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Physics is a peculiar way to reason about the world that often makes the invisible visible. If one aims
at understanding what physics is about, recognise how experimental measurements and mathematical
reasoning are intertwined is essential. In this work we exemplify such entanglement by analysing three
case studies. In the first one, the explanation of the Hall effect underlines how we indirectly penetrate
into the microscopic structure of a wire and manage to evaluate the number of charged particles per
unit volume inside it from a set of macroscopic measurements. The second case shows how our reasoning
allows us to determine the radius of a hydrogen atom from the experimental measure of the atom’s
binding energy. The third example comes from kinetic gas theory and illustrates how it is possible to
estimate the number of gas particles per unit volume from the experimental values of pressure and
temperature. These three case studies show that the equal sign of certain equations can be seen as a
bridge (keyhole) connecting the empirical and theoretical dimensions. We argue that epistemological
reflections should be an essential part of science education if we aim at delivering an authentic picture of
the nature of physics.
Keywords: Epistemology of Physics, Theory-Experiment Relationship, Keyhole, Understanding Physics
Equations, Physics Education

A f́ısica é uma maneira peculiar de raciocinar sobre o mundo que muitas vezes torna viśıvel o inviśıvel.
Se é objetivo compreender o que a f́ısica é, reconhecer como as medições experimentais e o racioćınio
matemático estão interligados é fundamental. Neste trabalho exemplificamos tal entrelaçamento por meio
da análise de três estudos de caso. No primeiro, a explicação do efeito de Hall é enfatizada sobre o como
se pode penetrar indiretamente na estrutura microscópica de um fio e avaliar o número de part́ıculas
carregadas por unidade de volume no seu interior, a partir de um conjunto de medidas macroscópicas. O
segundo caso mostra como o nosso racioćınio nos permite determinar o raio do átomo de hidrogênio,
através da medida experimental da energia de ligação do átomo. O terceiro exemplo vem da teoria
cinética dos gases e ilustra como é posśıvel calcular o número de part́ıculas por unidade de volume de
gás a partir dos valores experimentais de pressão e temperatura. Estes três estudos de caso mostram que
o sinal de igual de certas equações pode ser visto como uma ponte (buraco de fechadura), que liga as
dimensões emṕırica e teórica. Argumentamos que estas reflexões epistemológicas devem ser uma parte
essencial da ensino da f́ısica, se pretendemos entregar uma imagem autêntica da natureza da f́ısica.
Palavras-chave: Epistemologia da F́ısica, Relação Teoria-Experimento, Buraco de Fechadura, Equações
F́ısicas, Ensino de F́ısica
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1. Introduction

If matter escapes us, as that of air and
light, by its extreme tenuity, if bodies
are placed far from us in the immensity
of space, [...] if the actions of gravity
and of heat are exerted in the interior of
the earth at depths which will be always
inaccessible, mathematical analysis can
yet lay hold of the laws of these phenom-
ena. It makes them present and measur-
able, and seems to be a faculty of the
human mind destined to supplement the
shortness of life and the imperfection of
the senses ( [1], 1822, p.8).

The explanatory power of physics lies in its par-
ticular combination of theoretical and empirical in-
vestigations. Even though these two dimensions are
commonly treated as dichotomies (e.g. empirical-
theoretical, physical-mathematical, sensorial-mental)
a much more genuine picture of physics is delivered
if we think of them as dualities. A good metaphor
for this relationship is to consider each dimension as
one leg in the act of walking1. Both legs are essential
and equally important.

Physics has a peculiar way to establish a dia-
logue between these two worlds (empirical and the-
oretical), namely via idealised/simplified models of
reality (see, for instance, e.g. [2]; [3] and [4]). In
this work, we analyse three case studies that exem-
plify this complex entanglement and show how the
equal signs in some physics equations can be seen as
bridges between the phenomena - accessible through
experiments - and theory - only accessible through
our minds.
1We thank Prof. Robilotta for this metaphor.

Although modelling has been thoroughly investi-
gated in the science education literature (e.g. [5]; [6]
and [7]) few of these studies have taken a careful look
on how this process is expressed in physics equations.
One possible reason is that many authors conceive
a distinction between the physical and mathemati-
cal models. As our three examples will show, this
distinction is often misleading and many physical
magnitudes are essentially theoretical as they can-
not be assessed through measurements. Considering
the educational value of our approach, we will ar-
gue that by interpreting equal signs of equations
as bridges between two worlds and explicitly high-
lighting differences between magnitudes accessible
by experiments and by reasoning, the usual view of
equations as mere calculation tools can be substi-
tuted by a rich epistemological discussion about the
nature of physics.

2. Hall effect

The Hall effect was discovered by Edwin Her-
bert Hall in 1879 and is an important phenomenon
related to a microscopic behavior of metals. At a
time when the electron was not known, this effect
showed itself to be relevant for the understanding of
electric conduction. It consists of the appearance of
a voltage in the surface of an electrical conductor,
when a magnetic field is applied.

Considering a wire connected to a battery, the
free electrons inside the metal move anticlockwise,
as illustrated in figure 1(a), and an electric current
appears in the opposite direction (1-b). Applying a
magnetic field orthogonally to the wire, a potential
difference ∆V is verified and measured between
points A and B, as shown in figure 1(c).

Figure 1: Microscopic view of Hall effect
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The magnetic force FM = qvB acts on the free
electrons and makes them move orthogonally to both
velocity ~v and ~B. The potential difference ∆V is due
to the accumulated charge on the inner surface of
wire. According to the Lorentz force, if the moving
charges were positive the magnetic force would be
directed to the left, whereas if they were negative
the force would be pointing to the right (see figure
2). With the voltage measured between A and B, it
is possible to know the sign of the charge carriers,
which was not known at that time.

These accumulated charges give rise to the electric
field ~E, which in turn acts over other electrons by
means of the electric force FE = qE. As shown in
the figure 3, the electric force is opposite to the
magnetic and when the equilibrium is established,
both forces have the same magnitude and, therefore,
qvB = qE. Thus, in this situation, the relationship
between the electric and magnetic fields is E = vB.

The potential difference ∆V is proportional to
both electric field and wire’s thickness ∆V = E d ,
which allows one to write

∆V = v B d . (1)

The velocity v of the charge carriers inside a
conductor depends on the current I, the area of
the wire’s cross section S and the number of charge

Figure 2: Magnetic force over charge carriers

Figure 3: Magnetic and electric forces over charge carriers

carriers per unit volume n. The current is defined
by I = ∆Q/∆t, where ∆Q is the amount of charge
passing through the area S in a time interval ∆t.
All charges within a distance l = v∆t from a given
section will cross it after a time interval ∆t, i.e. all
charges inside the volume vol = l. x. d (see figure
4). Since the charge is discrete, it depends on the
number of moving electrons given by ∆Q = Ne ,
where e is the elementary charge. The number N is
related to n by n = N/vol. Thus, the velocity v of
charge carriers yields

v = I

e n S
, (2)

and, combining eqs.(1) and (2), we have the ex-
pression for the number of charge carriers per unit
volume

n = I B

e x ∆V . (3)

This expression was obtained by several steps
involving both theoretical and phenomenological
elements. Between the application of the magnetic
field and the verification of an electric potential there
is a lack of understanding of what happens inside the
conductor wire. In order to model the microscopic
behaviour of free electrons it is necessary to conceive
a sequence of events, which together construct a
model to explain that potential difference. These
steps are shown in the figure 5.

In eq.(3), all entities on the right-hand side are
either measured by instruments or known constants.
On the other side, the number n is a microscopic en-
tity and cannot be measured directly, it can only be
assessed via reasoning. In this case, the knowledge

Figure 4: Piece of rectangular wire
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Figure 5: Model to explain the Hall effect

of n is not made by instruments, but rather through
a chain of reasonings, supported by theory. The act
of knowing n takes place with the interplay between
theoretical-mathematical deductions and experimen-
tal measurements. In this equation, the equal sign
works like an interface between two worlds, a keyhole
which allows one to ‘see’ how the microscopic world
is. A pictorial image of the keyhole is shown in the
figure 6.

It can be interesting to consider a numerical exam-
ple, for instance, to calculate n for a silver plate. Re-
placing feasible values for the experimental measure-
ments ( [8], 2008, p.906) in the eq.(3), such as x =
1 mm, I = 2, 5 A, B = 1, 25 T , e = 1, 6 × 10−19 C
and ∆V = 0, 334 µV , one obtains

n = 2, 5 × 1, 25
1, 6× 10−19 × 1× 10−3 × 0, 334× 10−6

n = 5, 85× 1028 electrons/m3 ,

which is an impressively great number of particles
to fit into a cubic meter. With this result, we can
also calculate the velocity v of the charge carriers
by replacing in eq.(2). Considering d equal to x, we

have

v =
I

enS

=
2, 5

1, 6 × 10−19 × 5, 85 × 1028 × 1 × 10−3 × 1 × 10−3

= 0, 2671 × 10−3 m/s = 0, 2671mm/s ,

showing that the electrons’ drift velocity is actu-
ally quite small (1/4 of a mm per second!), which
probably contradicts our first intuition.

With the development of science, the physical
knowledge is no longer merely constructed from phe-
nomenological observations, but rather there is an
intentionality which guides the experimental mea-
surements. As we can see from this example, with
the help of a voltmeter and imbued with an in-
tentionality, the scientist has access to the inner
structure of the wire. This kind of procedure illus-
trates how physical knowledge is constructed and
exemplifies an imbricated interplay between theory,
model and phenomenology which is characteristic
of physics.

Figure 6: Keyhole for the Hall effect
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3. Hydrogen Atom

In the Hydrogen atom both electron and proton
are moving and the total energy of the system is

ET = Ke + Kp + U , (4)

where Ke and Kp are the kinetic energies of the elec-
tron and the proton respectively and U the potential
energy of the system. Since the proton is about two
thousand times heavier than the electron, its kinetic
energy is too low. Hence, it is a good approximation
to consider the proton at rest in the center of the
system and the electron turning around it, as shown
in figure 7. Considering this assumption, the total
energy of the Hydrogen atom is given by

ET = Ke + U . (5)

The lowest energy state of the atom is called
ground state and can be understood using a classical
approach, where the kinetic and potential energies
are calculated considering that the electron performs
a circular orbit of radius R. One calculates the ve-
locity v of the electron by using the Coulomb force
and Newton’s second law:

F = m v2

R
= e2

4 π ε0

1
R2

v =

√
e2

4 π ε0 m R
. (6)

The kinetic energy of the electron is

K = m v2

2 = 1
2

e2

4 π ε0

1
R

. (7)

The electrostatic potential energy of the system
electron-proton corresponds to the necessary work
to construct the system, from the situation in which
the charges are infinitely distant. In the case of the

Figure 7: Hydrogen atom

Hydrogen atom, this energy depends on the radius
R and is negative, given by

U = − e2

4πε0

1
R

. (8)

Replacing the eqs.(7) and (8) in (5), we have the
total energy:

ET = K + U

= 1
2

e2

4πε0R
− e2

4πε0

1
R

ET = − 1
2

e2

4 π ε0

1
R

. (9)

This result represents the total energy of Hydro-
gen and has two important features, namely the
energy is proportional to 1/R and is always nega-
tive, independently of the radius. The orbit radius
R can be interpreted as how attached to the proton
the electron is, i.e., the smaller the radius the more
connected the electron is to the proton. On the other
hand, if R is bigger, the electron is far away from the
proton and when R→∞, the electron is no longer
attached to the proton and the atom is dismantled
and looses its meaning. The dependency between
ET and R can be represented by means of an energy
diagram. In figure 8 one shows the potential and the
total energies of the Hydrogen atom. The former
(U) is the Coulomb well, represented by a blue line,
and the latter contains two different examples of
the total energy of the atom, E1 and E2.

With the help of this diagram the relationship
between ET and R is clearly understood. When the
atom is at the state of energy E1, its orbit radius
is R1. For a state with higher energy, such as E2,
the radius of electron is also higher and corresponds

Figure 8: Energy levels of atom
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to R2. When one increases the energy of the atom,
its size is also increased. If one provides energy
continuously to the system, the electron goes away
until it disconnects itself from the proton. In this
process, the energy becomes closer and closer to the
horizontal axis, until it reaches ET = 0, in which
the radius tends to infinity. This can be verified
mathematically in eq.(9), where E → 0 when R→
∞.

The lowest energy of the atom is the one which the
radius of the electron has its smallest possible value
and, therefore, it is more strongly connected to the
proton. This energy is the necessary amount given
to the atom in order to break it and is called binding
energy, represented by B. The understanding of the
experimental process for breaking the Hydrogen
atom, by providing energy, is represented in the
following, where in figure 9(a) one shows an excited
state and in 9(b), the breaking of the atom.

Figure 9(a) represents the excitation of the atom
by providing an external energy (W ), which takes
it to a higher excited state, shown in 9a(iii). In
the transition, the input energy W provokes the
increase of the radius and the conservation of energy
is written as

Eexc = W + E1 . (10)

Therefore, W is a positive number given by

W = − 1
2

e2

4 π ε0

1
Rexc

− (−1
2

e2

4 π ε0

1
R1

)

W = − 1
2

e2

4 π ε0
( 1
Rexc

− 1
R1

).

This situation refers to an atomic excitation, whereas
in the figure 9(b), the input energyW makes the elec-
tron go away from the nucleus, which corresponds
to R→∞. The total energy of the system becomes
zero and the provided energy W is numerically equal
to the binding energy (W = B). Using the eq.(10)
for the energy conservation, one has

Eexc = B + E1

0 = B + E1

B = −E1 (11)

This result, although apparently simple, is full
of subtleties. The energy E1 is the total energy of
Hydrogen in the ground state, shown previously in
eq.(9), which means that one can combine it with
eq.(11) and obtain the expression which relates the
binding energy B to radius R:

B = 1
2

e2

4 π ε0

1
R1

. (12)

This expression came from several reasoning steps
that are schematized in figure 10. We departed
from the hypothesis that the Hydrogen atom at
the ground state could be considered as classical
and, by using theoretical tools, such as Newton’s

Figure 9: Breaking the atom
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Figure 10: Model to explain the equality B = −E1

second law and equation for the Coulomb potential,
we obtained the expression for the total energy of
the system, represented by eq.(9). The energy E1
depends on the radius R1 and both cannot be mea-
sured directly. Hence, eq.(9) can be considered as
belonging to a theoretical dimension of knowledge,
since it was derived from theoretical assumptions.
Afterwards, one uses the images of excitation and
breaking of the atom (figure 9) to interpret the mean-
ing of the binding energy in terms of the ground
state energy (B = −E1).

Thus, one could write B = - eq.(9), which is a
conclusion absolutely nontrivial, since it carries a
series of constructions and a chain of reasonings to
be obtained. On the other hand, the binding energy
of Hydrogen at the ground state B is measured
experimentally by means of spectral lines and is
13, 6 eV . This allows one to write E1 = −13, 6 eV ,
which corresponds to the height of the Coulomb
well when the Hydrogen is at the ground state. This
understanding of the ground state energy is added
in the diagram of the Coulomb well in the figure 11.

The result (12) mixes together two different worlds,
which involve physical entities that can be measured
and others that cannot. On the left side there is an

Figure 11: Ground state of Hydrogen

experimental measure and on the right, a composi-
tion of constants and the radius R, which is inac-
cessible by instruments. With a single measurement
- the binding energy - it is possible to calculate the
radius of atom R and, consequently, the velocity of
electron v. By using eq.(12) and the Electron-Volt
to Joule conversion 1 eV = 1, 6× 10−19 J , one has
E1 = −13, 6 eV = 21, 76× 10−19 J and

R1 = −1
2

e2

4 π ε0

1
E1

= −1
2

(1, 6× 10−19)2 × 9× 109

21, 76× 10−19

R1 = 0, 5292× 10−10m

v =

√
e2

4 π ε0 m R1

=
√

(1, 6× 10−19)2 × 9× 109

9, 11× 10−31 × 0, 5292× 10−10

v = 2, 186× 106 m/s .

A rather fast electron moving around the proton
in quite a small circle.

Similarly to the previous case, the equal sign in
eq.(12) works as an interface between the micro-
scopic and macroscopic worlds, as a keyhole, repre-
sented in figure 12, whereby the scientist has access
to a physical entity. The physical quantities R, v,
K and U , which cannot be measured directly, are
known from a theoretical structure and the use of the
atom model. In this sense, it is possible to know and
understand the microscopic world, no longer through
measuring instruments, but rather by means of theo-
retical reasoning. The theories and models allow one
to reach an intangible domain, where no instrument
could possibly reach, regardless of how accurate it
is.
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Figure 12: Keyhole of the Hydrogen atom

The act of knowing in physics encompasses nu-
ances and intentionality degrees, where the scien-
tist’s conscience is a fundamental factor. This know-
ing is made with the mind more than with the senses.
In this example, to know the orbit radius, to know
the velocity of electron, to know its kinetic and po-
tential energy, means having access to quantities
through a complex network of information, which is
a blend of theoretical and experimental elements.

4. Kinetic gas theory

Our last case study comes from the kinetic gas
theory, whose basic idea is to consider a gas as con-
stituting of a very large number of particles (atoms
and molecules) in random motion. It involves an
elaborate combination of mechanics - laws governing
the motion of particles - with statistics - due to the
impossibility of describing the states of single parti-
cles. Thus, this theory is a great source of examples
of the imbricate relationship between experiment
and theory that we are trying to put forward with
the keyhole metaphor. In this section, we illustrate
how the equal sign can be interpreted as a bridge
between the micro (theoretical) and macro (exper-
imental) in one important equation of this theory,
namely the pressure of a monoatomic gas.

Kinetic gas theory assumes that pressure is due to
collisions of particles with the walls of a container.
The following derivation is inspired on Krönig [9], a
work that influenced Clausius’ 1857 seminal paper
The Nature of the Motion which we Call Heat [10],
which marks the establishment of kinetic gas theory

as a paradigm, of course not uncontroversial, for
scientific investigation ( [11]).

Consider a monoatomic gas being made of N
particles moving inside a cubic recipient of side L.
For simplicity reasons and without loss of generality,
since there is no direction preferred, we assume that
the particles’ velocities are equally distributed in
six directions (+x,−x,+y,−y,+z,−z). Thus, we
can say that 1/6 of the particles are moving in one
direction (+x) towards one of the faces (see figure
13).

The particles are moving with a (mean) speed v
and the ones located within a distance s = v ∆t
from that face will collide against it during a time
interval ∆t (s = L). Thus, the number of particles

Figure 13: Particle motion inside a gas
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inside the cube moving in the +x direction is given
by

1
6
N

V
A v ∆t . (13)

Moreover, we postulate that the collisions are elas-
tic, which means that each particle colliding with
a velocity v, perpendicular to the wall, will return
with the same velocity v in the opposite direction.
The momentum transferred to the wall after each
collision is, therefore, 2 m v. Multiplying the mo-
mentum transferred by one collision by the number
of particles that will hit this wall in a time interval
∆t (eq.13) we obtain 1

6
N
V A v ∆t 2 m v, which is the

total momentum transferred to the wall.
To obtain the force, we divide the last expression

by ∆t using ~F = ∆~p
∆t . Since pressure is force divided

by the area, we arrive at an equation for the pressure
(P ) of the gas which can be rearranged as

PV = 1
3Nmv

2 . (14)

Similarly to the examples from the previous sec-
tions, eq.(14) is put in the keyhole form, in which
quantities experimentally accessible (left) are sep-
arated from the theoretical ones (right). However,
now the situation is more complicated because the
right-hand side contains not only one, but three
quantities inaccessible by experiment, namely the
number of particles, their individual masses and
mean velocities. By measuring the pressure and
volume of a gas, we cannot obtain either of those
quantities separately with this equation.

A plausible attempt to reduce the number of inac-
cessible quantities in the right-hand side of eq.(14)
is to substitute m v2 by twice the mean kinetic en-
ergy of the individual particles (Ekin). Then we can
write PV = 2

3NEkin, even though the problem is
not solved yet, since we are still left with two quanti-
ties (number of particles and average kinetic energy)
that we do not have empirical access to.

This is where the rather ’mysterious’ concept of
temperature2 comes into play. In fact, before the
kinetic theory was proposed, a number of empiri-
cal laws relating pressure, volume and temperature
were known3. If considered all together, these em-
pirical laws state that the product of pressure by

2The concept of temperature has a fascinating history that is
brilliantly told in [12].
3Among them are Boyle-Mariotte’s, Gay-Lussac’s, Charles’
and Amonton’s laws.

volume, divided by temperature, is constant for a
specific amount of rarefied and stable (ideal) gases
(P V

T = a). This “constant” a would, however, change
for samples with different amounts (masses) of the
same gas (P V

T ∝ m) and for different gases, i.e.,
with different molecular weights M (P V

T ∝
1

M ). By
bringing both the mass of the gas and its molecular
weight into consideration it is possible to obtain a
universal gas constant R and write the ideal gas law
in its well known form

PV = nRT , (15)

where n is the ratio between the mass of a sample
and its molecular weight, which is the amount of
substance (in moles). Now let us get back to equation
PV = 2

3 NEkin and compare it with PV = nRT .
There is no unique way to connect the quantities in
the right-hand side, but kinetic gas theory chose to
assume that (absolute) temperature is proportional
to the mean kinetic energy of the individual particles
by the following relation 4

Ekin = 3
2 kT , (16)

where k is called Boltzmann constant (k = 1, 381×
10−23JK−1). Now one can write the ideal gas law
in another form

PV = kNT . (17)

By comparing eq.(15) with eq.(17), one can say
that the first is more ’chemical’, since it refers
to chemical properties of the gas (e.g. molecular
weight), whereas the second is more ’physical’, since
it relates directly to the number of particles. After
isolating N in eq.(17) we finally arrive at an equa-
tion that has the ’pure’ keyhole structure we were
looking for

N = PV

kT
. (18)

Once again, we do not have empirical access to
the number of particles in a gas5. In fact, if we

4This is valid for monoatomic gases, where the particles can
move freely in three directions (3 degrees of freedom). For the
general case, each degree of freedom is assigned to Ekin =
1
2kT and the total kinetic energy will be a sum of the energies
of each degree of freedom, which can involve both translational
and rotational motion.
5But we can calculate it using this eq.(18). Considering a
monoatomic gas (e.g. helium) and substituting standard val-
ues, such as P = 1 atm = 101.325 N/m2, V = 1 l = 10−3 m3
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e2302-10 Keyhole: Equal signs as bridges between the phenomenological and theoretical dimensions

think deeply about it, the existence (or not) of these
particles is actually a matter of metaphysical belief.
However, we have developed a clever way to look
(with our minds) through the keyhole and actually
determine how many particles are inside a gas (figure
14).

By exploring this mechanistic model quantita-
tively, we managed to explain some regularities ob-
served in nature, for instance, why pressure, volume
and temperature relate to each other the way they
do (ideal gas law). A reasoning chain connecting the
empirical laws relating pressure, volume and tem-
perature with the assumption that gases are made
of a large number of particles in random motion is
sketched in figure 15.

Kinetic gas theory goes much deeper into the par-
ticles framework than this example may suggest. It
analyses gases with different structures (monoatomic,
diatomic, etc.) and supposes not only translational,
but also rotational motion of the molecules. It goes
even further to estimate the molecules’ diameters

and T = 0◦C = 273K, one gets N = 2, 7 × 1022, which is an
incredibly large amount of particles to fit in one liter.

and a rather curious quantity called mean free path,
which is the mean distance travelled by a particle
between two collisions. After working for a while
with this theory and seeing its explanatory power,
it is very hard not to believe in the (ontological) ex-
istence of these cute little particles. However, most
scientists take a pragmatic position and leave such
ontological questions out of the scientific discussions.

5. Educational implications

We do not have direct access to the inner structures
of wires, atoms or gases. Physics makes these in-
visible phenomena visible [13] through a peculiar
combination of theoretical models and experimental
data. In sum, this science is neither a quantitative
description of empirical regularities nor an abstrac-
tion game totally disconnected from the material
world - both views often depicted in educational set-
tings. Instead, as shown by the analysis of these case
studies, physics considers theory and experiment as
equally important dimensions and combines them
in a unique way. Understanding this relationship

Figure 14: Keyhole for the kinetic gas theory

Figure 15: Model of the kinetic gas theory
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more deeply is crucial for understanding the nature
of physics, which is a major educational goal.

Furthermore, our analysis invites one to think
critically about the meaning of physics equations.
The discussion aimed at highlighting a different
meaning of the equal sign of certain6 physics equa-
tions when compared with the usual mathematical
representation of equality. Differently from the math-
ematical identity expressed in 5 = 2 + 3, where the
three elements represent numbers, the components
of physics equations often have different natures.
In the equations presented, the equal sign appears
to function as a keyhole that allows the connection
between macroscopic/experimental entities on one
side with microscopic/theoretical ones (only assessed
through reasoning) on the other. Therefore, it has
a completely different meaning from a traditional
(tautological) equality.

This has important educational consequences. As
educational research has shown, students often treat
equations as mere calculation tools to solve problems.
This is due, in part, both to a lack of conceptual
discussions about equations and a specific focus on
their formal aspects - arguably because the latter
are more easily assessable through exams. When
physical quantities are treated irrespectively as mere
variables, physics becomes a meaningless game of
using equations to find the unknown quantity from a
set of given ones. The alternative approach presented
here illustrates how epistemological discourses about
equations can be conducted in physics lessons.
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