pure
imaginary number and the paired zero-order eigenvalues ±µ(0) share the same first order modification. It coincides with the previous
analysis that −µ is eigenvalue if µ is eigenvalue.
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by8

mode 1:[sin ξnx cosh ζnx cos(ξnL

√
k

m
t)−

cos ξnx sinh ζnx sin(ξnL

√
k

m
t)] exp(−ζnL

√
k

m
t),

mode 2:[cos ξnx sinh ζnx cos(ξnL

√
k

m
t) +

sin ξnx cosh ζnx sin(ξnL

√
k

m
t)] exp(−ζnL

√
k

m
t).

The oscillator (x = L) vibrates with damped amplitude
(as is shown in Fig. 2) in both types of modes, which
is reasonable.

Figure 2 - Let t/τ be dimensionless with τ =
√

m
k
/ξnL, the

eigen-vibration mode of the oscillator can be plotted under two
cases with ζn/ξn = 0.1 and ζn/ξn = 0.2. The oscillator vibrates
with damped amplitude.

For zero-friction case (b = 0), the solutions to eigen-
value equation cotµL = i b√

km
+µML

m are pure real, i.e.

ζ = 0. Then two types of vibration modes become9

mode type 1: sin ξnx cos(ξnL

√
k

m
t),

mode type 2: sin ξnx sin(ξnL

√
k

m
t).

Summarize the result: the solution to Eq. (7) is

u(x, t) =
∑

nAn sinµnx exp(−iµnL
√

k
m t) where eigen-

value µn is given by Eq. (9). Expansion coefficient An

and squared norms are given by Eqs. (17) and (13).

4. Conclusion

In this article, we detailedly studied the vibration of
spring oscillator when the mass of the spring can’t be
neglected. Damped oscillation and forced vibration
are especially focused. For general condition, oscilla-
tion with friction and applied force, renormalization
method is employed to obtain the equation of the mo-
tion. Renormalization method shows superiority when
applied force f (t) exerts on the oscillator. We also in-
vestigate the damping vibration without applied force
with theory of partial differential equations. For given
boundary condition, the generalized orthogonality of
base set is studied. We discussed the characters of the
eigenvalue and the expansion coefficient and the discus-
sions verified the validity of the solution.
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