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In this work, it is shown the interplay of relative and absolute entities, which are present in both
spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we
discuss firstly an instance of geometry and the existence of both frame-dependent and frame-independent
entities. We depart from a subject well known by students, which is the three-dimensional geometric
space in order to compare, afterwards, with the treatment of four-dimensional space in the special
relativity. The differences and similarities between these two subjects are also presented in a explicit
way, with the goal of improving the comprehension of newcomers on the theory of relativity.
Keywords: geometry, special relativity, four-dimensional space, scalar product, relativistic invariant

Nesse trabalho é mostrada a inter-relagdo das grandezas relativas e absolutas, que estao presentes tanto
na geometria espacial quando na relatividade especial. A fim de reforcar o entendimento da relatividade
especial, discutimos primeiramente um exemplo da geometria e a existéncia de entidades dependentes e
independentes do referencial. Nés partimos de um assunto bem conhecido dos estudantes, que é o espago
geométrico tridimensional para comparar, depois, com o tratamento do espago quadridimensional na
relatividade especial. As diferencas e similaridades entre esses dois assuntos sdo também apresentadas de
uma maneira explicita, com o objetivo de melhorar a compreensao dos alunos iniciantes na teoria da
relatividade.

Palavras-chave: geometria, relatividade especial, espago quadridimensional, produto escalar, invariante

relativistico

1. Introduction

The theory of relativity was proposed in 1905 by Ein-
stein and its world view is quite different from the
Newtonian mechanics. The uncontrolled populariza-
tion of the relativity generated many preposterous
views about its content. Maybe, the more improper
of them would be the assumption that the relativity
shows that ’everything is relative’. On the contrary,
the main idea of theory is to determine what is rela-
tive in the material world, in order to have a better
understanding of what is not. The absolute aspects
of the physical universe are, in fact, the major target
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of Einstein’s relativity. The special relativity deals
with the observation of physical phenomena made
in different reference frames, in relative uniform
motion. The theory relates the descriptions made
of these phenomena and aims at finding absolute
laws underlying different descriptions. An important
feature is that there is no privileged frame, which
allows one to say that the idea underlying on the
importance of the reference frame is the desire of
describing the same physics in different frames [1].
In this way, the theory distinguishes and correlates
two different realms. One of them is related with
frame-dependent observations whereas the other, re-
gards absolute quantities which cannot be directly
reached by either measures or experiments. The idea
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of relativity gives rise a split of the world into two
parts, which are what really exists in the nature
and what can be observed. This dichotomy is the
essence of relativity since there are both relative
and absolute entities in the nature. This was quite
emphasized by Minkowski, when he states that

since the postulate comes to mean that
only the four-dimensional world in space
and time is given by phenomena, but
that the projection in space and time
may still be undertaken with a certain
degree of freedom, I prefer to call it the
postulate of the absolute world (or briefly,
the world-postulate)( [1], p.83).

This dichotomy is present in physics, mathematics,
language and, especially, in our daily life. It is a
kind of game based on the distinction between an
object and the perceptions of object. For example,
if one takes a concrete object, like a cube, there
are many ways of knowing what a cube is. This
knowledge can begin with the sensorial contact with
the physical cube, such as dices or boxes. Doing it, a
child experiments the cube with the tough, the eyes,
the mouth and so on. After the cube is manipulated
we may say that somehow we know or learn about
the cube.

This learning on the cube occurs in an abstract
way in our mind, since after this experience we
recognize all the infinite cubes that exist in the
world. There is a pattern which allows one to identify
different objects and categorize them as ’cube’. The
idea acquired of cube encompasses particular cubes.
With this idea one is able to recognize all cubes
around us. Therefore, the idea of abstract cube is an
absolute and lives in our mind, without mediations.
On the other hand, the representations of cube are
different and can be done, for example, by means of
words, which are relative representations, since they
depend on the local, language and culture. Thus, the
same idea of cube may be represented by different
words, namely wiirfel, in german, kiip, in turkish,

Spatial Geometry and Special Relativity: a comparative approach

or even more complex symbols, as in chinese and
japonese languages [2]. We can also represent the
cube with figures, as those in ﬁg..

One notes that it is not possible to draw the
whole cube. The partiality of representations nec-
essarily incorporates a perspective, which is always
particular to an observer.

In both geometric and special relativities, the de-
scription of physical phenomena depends on the ob-
server, which is in a given frame. An observer is not
able to see directly the whole cube. However, he can
see separately each face and reconstruct the whole
cube in his mind. The idea of cube and the relation-
ship between their vertices are frame-independent.
Hence, there is an absolute entity underlying the
relative descriptions. The notion of absolute has
always been present in physics, even in geometric
objects. In order to understand the relativity ap-
plied to the geometry, we discuss in the sequence
how the geometric description of the cube is.

2. The geometric cube

Take as example the eight vertices of a cube, seen
by three different observers. A geometric theory of
relativity is based on an idea that each observer de-
scribes the same point in a different way. However,
these different descriptions keep well-defined rela-
tionships between the points. In analytical geometry,
a frame is the zyz system. In this paper one uses
names of people for designating the frames [2], for
example, Mary’s frame, denoted by S™ and shown
in the figure (a). For a cube with edge L, in SM,
we have the following coordinates of vertices

PM . (0,0,00 PM:(L,0,0)
PM.(0,L,0) PM:(0,0,L)
PM.(L,L,0) PM:(L,0,L)
PM.0,L,L) PM:.(L,L,L). (1)

Figure 1: Different images of cube
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Figure 2: Cube in different frames

In other frame, such as Anne’s frame S4, shown in
the figure [2[(b), the coordinates of the same vertices
are

P& (a,b,c)

P (a+L,bc)

P (a,b+ L, c)

P (a,b,c+ L)
PA:(a+ Lb+ L,c)
P{:(a+L,bc+ L)

P& (a,b4 Lyc+ L)

P (a+ Lo+ Lc+ L), (2)

One can note that S4 is displaced by an arbitrary
distance d in relation to S™, which can be written
as a vector d = (—a,—b,—c). Taking another one,
the John’s frame S7, shown in the figure [2[c), the
x and y axes are now rotated by 30 in relation to
SM and the descriptions for the same points are

P/ :(0,0,0)
R

P ()

P/ :(0,0,L);

Pg,:(L(\/ngl) L(\/g—l)yo)

2 ’ 2
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The aim of these examples is to verify the dialec-
tical relation between the object and the perceptions
of object. The cube is the same for the three ob-
servers, whereas its description is not. One could
also imagine if we were born in a world without
concrete cubes, such as small boxes, dice, and so on.
A world in which the cubes can only be known by
means of their analytical descriptions, such as the
sets of points , and . It would be hard to
reach the concept of cube in this world having only
these descriptions. However, there are stable and
well established features of the cube, which are com-
mon to all particular descriptions. A theory which
is able to distinguish relative from absolute entities
front of a description is called ’theory of relativity’.

3. The geometric invariants

For maintaining the idea of cube, the relations be-
tween the vertices should have the same measure in
all frames and one says that the distance between
two vertices is an invariant, such as the length of
the diagonal. For example, the relation between the
vertices 7 and 2 in the three frames are given by
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pM—pM = (-L,L,L)
PA_P}) = (—L,L,L)

L ILV3 L L
plop) = (LB,

2 2 72 2

One notes that these results are not equal to
three frames, however, if we consider that each
substraction is a generic vector ff, the length of
diagonal is given by the modulus of the vector
]/ﬂ = /22 + 42 + 22. Thus, in S™, $4 and S”, such
vectors are AM = (—-L,L,L), AA = (—-L,L,L)
and A7 = ( % — LT\/E, LT‘/E + %,L ), and their modu-
lus are

V(M — P}y = /(A — P2
= \/(P/ — PJ/)2 = LV3.

The geometric meaning of this result is simple:
L+/3 is the distance between vertices 7 and 2, which
is an invariant. In the two first cases, this invariant
is originated by translating frames (SM and S4),
whereas the third, the invariant comes by rotating
frame (30-degree of the axes  and y in S”). The
invariants coming by rotating frames are quite rele-
vant in geometric relativity. For example, the single
point P in figure [§[(a), is written as

A= rcoshi + rsemfj + 0k , (4

whereas in x'y’z’ system, which is rotated by a angle
« in relation to zy axes, the new description of P,
shown in the figure [3|(b), is

A" = rcospi + rsenp ) + 0k , (5)

- »
(@)
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where ¢ = 0 — a.
Although the both descriptions are different, one
shows that the modulus of A is an invariant, cal-

culating |A| = 2% + 2 + 22. In zyz system we
have

|A] = V2 cos20 + 12 sen20
= \/TZ(COS29+867120): Viz=r |

and in the 2'y’2’ system, the same operation is

|A] = \/r2 cos?p + 12 sen?p
= \/r2(003290+86n2<p) = VrZ=r

These results show that the modulus of a vector
does not depend on neither the reference system
nor the angle rotated. A theory of relativity is one
which transforms the coordinates from a frame into
another one, i.e., it transforms (z,y,z) of P into
(2,3, 7'). We note that the vector A does not de-
pend on the « in two frames and, hence, we have to
related a with 6 and ¢, by means of the following
trigonometric relations.

cosp = cos(@ —a) = cosb cosa + senb sena

senp = sen( —a) = senb cosa — sena cost

Therefore, the equations which relate x, y and z
with 2/, 3/ and 2’ are

x = r cost

y = 1 senf

2= 0 (©
o= [ cosf cosa + senf sena |

vy = r [ senf cosa — sena cosf |

Z o= 0 . (7)

e
Q
\
X

(b)

Figure 3: Description of vector in rotating frames
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In order to obtain a set of equations which trans-
form zyz — 2'y'2’, we replace egs. (6] in (7)), yielding

T = cosax r + Ssena y
/
Y = —sena r + cosa Yy
2 = 2z (8)
)

which can be also represented by a matricial form

x! cosaa  sena 0 z
y | =| —sena cosa 0 Yy . (9
z 0 0 1 z

These equations are well known from rotating
geometry and are quite useful, since they determine
the coordinates of a same vector in different frames
and allow one to make changes of frame, in a analyt-
ical way, without constructing the geometric figure.
Therefore, the figure of cube can be abandoned and
the calculus is made only with the points. Returning
to vertices PM and P, described by (L,0,0) and
(0, L, L) in SM_ the result allows to obtain Py
and P/ in S”, which is -degree rotated in relation
to SM. The figure shows these points in S™ and
their corresponding vectors.

Using the eqs.7 the same vectors can be written
in S’ as

Al = x cosb + y send
= L cost) + 0 send

/T/Qy = —x senf + y cosl
= —L senf + 0 cost

Ay = 2 =0,

which yields A, = ( Lcosf, —Lsend, 0 ). Simi-
larly, we write the vector which represents the point

€4309-5

7in S7 as
Al = z cosb + y senb
= 0 cos) + L send
AL = —x senf + y cosf

y
= 0 senf + L cosf
/7z =z =1L,

which yields A% = ( Lsenf, Leosf, L). It is easy
to see that they are different in each frame, but
the distance between P; and P» remains unchanged,
since it corresponds to the length of the diagonal.
Calculating A7 — Ay and A4 — Ay, we have

A;—Ay = —Li + Lj + Lk =(—L,L,L)
V3

AL — Al = Lsenbi
+ Lcosd] + Lk — Lcosti + Lsenfj — 0k

dr—o =

= L(senf — cost)i + L(cost + send)] + Lk
d ,7—2 =

\/L2(86n9 — c0s0)? + L2(cosf + senf)? + L2

d,7—2 = LV3

The main goal of these demonstrations is to em-
phasize that in spatial geometry there are entities
frame-independent. These entities are invariants and
are obtained by means of some mathematical opera-
tion between two frames. In general, the invariants
are hidden behind the descriptions and for obtaining
them it is necessary to make an operation with the
coordinates. In spatial geometry it is usual to call
the theory of coordinate transformations as relativ-
ity by rotations. In the Einstein’s special relativity
there is also a set of equations which transforms

A, =Li+ 0j + 0k

—

A, =01+ Lj +Lk

Figure 4: Vectors A5 and A7 in SM
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descriptions of physical events between two frames.
In the following section we show the differences and
similarities between spatial relativity and special
relativity.

4. The relativistic cube

In geometry the game between the object and their
representations can be complex and depends on
the observers. The Einstein’s theory of relativity
is similar and its purpose is to find the absolute
laws which determine the apparent description of
phenomena. The great difference in this theory is
that it relates the descriptions of moving observers.

FEvents are particularly importante in relativity.
They are occurrences which can be described by four
coordinates in a frame: one instant in time and one
point in tridimensional space. Minkowski introduced
this concept as a world-point, saying that

the objects of our perception invariably
include places and times in combination.
Nobody has ever notice a place except
at a time, or a time except at a place.
[...] A point of space at a point of time,
that is, a system of values x, y, z, t, I will
call a world-point. The multiplicity of all
thinkable x, y, z,t systems of values we
will christen the world ( [3], p.76).

The occurrence of an event is something abso-
lute, i.e., if it occurs in a given frame, it will also
occur in all the other ones. However, the instant
and the position which they occur depend on the
frame. The theory is based on the idea that different
observers describe the same event in different ways,
by means of different coordinates. A frame is a sys-
tem with three spatial axes added with a time-like
coordinate and, differently from spatial geometry,
the space is four-dimensional. Therefore, the descrip-
tion of an event is made by means of a point with
four coordinates. An event in SM, S4 and S7 is de-
scribed as (¢ tM; M yM MY (e tA; 24, yA, 24) and
(ct’;x? y?, 27), where the time coordinate were
multiplied by ¢ so that all components have the
same dimension.

An event in relativity is similar to a vertez of the
cube in spatial geometry. In the case of geometry,
the idea of cube is defined by a specific relation
between the vertices, which is always equal for dif-
ferent frames and, therefore, is absolute. We used

Revista Brasileira de Ensino de Fisica, vol. 38, n® 4, e4309, 2016
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the calculus of the diagonal for elucidating the ex-
istence of invariants. In special relativity, there are
also relationships between events, which preserve
and maintain some abstract entity, that is analogous
to the idea of cube.

In order to understand this abstract relativistic
cube, we consider another example, which in turn,
cannot be drawn in the same way, since we are
dealing with a four-dimensional space. Moreover,
one needs to consider the time coordinate in the
vertex of this 'relativistic cube’, i.e., the object is
constructed by events. Take a ruler with length L
and two pens coupled at their ends, one is red and
other, blue. The pens can mark a paper with two
different colorful dots. This ruler comes down and
mark these two points, at the first time, at an instant
t1. Then, the ruler changes its position and repeats
the colorful marks in a different y-coordinate, at the
instant to. This situation is illustrated in figure ,
where a and b are the distances of the ruler from
the origin at the instants ¢; and 2 respectively.

The two descents of the ruler generate four events,
i.e., four occurrences in the four-dimensional space,
which are described by:

E;q (ct1;0,a,0) ,

B, (ct1:0,a+L,0) ,

E3 (ct2;0,0,0)

E, (cta;0,b+ L,0) (10)

One can also situate these four events in a four-
dimensional space in the same way that we repre-
sented the vertices of geometric cube in a three-
dimensional space. One notes that the coordinates
x and z are always zero, since the ruler is placed
along the y-axis. This facilitates the construction of
these events, which are shown in figure [6]

These four events seem to be the vertices of a
cube, representing together one of its face, however,
it is a face of an imaginary cube, since one of the
axis is the time and the figure is a parallelogram.

The purpose of this example is to show that the
events in relativity are represented by means of four
coordinates, i.e., there is one more coordinate than
the description of a point in analytical geometry. In
both Physics and Mathematics the change of frame
is quite important. We showed that the coordinates
of vertices of a cube are different for each frame and
that it is possible to transform a set of coordinates
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Figure 5: Ruler in different positions
from a frame into another one, by means of the
equations , which are called relativity by rotations. A
In special relativity, the set of equations which makes N ’
it are the Lorentz transformations. v = 5 ( yM oy tM )
In relativity, we have four coordinates and, there- ’
fore, the Lorentz transformations transform ct; xyz — 2 = M
ct';2'y'2'. There are two essential differences be-
. LN s B J M v M

tween eq. and the Lorentz equations: (i) in rel t = 4(t 2 ) (11)

ativity there are four equations involving four co-
ordinates and (ii) there is no angle of rotation be-
tween frames, but instead it there is a relative ve-
locity between frames. Thus, the angle in eq. is
substituted by a relative velocity v between two
frames. For simplifying the calculation, we adopt
the relative velocity v only in the y-axis and, there-
fore, there are no changes in « and z coordinates.
Taking S™ and S”, their descriptions of an event
are (ct™;xM yM MY and (ct’;27,y7, 27). If John
movies relative to Mary with a constant velocity
v, along the y-axis, and they adopt a single space
and time origin, the mathematical operations which
relate their sets of four coordinates are

where v = 1/4/1 — g—j is called Lorentz factor [4].
Considering the four events as being in SM, one
can obtain their description in S”, which moves with
relative velocity v. Calculating y and ¢ coordinates,
we have

Event 1
Mary - E1: (ct1;0,a,0) —
John-FE;:(7;0,7,0)

v v
o= (-5 = v (- 50
y'o= (M —utY) = y(a—vtr)
John - By : (y(t1 — 5 a); 0, vy(a—vty),0)

Figure 6: Events - relativistic cube
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Event 2
Mary - Eo: (ct1;0,a + L,0) —
John-FEy:(7;0,7,0)

v v
Vo= (M =5y = y[h- 5 (0 + L)
vy = y(yM—vtM) = y(a+ L —vt)

John - Bp: (y[ti— % (a+ L)];0,v(a+ L —

vty ), 0)
Event 3
Mary - Es: (cte;0,b,0) —
John- FE3:(7;0,7,0)

v v
o= (= GyY) = v (-5 b)
y' o= (M —utt) = v (b-vta)

John - B3 : (y(t1 — % b); 0, v(b—vty),0)

Event 4
Mary - Eq: (cte;0,b + L, 0)
John-FE4:(7;0,7,0)

—

:'y(tM—c%yM) = v[tz—c%(bJrL)]

y =y (M —ot™) = 4 (b + L —vty)

John - By : (y[ta— 2 (b + L)];0,v(b+ L —
’Utg),O)

One repares that the descriptions in S” are quite
weird and the classical intuition does not reach
their meanings, since we are dealing with a four-
dimensional space and the spatial and temporal
coordinates appear mixed together. On the other
hand, underlying all these descriptions must have
something common in both frames. This abstract
entity is the absolute which does not depend on
the changing frame and is an invariant by Lorentz
transformations. The relativistic invariant is hid-
den and is necessary to perform some mathematical
operation to find it.

Spatial Geometry and Special Relativity: a comparative approach

5. The relativistic invariants

In the geometric cube, the invariant is found by
means of the relation between two vertices and we
took as example the diagonal length. The opera-
tion to obtain the diagonal length is the modulus
of vector /Y, which is calculated by /22 + y2 + 22.
In relativity, there is one more coordinate which
leads one to think whether the distance between
two events is calculated by the same formula, just
adding the t-coordinate term, as represented in fig-
ure .

The answer to this question is no and was intro-
duced in relativity by Minkowski 3] , who realized
that the distinction between space-like and time-like
coordinates is made by means of changing the sign.
In relativity the definition of the distance between
two events ds? is given by

ds? = 2% — 2% — 2 — 22 (12)
and is called relativistic interval. This strange sum
has an important meaning within theory and repre-
sents the relativistic invariants, similar to the geome-
try. In Euclidean space, a vector squared corresponds
to the operation A2 = A- A = A2 + Az + A2, ie.,
the dot product of A by itself. This result, as we
already mentioned, is an invariant, a scalar entity.
The great new of relativity is the re-definition of dot
product, which yields invariant entities. In a four-

dimensional space, the dot product of a 4-vector
A= (Ap; Az, Ay, A,) by itself is

A2 = AA = A - A2 - A A2

z

(13)

The minus signs in front of the spatial coordinates
are essential for the dot product A? to be frame-
independent. All scalar products of four-vectors are
relativistic invariants, however, only some of them
are relevant and have meaning within the theory.
The first invariant we present is the four-distance
VA2, which replaces the typical Euclidean notion

d>=x2+y* + 72+ ??

Figure 7: Relativistic diagonal
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of distance [5]. One can show, therefore, that this
abstract entity is equal for both SM and S’ by
calculating the sum in each frame. For SM it is

(@) = ¢ (M) — (@) — M) -

whereas for S”, the sum is

@' = & (1 — @~ ') — (7).
(15)
In order to compare these two intervals, we take the
events F4 and F4 of previous example and calculate

the interval between them.

P M:(t;;0,a,0)
"N Tt —%a);0,v(a—vty), 0]

M:(t2;0,b4+ L,0)
Ey Ji(V[t—%( + L)]; 0,
0)

Replacing these coordinates in eqs.(14) and (15),
the relativistic intervals for S™ and S” are presented
in the sequence.

Mary : (ds™)? = ¢2 (ta — t1)? — (b+ L — a)?
John : (ds”)? = ¥? [to— % (b+L)—t1+ % al?
2 [b+L—Ut2—CL+Ut1 ]2
(ds?)? = Sy [(ta—t1)) = 5 (b+L—a)]?
2[(b+L—a)—vta—t1)]?
(ds')? = 2 { [e(tz —tr) — & (b+ L —a) |2
~[(0+L—a)—v(ta—t1)]*},
with the development of the sum of squares, the
mixed term is canceled, which yields

(ds?)? = P {A(ta— 1)’ + % (b+ L —a)?
—(b+ L —a)? —v%(ta —t1)%}

(ds”)? = 7 {(@ =)tz = t2)* = (b+ L — a)?
[1-%1]

€4309-9

Finally, using 72 & 25, the result is (ds”)? =
(tQ—tl) —(b+L—a)
the same value for SM.

, which corresponds to

6. Concluding remarks

In this work, we show differences and similari-
ties between three-dimensional geometry and special
relativity. The treatment of physical phenomena in a
four-dimensional space requires a new kind of math-
ematics, since the spatial and temporal coordinates
are mixed together. Albeit the mathematical oper-
ations are different, the way of thinking is similar.
The existent entities in Euclidean geometry have
their corresponding analogues in special relativity,

¥ (b + L — vty )which are summarized in table ().

We mentioned in this paper only one relativistic
invariant, namely the four-distance. However, there
are other important invariants, generated from dif-
ferent dot products. For example, the proper time
7, coming from a specific time-like interval |5] and
the mass, which is defined by the squared of the
4-momentum p? [6]. This comparison between geom-
etry and relativity is a starting point for students to
plunge in the four-dimensional world of physics. It
aims at turning the subject more understandable for
students not acquainted with the theory of relativ-
ity. On the other hand, both teachers and student
have to be aware that the interpretation of four-
dimensional entities in relativity is quite complex,
since it deals with abstract and absolute concepts.
In this sense, there is no continuous path from a
lesser to a higher dimension and, hence, the under-
standing of four-dimensional entities can only be
achieved by means of mathematical constructions.

Table 1: Comparative approach - Geometry and Relativity

GEOMETRY RELATIVITY
mathematical space 3-dimensional 4-dimensional
z, Yy, 2 t; 2, Y, 2
cube (points) vertices events
description of points by means of a by means of a
vector A = (Ag, Ay, Az) 4-vector A = (A¢; Az, Ay, Az)

transformations

3 angle-dependent equations

4 velocity-dependent equations

Rotations - egs.(8)

Lorentz Transform.- egs. (11

scalar product

A2:l’2+y2+22

L —-

meaning of

VA2

distance between two vertices

four-distance
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