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This paper presents a qualitative analysis of the Coriolis force direction using the conservation
of angular momentum and comparing it with quantitative calculation. In order to understand the
implications of the theoretical expression for Coriolis force, we show the theory to students and teachers
in a different way. When an object is on a rotating flat plate or rotating sphere (with constant angular
velocity), has an associated tangential velocity due to rotation. If the object moves toward a larger
(smaller) radius, in order to conserve angular momentum, there must be a force to reduce (increase) the
tangential velocity. If the object moves parallel to tangential velocity, for angular momentum conservation,
when tangential velocity increases (decreases) there must be a force which impels the object toward a
larger (smaller) radius.
Keywords: Coriolis force, angular momentum, physics teaching.

Este trabalho apresenta uma análise qualitativa da direção da força de Coriolis usando a conservação
do momento angular e comparando-a com cálculo quantitativo. A fim de compreender as implicações da
expressão teórica para a força de Coriolis, se mostra a teoria de uma maneira distinta, para alunos e
professores. Quando um objeto está sobre uma superficie plana ou uma esfera em rotaçao (com velocidade
angular constante), possui uma velocidade tangencial devido à rotação. Se o objecto se move para um raio
maior (menor), a fim de conservar o momento angular, deve haver uma força para reduzir (aumentar) a
velocidade tangencial. Se o objeto se move paralelo à velocidade tangencial, por conservação do momento
angular, quando aumenta (diminui) a velocidade tangencial (diminui) deve haver uma força impele o
objeto para um raio maior (menor).
Palavras-chave: força de Coriolis, momento angular, ensino de f́ısica.

1. Introduction

More than 180 years have passed since Gaspard
Gustav de Coriolis (1792–1843) published his works
[1, 2], but their implications remain fresh and have
been applied in many and different topics, from
serious and scientific ones to informal and anecdotic
ones.

Coriolis force is a classic subject studied in every
Mechanics course in Bachelor of Physics or Engi-
neering, when the aspects related to inertial and
non-inertial systems are reviewed.

∗Endereço de correspondência: herreraztegui@gmail.com.

This subject is fundamental because of its connec-
tions with other important subjects from Physics
e.g. rotational systems, angular momentum and its
conservation, rigid body, etc., which are often only
partially understood by students, studying them for
the first time.

And a growing number of students in Earth Sci-
ences related disciplines (Atmospheric Sciences, Ocea-
nography, Hydrology, Space Physics, etc.) also need
a good comprehension of this subject [3-5].

We want to show an alternative way to obtain
the direction of Coriolis force qualitatively by using
the angular momentum conservation, as this is an
intuitive help for students in understanding this
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force. We want to help students develop a physics
based intuition in order to predict the direction of
the Coriolis force, in a way which makes more sense
than the mathematical conclusion “it goes to the
right side of the movement on the north hemisphere”.
Mathematics of course describes it, but it does not
explain why the force operates this way. Schmidt
[6] did an approach to this topic, but in that work
the angular momentum conservation explanation
was not shown explicitly and the author used other
concepts like centripetal force for it.

We briefly present the known theory of Corio-
lis force and angular momentum conservation in
sections 2 and 2.1. Then, by only using angular mo-
mentum conservation we theoretically obtain the
direction which the force should have (qualitatively
and quantitatively) in two and three dimensions
(sections 3.1 and 3.2 respectively), which is the sub-
stantial section of this paper. Finally, in section 4,
the conclusions are presented.

2. The known theory

A vector A (vectors are denoted by bold) has a
time change rate in the inertial reference system
(subscript i) [7, 8],

(
dA
dt

)
i

= dA
dt

+ Ω×A (1)

where dA/dt is the time change rate in the rotating
reference frame (non-inertial) and Ω is the angular
velocity vector.

Applying this to the change of the position vec-
tor r (x, y, z) of a material point in the Cartesian
coordinate system, we obtain

(
dr
dt

)
i

= dr
dt

+ Ω× r , (2)

And defining velocity vector as V= dr/dt =
(dx/dt, dy/dt, dz/dt) = (u, v, w), the Eq. (2) be-
come

Vi = V + Ω× r . (3)

It is important to notice that if an object on the
rotating system has V=0, even then it will have an
associated velocity due to rotation: Vi= Ω x r (Fig.
1).

Figure 1: Change of the position vector (r) in the inertial
reference system (dr/dt)i without movement in the non-
inertial reference frame (dr/dt=0), a) When movement of
the plate is clockwise and b) When movement of the plate
is counterclockwise.

Similarly, the acceleration in the inertial frame is
given by

(
dVi

dt

)
i

= dVi

dt
+ Ω×Vi (4)

Substituting Vi on the right side of Eq. (4) from
(3), to incorporate the apparent velocity in the iner-
tial frame, we obtain

(
dVi

dt

)
i

= dV
dt

+
(

Ω× dr
dt

)
+(

r× dΩ
dt

)
+ (Ω×V) + Ω× (Ω× r) . (5)

And assuming constant angular velocity, the Eq.
(5) is reduced to

(
dV
dt

)
i

= dV
dt

+ 2Ω×V + Ω× (Ω× r) . (6)

When the sum of forces (F) is considered on the
rotating system (non-inertial), Newton’s Law or
momentum equation can be written as

dV
dt

=
∑

i

F
m
− 2Ω×V−Ω× (Ω× r) , (7)

where –2Ω x V and –Ω x (Ω x r) are Coriolis ac-
celeration and centrifuge acceleration respectively.
Equation (7) includes other forces due pressure gra-
dient, gravitation and friction, that we do not discuss
in this paper.

Then, Coriolis acceleration can be expressed as
Coriolis force per mass unit (m) as
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FCoriolis

m
= −2Ω×V , (8)

which it is useful when it is difficult to quantify the
mass, like in the case of moving fluids.

There are different derivations to the previous
one, which has been made in order to not introduce
terms like “fixed” and “rotating” system [9], or from
a geometric perspective [10]. Even so, we consider
the exposed theory in this paper is sufficient to
achieve the goal.

2.1. Aid of Angular Momentum
Conservation

It is possible to make a qualitative description of
Coriolis force predicting its direction. We can do
this by using angular momentum conservation.

Preliminarily, with the previous definitions of po-
sition vector (r) and velocity vector (Vi), we can
define the absolute angular momentum (L) as

L = r× p = r×mVi , (9)

where p is the linear momentum. Moreover, if we
assume constant mass, Eq. (9) can be written as

L = m (r×Vi) , (10)

Using Eq. (3) to get a new equation in terms of
velocity on the rotating system (non-inertial), then
the angular momentum per mass unit will be

L
m

= r×V + r× (Ω× r) . (11)

From Eq. (9) it follows that angular momentum
is conserved only in the absence of torque (τ ), i.e.

if τ = r× dp
dt

= 0 ⇒ dL
dt

= 0 . (12)

3. Coriolis force direction using Angular
Momentum Conservation and
comparison with its direct calculation
(qualitative vs. quantitative)

In the qualitative description of Coriolis force di-
rection, we study two cases: 3.1) Two-dimensional
motion and 3.2) Three-dimensional motion.

We suppose instantaneous velocity movements,
hence there is no torque, and angular momentum
is conserved. Friction is neglected. In every case we
refer to movements of a punctual object which has
constant mass (m).

3.1. Two-dimensional motion

The movements of a punctual object on a flat plate
rotating with constant angular velocity (Ω) can
be classified into three types: a) Radial, in which
movement is made over a radius of the plate; b)
Tangential, movement is perpendicular to the radius
in which the object is located at that instant, and
c) A combination of the preceding (Fig. 2).

The object moves with instantaneous velocity V
= (u, v, 0), that is, the considered movements occurs
on XY plane.

3.1.1. a) Radial movements

In this case, movements are made over any radius
(r) and given that r and V are parallel then r x
V is zero. Thus by Eq. (11) we obtain only the
second term r x (Ω x r) for the angular momentum
per mass unit. Finally, in order to conserve angular
momentum, a move toward a larger (smaller) radius
should reduce (increase) the tangential velocity.

Let’s use this qualitative fact about the direction
of the force in the next example: take a flat plate
rotating with angular velocity Ω = (0, 0, Ω), let V
= (u, 0, 0) be the velocity of the object, as shown in
Fig. 3a. Observe that the object is moving from a
radius r1 toward larger one r2, so that, to conserve
the angular momentum there must be a force (f) to

Figure 2: Movements on a rotating flat plate: a) radial, b)
tangential and c) linear combination of previous both.
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Figure 3: Radial movements (V) on a rotating flat plate
toward: a) a larger radius and b) a smaller radius. And its
forces (f).

reduce the tangential velocity Ω x r2 = (0, Ω r2, 0),
and therefore f should have an opposite direction to
it. Then, the force will have the vector form (0, -f,
0), where the negative sign represents that the force
is going the opposite way to tangential velocity.

Now, we want to compare the direction of the
force obtained qualitatively with the analytical cal-
culation of the Coriolis force, with Ω = (0, 0, Ω)
and V= (u, 0, 0). By Eq. (8) we obtain

FCoriolis

m
= −2Ω×V = −2

∣∣∣∣∣∣∣
i j k
0 0 Ω
u 0 0

∣∣∣∣∣∣∣ =

−2uΩ j = (0, −2uΩ, 0) , (13)

which is fully consistent with the predicted direction
of the force by using angular momentum conserva-
tion.

Let us consider a move toward a smaller radius
(Fig. 3b) with V= (-u, 0, 0) and keeping Ω = (0, 0,
Ω) as above. Since the object is going to a smaller ra-
dius, there must be a force to increase the tangential
velocity in order to conserve angular momentum,
then it will have the same direction of the tangential
velocity Ω x r1 and therefore the same sign, i.e., it
will have the form (0, f, 0). Calculating analytically
Coriolis force as in Eq. (13) we have

FCoriolis

m
= 2uΩ j = (0, 2uΩ, 0) , (14)

which it is also in accordance with the predicted.

3.1.2. b) Tangential Movements

In this case, the velocity of the object V and the
tangential velocity Ω x r are parallels, so they can
easily be added. So V can be expressed as Ω x rn,

where rn is a radius, which is a multiple of its current
radius, i.e., rn=α r1 where α is a scalar.

Suppose the case shown in Fig. 4a, where the
object has a velocity V= (0, v, 0) = Ω x αr1, then
the equation of angular momentum per mass unit
takes the form

L
m

= r1 × (V + Ω× r1) = r1 × (Ω× α r1) +

r1 × (Ω× r1) = (1 + α) r1 × (Ω× r1) , (15)

V is α times the tangential velocity due to rota-
tion in that point. If α is positive, V has the same
instantaneous direction as the rotation.

There is a circle of radius r2 > r1 such that an-
gular momentum per mass unit is the same as (15).
Let r2= r1

√
(1+α) and V=0, then the angular mo-

mentum per mass unit due to rotation Ω x r2 is

L
m

= r2 × (0 + Ω× r2) =
√

1 + α r1 ×(
Ω×

√
1 + α r1

)
= (1 + α) r1 × (Ω× r1) . (16)

So, for angular momentum conservation, when
tangential velocity increases there must be a force
which impels the object toward a larger radius, hav-
ing the form (f, 0, 0).

Figure 4: Tangential movements (V) on a rotating flat
plate, where: a) the tangential velocity increases and b)
the tangential velocity decreases; and its forces (f). c) Tan-
gential velocity due to rotation (Ω x r) depending on the
radius rn. If the object is in a point P on the plate, the
point P and the center O of the plate define a directed line
segment OP. Radii are considered positive if they have the
same direction of the OP segment, and negative if they
have opposite direction.
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Calculating analytically the Coriolis force for V=
(0, v, 0), we have

FCoriolis

m
= 2vΩ i = (2vΩ, 0, 0) . (17)

Again, this result is in agreement with the pre-
dicted one.

When V has the opposite direction than the rota-
tion, reduces tangential velocity that corresponds to
the radius in which the object is located (Fig. 4b),
then the force impels the object toward a smaller
radius r2 as define above. This case occurs when
α < 0 in Eq. (16). We need to clarify what is meant
by “smaller radius”. Consider the diameter which
passes through the point where the object is located.
We can define positive and negative radii associated
to a point as directed line segments. If O is the
center of the plate and P the current location of
the object, then the segment OP defines a positive
direction. Then a positive radius is one having the
same direction as OP, and a radius with an opposite
direction is a negative radius. So, if –1 6 α 6 0,
r2 is a positive radius between the center of the plate
and r1, and if α < −1, r2 is a negative radius. In
both cases r2 is a smaller radius than r1. To smaller
radii correspond smaller tangential velocities due
the rotation and conversely to larger radii corre-
spond larger tangential velocities due to rotation,
as shown in Fig. 4c.

3.1.3. c) Linear combination of previous
movements

If a movement is a linear combination of previous
ones, we can imagine that solution is also a linear
combination of their solutions.

As V has the form (u, v, 0), as shown in Fig. 5,
the object is moving toward a larger radius and is
increasing the tangential velocity. So in order to
conserve the angular momentum, the force should
reduce tangential velocity and should impel the
object to a larger radius, having the form f = (fx,
-fy, 0).

Calculating analytically the Coriolis force we have,

FCoriolis

m
= 2vΩ i − 2uΩ j

= (2vΩ, −2uΩ, 0) , (18)

which is according with the prediction.

Figure 5: Movements (V) on a rotating flat plate, as linear
combination of radial and tangential movements. And its
forces (f).

3.2. Three-dimensional motion

Let us consider movements on a rotating solid sphere.
In every point on the sphere, using Cartesian co-
ordinates, it can be define a plane tangent to the
surface, where the X axis coincides with a parallel,
the Y axis coincides with a meridian and the Z axis
is orthogonal to the plane.

Movements are considered again with instanta-
neous velocity. As in section 2.1 we denote V= dr/dt
= (dx/dt, dy/dt, dz/dt) = (u, v, w), where move-
ments are linear combination of u, v and w (Fig.
6).

It may be advantageous to name the poles as
north (N) and south (S) and consequently name
east and west, such that movements from east to
west (west to east) correspond to speed u, from

Figure 6: Movements on a rotating solid sphere, a) over a
parallel, b) over a meridian and c) vertical movements.
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north to south (south–north) to speed v and from
up to down (down–up) to speed w. In the literature
of atmospheric sciences, these three movements are
known as: zonal, meridional and vertical movements
respectively.

On the sphere, the angular velocity vector (Ω) de-
pends on the angle known as latitude (φ). Moreover,
Ω has the same magnitude but different direction on
each hemisphere (Fig. 7), where to each hemisphere
correspond similar cases as shown ones on Fig. 1a
and 1b. From Fig. 8 it can be deduced that angular
velocity vector can be expressed as

Ω = (0, Ωy, Ωz) = (0, Ω cos φ, Ω sinφ) . (19)

From Eq. (8) we can obtain an expression in
Cartesian coordinates for –2Ω x V, such that

FCoriolis

m
= (2vΩ sinφ− 2wΩ cosφ) i−

2uΩ sinφ j + 2uΩ cosφ k (20)

Now we can analyze some interesting examples:
Let be a point between North Pole and the Equa-

tor, and let be a movement towards the East with
V = (u, 0, 0), this case is similar to the one studied
on section 3.1.1. in which the tangential velocity
is increasing, then there must be a force (f) which
impels the object toward a larger radius. But, in the

Figure 7: Oblique view of a rotating solid sphere: a) cut
for North hemisphere (N), and top view, b) cut for South
hemisphere (S), and bottom view. On the top and bottom
views the dot indicates that the vector Ω comes out the
surface and the cross indicates that vector Ω gets in the
surface.

Figure 8: Oblique view of a rotating solid sphere, outlining
the components of the vector Ω with respect the latitude
angle φ.

spherical case there are two possibilities for moving
toward a larger radius: i) Moving toward the Equa-
tor and ii) Moving upward (Fig. 9a); so the force
should have the form f = (0, -fy, fz). Substituting
V on Eq. (20) we have

FCoriolis

m
= −2uΩ sinφ j + 2uΩ cosφ k (21)

which coincides with expectations.

Figure 9: Movements (V) over a parallel on a rotating
solid sphere and its forces (f) for: a) a latitude between
Equator and North Pole (0◦ < φ < 90◦) and b) on Equator
(φ = 0◦).
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Changing the previous example a bit, we obtain
another interesting result. Let be the same condition
as before V = (u, 0, 0), but now at the Equator of
the sphere. Likewise as in the previous case, there
must be a force (f) which impels the object toward
a larger radius, but the movement can not be over
a meridian because the object in any case would
move to a smaller radius, then the only possibility
to go to a larger radius is to go upward (Fig. 9b).
So the force should have the form: f = (0, 0, fz).
Calculating Coriolis force analytically with Eq. (20)
and taking φ = 0◦ on Equator we obtain

FCoriolis

m
= 2uΩ k = (0, 0, 2uΩ) (22)

as we wanted.

4. Conclusions

The angular momentum conservation allows us to
predict the direction of Coriolis force of a moving
object on a rotating flat plate or rotating sphere
(with constant angular velocity). If the object moves
toward a larger (smaller) radius, in order to con-
serve angular momentum, there must be a force to
reduce (increase) the tangential velocity. If the ob-
ject moves parallel to tangential velocity, for angular
momentum conservation, when tangential velocity
increases (decreases) there must be a force which
impels the object toward a larger (smaller) radius.

Many of the theories of physics created in the
nineteenth century are complicated for students be-
cause their final form, represented by equations, has
concentrated a number of concepts into an explana-
tion which becomes dense, difficult to follow, and
hard to understand. It is better for didactic reasons,
to analyze the ideas implied by those fundamental
concepts. The explanation could be longer, but al-
lows student to build simpler steps to go thru. The
simple term –2Ω x V involves too many informa-
tion, it resumes all said in this paper without being
obvious all the implications that we have discussed.

The issue is valid in different levels and its relation-
ship with other disciplines take increasing relevance
[11-15].
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