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Fractals play a central role in several areas of modern physics and mathematics. In the present work we explore
resistive circuits where the individual resistors are arranged in fractal-like patterns. These circuits have some of
the characteristics typically found in geometric fractals, namely self-similarity and scale invariance. Considering
resistive circuits as graphs, we propose a definition of self-similar circuits which mimics a self-similar fractal.
General properties of the resistive circuits generated by this approach are investigated, and interesting examples
are commented in detail. Specifically, we consider self-similar resistive series, tree-like resistive networks and
Sierpinski’s configurations with resistors.
Keywords: self-similarity, resistive circuit, fractal

Fractais têm um papel central em várias áreas da f́ısica e matemática modernas. No presente trabalho nós
exploramos circuitos resistivos onde os resistores individuais estão organizados em padrões tipo fractal. Estes
circuitos possuem algumas das caracteŕısticas tipicamente encontradas nos fractais geométricos, especificamente a
auto-similaridade e a invariância de escala. Considerando os circuitos resistivos como grafos, nós propomos uma
definição de circuito auto-similar que se assemelha a de um fractal auto-similar. Propriedades gerais dos circuitos
resistivos gerados por esta abordagem são investigados, e exemplos interessantes são comentados em detalhes.
Especificamente, nós consideramos séries resistivas auto-similares, redes resistivas tipo árvore e configurações de
Sierpinski com resistores.
Palavras-chave: auto-similaridade, circuito resistivo, fractal

1. Introduction

Fractality is a relatively recent but powerful concept that
permeates much of physics and mathematics. Fractals
can be a powerful teaching tool [1–6], and formal and
rigorous investigation of fractal systems are cutting edge
mathematics [7]. At the same time, fractals are used in
realist modelings of nature. Quoting Benôıt Mandelbrot
[8], “Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line.”

There are several, but not quite equivalent, precise def-
initions for the modern idea of a fractal [5,8]. Informally,
a basic characteristic of this structure is scale invariance,
that is, the fractal pattern remains the same with any
magnification. This property is denoted as self-similarity.
A common way to construct self-similar structures is
to define them recursively, using a set of iterated func-
tions [9]. Several popular self-similar geometric figures
can be constructed in this way, such as the fractal tree,
the Sierpinski triangle and the Cantor set [9].

Networks and circuits that have fractal-like patterns
typically have an infinite number of elements. Infinite
circuits have extensive physical and mathematical ap-
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plications [10–15]. For instance, physics oriented works
involving self-similar resistive circuits include the investi-
gation of resistance properties of Sierpinski triangle frac-
tal networks [16–18] and binary tree circuits [19], among
several other fractal patterns. More rigorous mathemati-
cal aspects of the issue were also developed [17,19].

In the present work, a general definition for self-similar
resistive circuits is proposed and explored. Analyzed
from the point of view of the Graph Theory, resistor
networks are recursively constructed. In our approach,
the issue of calculating the equivalence resistance of a self-
similar circuit is transformed into a fixed point problem.
Interesting particular cases are treated in detail.

The structure of this paper is presented in the following.
In section 2 we introduce the notation used in the paper
and review the basic results in the theory of resistive cir-
cuits, presenting those objects as graphs. In section 3, a
general definition for self-similar circuits is proposed and
explored. We derive a condition to characterize the calcu-
lation of the equivalent resistance of a self-similar circuit
as a fixed-point problem. In section 4 we consider one of
the simplest self-similar circuits, the self-similar resistive
series, a recursive configuration formed by resistors in
series. In section 5 we explore self-similar resistive trees,
resistive circuits analogous to fractal trees. In section 6
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e1302-2 Self-similar resistive circuits as fractal-like structures

self-similar Sierpinski resistive circuits, generated with
resistors arranged in self-similar Sierpinski-like configu-
rations, are discussed. Final comments are presented in
section 7.

2. Resistive circuits as graphs

The building blocks of the structures presented in this
work are ideal resistors, linked to each other by ideal
connectors. Ideal resistive circuits constructed in this way
are a simplification of real electric systems. Still, ideal
circuits can be a very good approximation of real circuits
in many scenarios of interest [20].

An ideal resistor is a two-terminal element character-
ized by an electric resistance. In the analysis of ideal
resistive circuits, the only relevant informations are the
individual resistances of each resistor and the pattern
of interconnection among them. Other aspects that are
important for more realistic characterization of a physical
circuits, such as the length and shape of the connectors
and the positions of the resistors, are ignored in the ide-
alized description. Another way to express this latter
remark is to say that only topological information are
used in the definition of an ideal resistive circuit. Geo-
metric aspects are not relevant in the construction of
these models. That feature indicates that ideal circuits
are naturally represented as graphs.

A simple undirected graph G is composed of a set
V = V (G) of vertices and a set E = E(G) of edges.
In such graphs, edges are “links” between two vertices.
More precisely, the set E of edges are constructed as
2-element subsets of the set V of vertices. Hence, the
graph G is the ordered pair G = (V,E). We will consider
that the graphs used in this work are finite, with V and
E finite sets [21]. Also, the graphs of interest here will
be connected. That is, for each each pair of vertices in a
connected graph, one can find a path from one vertex to
the other [21]. Another layer of structure that is needed
are weights. A weighted graph is a graph G = (V,E,W )
in with a number is associated to each edge by a weight
function W [21].

Using the language of Graph Theory, a resistive circuit
has a natural description in terms of graphs. A circuit is
equivalent to an element of C, where C is the set of simple
graphs that are finite and connected, with the number of
vertices equal to or greater than 2, having strictly posi-
tive real numbers as weights. We identify the individual
resistors in the circuit with the graph edges, and the
connection points of the resistors with the graph vertices.
The individual resistances of each resistor are codified
in the weights. In the present work, we consider ideal
resistive circuits as graphs. Fixing terminology, along this
manuscript both terms (“circuits” and “graphs”) will be
considered as associated to the same objects.

As an additional benefit, graph language gives us a com-
pact way to represent and manipulate resistive circuits.
Diagrammatically we will represent a circuit, understood

as a graph, by dots and links. When convenient, individ-
ual resistances (weighs) will be included in the diagram.
This notation is similar to the more usual notation for
resistive circuits [20]. As an illustration, in figure 1 we
compare the common graphical representations for re-
sistive circuit with the diagrammatics suggested here.
But it is not always a matter of substituting conven-
tional resistor symbols by plain lines. For instance, in the
usual notation, short circuit connections are allowed. In
plain graph notation, sections of a resistor network that
are short circuited have the same electric potential, and
therefore are collapsed into a single vertex (see bottom
right diagrams of figure 1).

An important issue concerning resistive circuits is the
calculation of their equivalent resistance. Given a circuit
with two highlighted vertices (the external terminals),
Thévenin’s and Norton’s theorems imply that this circuit
is electrically equivalent to a single resistor [20]. In other
words, there exists a function RAB ,

RAB : C × V (C)× V (C)→ R+
∗

RAB = RAB(C) , (1)

that associates a circuit C and two different vertices (ele-
ments A and B of V (C) with A 6= B) to elements of R+

∗ ,
where R+

∗ = (0,∞) denotes the set of strictly positive
real numbers. The number RAB(C) is the equivalent re-
sistance of the circuit C, considering A and B as external
vertices.

The concept of equivalent resistance implies an equiv-
alence relation on the set of circuits. To fix notation,
this relation (of having the same equivalent resistance) is
indicated by ∼ . Considering C1, C2 ∈ C, A,B ∈ V (C1)
and D,F ∈ V (C2), we have that

(C1, A,B) ∼ (C2, D, F )⇐⇒ RAB(C1) = RDF (C2) .
(2)

There are several techniques used in the calculation
of equivalent resistances. A practical method involves
the use of “transformations” in the graphs, substituting
a given subgraph for an equivalent and simpler form.
For instance, two elementary transformations are the
series and parallel resistor associations [20]. Using the

Figure 1: Diagrammatic representations for several resistive
circuits, using a more traditional notation (left in each box), and
the more compact graph notation (right in each box).
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graph notation, we illustrate those transformations in
figure 2. A more elaborate substitution is the so-called
Y −∆ transform [20], shown in figure 3. We will exten-
sively apply series, parallel and Y −∆ transformations
in sections 4, 5 and 6.

3. Self-similar resistive circuits in
general

To consistently implement the idea of a “fractal-like
resistive circuit”, it is not enough to just take a geometric
fractal and substitute lines by resistors. In a circuit, only
topological characteristics are relevant. The strategy to
properly define a circuit with fractal properties must be
more elaborate. In the present paper, we will consider self-
similarity as our guiding concept. A geometric fractal can
be defined as the limit of a recursive sequence, in such a
way that its pattern is self-similar [9]. That construction
will be adapted here to circuits formed by resistors, and
therefore the objects defined will be denominated self-
similar resistive circuits.

Following the usual construction for self-similar frac-
tals, the key element in our definition of self-similarity
is a recurrence function FAB , which maps a circuit with
two external terminals A and B into another circuit with
the same external terminals,

FAB : C → C
FAB = FAB(C) , (3)

with A,B ∈ V (C) and A 6= B.
Given A, B, FAB and a specified resistive circuit C0

(an “initial circuit”), a sequence of circuits (Ci),

(Ci) = (C0, C1, C2, . . .) , (4)

Figure 2: Diagrammatic representations for the series and par-
allel transformations (left and right diagrams, respectively).

Figure 3: Diagrammatic representation for the Y − ∆ trans-
formation. In the correspondence, r′

1 = r2r3/(r1 + r2 + r3),
r′

2 = r1r3/(r1 + r2 + r3) and r′
3 = r1r2/(r1 + r2 + r3).

can be constructed with FAB in a recursive way as

Ci+1 = FAB(Ci) . (5)

It should be noticed that FAB is not only a function of a
circuit, but also of two vertices (A and B for example),
interpreted as external terminals of the given circuit. This
is necessary since the equivalent resistance of a circuit
depends on the choice of external vertices.

In fact, with the function RAB introduced in equa-
tion (1), we associate a strictly positive number Ri to
each element of the sequence (Ci),

Ri = RAB(Ci) , (6)

with Ri ∈ R+
∗ . The number Ri is the equivalent resistance

of the circuit Ci with external terminals A and B. Related
to the sequence of graphs (Ci), we have a sequence of
real numbers (Ri),

(Ri) = (R0, R1, R2, . . .) . (7)

In an ideal resistive circuit, the most simple and im-
portant physical observable is the equivalent resistance.
Therefore, a necessary condition for the objects treated
here to be physically reasonable is that their equivalent
resistance should be well-characterized. Hence, we define
as a self-similar circuit the sequence (Ci) of resistive
circuits whose associated sequence (Ri) of resistances
converges to a finite and non-zero equivalent resistance
Req,1

Req = lim
i→∞

RAB(Ci) . (8)

As a more technical remark, we specify the usual met-
ric d(x, y) = |x − y| to characterize convergence in the
sequence (Ri) of positive real numbers. It should be
stressed that a self-similar circuit is identified with the
whole sequence of graphs (circuits) whose elements are
recursively constructed. The essential information that
defines a particular circuit is then an initial circuit and
a recurrence function.

One way to ensure convergence of the sequence (Ri)
is to find a recursive function T for this sequence,

Ri+1 = T (Ri) . (9)

Following this strategy, the issue is transformed in a fixed
point problem [22]. If the function T has a fixed point,
the sequence (Ri) converges. Since the set R+

∗ equipped
with the usual metric d(x, y) forms a complete metric
space [22], Banach fixed-point theorem [22] guarantees
the existence and uniqueness of a fixed point Req for T
if there exists a constant λ such that

d(T (x), T (y)) ≤ λd(x, y) with 0 ≤ λ < 1 , (10)

for all x, y in R+
∗ . A map which satisfies condition (10) is

called a contraction [22]. Moreover, if T is a contraction,
1It should be mentioned that this condition is not universally
adopted in the definition of a self-similar resistive circuit.
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the equivalent resistance Req is the solution of the fixed-
point equation

Req = T (Req) . (11)

So we have a method to check if the sequence (Ci)
of resistive circuits is a self-similar circuit, in the sense
proposed here. The answer is affirmative if we can find a
contraction T such that equation (9) is satisfied. In this
case, the equivalent resistance of the self-similar resistive
circuit is well defined, given by the (unique) solution of
equation (11).

The general characterization of self-similar resistive
circuits presented here will be explored in specific exam-
ples in the next sections. We will introduce and study
self-similar resistive series, self-similar resistive trees and
Sierpinski resistive circuits.

4. Self-similar resistive series

One of the simplest candidate for a self-similar circuit is
a collection of resistors arranged in series. But in a self-
similar circuit, the number of resistors grows as each new
circuit is generated for the sequence. So, for the equiv-
alence resistance to be finite in a collection of resistors
arranged in series, it is not enough to consider an array
of resistors with the same resistance. The construction
must be more elaborate.

Let us define the multiplication of a weighted graph C
by a constant α. Informally, a graph αC is a graph ob-
tained from C, with the same vertices and links, but with
the weights multiplied by α. More precisely, with defini-
tions presented in section 2, if C = (V,E,W ), and W :
E → R+

∗ , the graph αC is defined as αC = (V,E,W ′),
where W ′ = f ◦W , with f(x) = αx. In terms of resistive
circuits, the individual resistances of the new circuit are
multiplied by a constant α after the graph multiplication.
It follows that to maintain consistency with the interpre-
tation of circuits as graphs, we must assume that α > 0.
Diagrammatically, this operation will be represented as
shown in figure 4.

We can now define the self-similar resistive series. The
two parameters which characterize this configuration are:
R0, the resistance of the initial circuit C0, and a positive
real number α. As we will see in the following, α must
be non-null and smaller than 1, and can be interpreted
as an “attenuation parameter”. For α close to 1, we have

Figure 4: Diagrammatic representation for the multiplication of
a circuit C by the constant α.

a small attenuation. For α close to 0, the attenuation is
significant.

We start with the first element C0 of the sequence, pre-
sented in figure 5 (left). The sequence (Ci) which defines
the self-similar resistive series is given by the recurrence
relation presented in figure 5 (right). For example, the
second and third elements of the sequence (Ci) associated
to the self-similar resistive series are shown in figure 6.

A few words are in order concerning the self-similar
resistive series. The first point is that, although this
configuration cannot be readily associated to a geomet-
ric fractal, it is consistent with the general definition
presented in section 3, and therefore is a self-similar
structure. Also, it is one of the simplest self-similar resis-
tive network, illustrating the main characteristics of the
general definition with minimum technical difficulties.

We now focus on the calculation of the equivalent
resistance. The first element of the self-similar sequence
is given in figure 5, so

R0 = r0 . (12)

Applying R to the recurrence relation presented in fig-
ure 5, resistance Ri+1 is obtained from Ri. Following the
development presented diagrammatically in figure 7, and
using the series transformation presented in figure 2, we
obtain

Ri+1 = r0 + αRi . (13)

Figure 5: First element C0 and recurrence relation Ci+1 =
FAB(Ci) for the self-similar resistive series. The same C0 will be
used in the next section in the definition of self-similar resistive
trees.

Figure 6: Elements C1 and C2 of the sequence associated to
the self-similar resistive series.
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Figure 7: Diagrammatic representation for the development
towards equation (13).

From equation (13), it follows that the recurrence func-
tion T for the sequence (Ri) is

T (x) = R0 + αx . (14)

It is straightforward to determine conditions for the
sequence (Ci) to represent a self-similar resistive circuit.
From equation (14),

d(T (x), T (y)) = |T (x)− T (y)|
= |R0 + αx− (R0 + αy)|
= α |x− y|
= αd(x, y) . (15)

As discussed in section 3, the sequence (Ri) is convergent
if 0 ≤ α < 1. Therefore, the recurrence relation defined in
figure 5 produces a self-similar circuit if the attenuation
parameter is in the range 0 < α < 1.

The equivalent resistance of the self-similar resistive
series can now be obtained. Considering the fixed point
equation (11) for 0 < α < 1, we have

Req = R0 + αReq . (16)

The equivalent resistance is then given by

Req = R0
1− α with 0 < α < 1 . (17)

We see that Req becomes arbitrarily large with α close to
1, the limit where the resistor array becomes an infinite
series of resistors with the same resistance. On the other
hand, if the attenuation is large (that is, if α is small),
the equivalent resistance of the self-similar circuit is close
to the resistance of a single resistor.

5. Self-similar resistive trees

In this section we consider more complex structures,
analogous to fractal trees. More specifically, we will define
circuits that, when one of the external vertex (with its
associated edges) is removed, the resulting graph is a tree.
In the terminology of Graph Theory, a tree is a connected
graph with no cycles [21]. Hence, a two terminal resistive
tree is a circuit represented by a graph that have no
internal cycles but the ones removed with the elimination
of an external vertex. The physical motivation for the

introduction of the extra vertex and edges in the self-
similar resistive tree is to ensure that the electric potential
of the “tree branches” are the same. In the process,
we transform a tree configuration into a two-terminal
circuit, which can be treated with the general formalism
introduced in section 3.2

For the present development, another operation with
graphs is needed: the elementary contraction [21]. A
contraction of a graph G is obtained by identifying two
vertices U and V that are connected by an edge. This
contraction operation on graphs should not be confused
with contraction in the context of metric spaces, discussed
in section 3.

Diagrammatically, we will denote a contraction by
a dashed line. We illustrate this operation in figure 8.
Physically, a contraction in a resistive circuit means that
a resistor is substituted by a ideal connector. As we
have seen in section 2, the connector short-circuits two
points of the circuit, which makes the two vertices in the
associated graph to “collapse” into a single one.

The parameters which characterize self-similar trees
are the resistance r0 of each resistor in the network, and
the number of branches m of the tree. We will require
that m > 1. Starting from a single resistor, circuit C0 in
figure 5 (left), the construction of the self-similar tree is
done following the recurrence rule indicated in figure 9.
As an illustration, we show the second and third elements
of a resistive self-similar tree with two branches, a “binary
tree”, in figure 10.

Since the first element of the self-similar sequence is
given in figure 5 (left), we have

R0 = r0 . (18)

Applying series and parallel association (see figure 2) with
the recurrence relation in figure 9, recurrence formula for
the sequence (Ri) is obtained,

Ri+1 = r0 + Ri

m
. (19)

Figure 8: Examples of the diagrammatic representation for the
contraction of vertices U and V into vertex W . Dashed lines
represent contractions.

2A visual picture of the proposed configuration would be an actual
tree trunk conducting electricity up to the thinner branches and
then to the atmosphere. We would have effectively a two-terminal
circuit, with one terminal being the base of the trunk (connected to
the earth), and the other all of the branches (electrically attached
to the atmosphere).
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e1302-6 Self-similar resistive circuits as fractal-like structures

Figure 9: Recurrence relation Ci+1 = FAB(Ci) for the self-
similar resistive tree with m branches. Dashed lines represent
contractions.

Figure 10: Elements C1 and C2 of the sequence associated to
the self-similar binary tree (m = 2).

The recurrence function associated to equation (19) is

T (x) = r0 + x

m
, (20)

and for x, y ∈ R+
∗ we have

d(T (x), T (y)) = |T (x)− T (y)|

=
∣∣∣r0 + x

m
− (r0 + y

m
)
∣∣∣

= |x− y|
m

= d(x, y)
m

. (21)

Since the number of branches m is greater than 1, equa-
tion (21) shows that in the present case T is always a

contraction. Hence, the sequence (Ri) converges to some
Req and the sequence (Ci) is associated to a well-defined
self-similar resistive circuit.

The equivalent resistance Req is the solution of the
fixed point equation (11),

Req = r0 + Req

m
. (22)

Therefore, for the self-similar resistive tree withm branches,
we have

Req = m

m− 1 r0 with m = 2, 3, . . . . (23)

We see that the largest equivalent resistance is obtained
with two branches (m = 2). The more m grows, the
closer Req is to the initial resistance r0.

6. Sierpinski resistive circuits

A more complex class of circuits to be treated is inspired
in the Sierpinski triangle [9, 16–18], a fractal also called
Sierpinski gasket or Sierpinski sieve. For the definition of
the Sierpinski self-similar resistive configuration, we take
the initial circuit C0 and the recurrence function pre-
sented in figure 11. There are two parameters, r0 and α,
for the Sierpinski circuit. To illustrate the configuration,
we show the second and third elements of the Sierpinski
sequence in figure 12.

Because of the relative complexity of the circuits in-
volved, the determination of the recurrence function T
is not so straightforward as in the previous examples.
Simple series and parallel association formulas are not
enough. In the present case, the Y −∆ transform, pre-
sented in figure 3, will be extensively used.

The first result we comment is the equivalent resis-
tance of a ∆-type circuit, considering as external points
two vertices of the triangle. The sequence of equivalent
resistances used in the calculation is shown in figure 13.
The result is

Ri = 2
3 ri . (24)

Figure 11: First element C0 and recurrence relation Ci+1 =
FAB(Ci) for the Sierpinski self-similar resistive circuit.
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Figure 12: Elements C1 and C2 of the sequence associated to the Sierpinski self-similar resistive circuit.

Equation (24) can be immediately applied to C0, the ini-
tial circuit of the Sierpinski sequence (Ci), and therefore
R0 = 2r0/3.

Another relevant result for the present development is
displayed in figure 14. Using the Y −∆ transformation
and the formula for association in series of resistors, we
see that a composition of three ∆-type circuits have the
same equivalent resistance of a single ∆-type circuit. The
relation of the parameters rf and ra, rb, according to the
calculations presented in figure 14, is

rf = 5
3 ra + rb . (25)

Let us consider the form of recurrence relation for the
Sierpinski sequence (Ci). We see that since we are starting

Figure 13: Equivalent resistance of a ∆-type circuit with indi-
vidual resistances ri and external terminals A and B.

from C0, which is ∆-shaped, the next circuit C1 will be a
combination of ∆-type circuits in the arrange indicated
by the first diagram in figure 14. The next circuit C2
will not be a combination of ∆-type circuits, but it will
have an equivalent resistance of a combination of ∆-type
circuits. Notice now that the individual resistances of
the ∆-shaped subcircuits and the resistors linking them
will be different in this case. Still, relation (25) can be
applied. The same reasoning goes on for {C3, C4, . . .}.

The development presented in the previous paragraph
is translated diagrammatically in figure 15. Since the
circuit Ci has the same equivalent resistance of a ∆-type
circuit with resistors ri, the circuit Ci+1 is equivalent to
a ∆-type circuit with resistors ri+1, where

ri+1 = 5
3 αri + r0 . (26)

Also, using equation (24), we obtain the recurrence rela-
tion for the sequence (Ri) of equivalent resistances,

Ri+1 = 5
3 αRi + 2

3 r0 . (27)

From equation (27) the recurrence function T is immedi-
ately read:

T (x) = 5α
3 x+ 2

3 r0 . (28)
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e1302-8 Self-similar resistive circuits as fractal-like structures

Figure 14: Transformations that take one configuration pre-
sented in the Sierpinski sequence to a ∆-type circuit with same
equivalent resistance. In the indicated successive transformations:
a = ra/3, b = 2a+ rb = 2ra/3 + rb, c = b/3 = 2ra/9 + rb/3,
d = a+ c = 5ra/9 + rb/3, rf = 3d = 5ra/3 + rb.

Figure 15: Circuit Ci+1 has the same equivalent resistance of a
combination of three ∆-type circuits (ri and r0 resistors), which
has the same equivalent resistant of a single ∆-type circuit (ri+1
resistors).

We can now determine if the sequence (Ri) is conver-
gent. From equation (28) and considering x, y ∈ R+

∗ , we
have

d(T (x), T (y)) = |T (x)− T (y)|

=
∣∣∣∣5α

3 y + 2
3 r0 −

(
5α
3 x+ 2

3 r0

)∣∣∣∣
= 5α

3 |y − x|

= 5α
3 d(y, x) . (29)

Therefore, the sequence (Ri) is convergent if the attenua-
tion parameter α is such that 0 < α < 3/5. In that case,

the Sierpinski recurrence relation in figure 11 produces a
well-defined self-similar circuit.

Assuming that 0 < α < 3/5, it is possible to define
and calculate an equivalent resistance for the self-similar
Sierpinski circuit. Considering the fixed-point equation
for Req,

Req = 5α
3 Req + 2

3 r0 , (30)

we obtain the equivalent resistance,

Req = 2r0
3− 5α with 0 < α <

3
5 . (31)

In the Sierpinski resistive circuit, Req can be arbitrarily
large, growing from 2r0/3 to infinity as the parameter α
varies from 0 to 3/5.

7. Final comments

Resistor networks in self-similar patterns, analogous to
geometric fractals, were considered in the present work.
A main point to be stressed is that, since ideal resistive
circuits are topological objects, geometric information
should not be used in the construction of the config-
urations. To implement this idea, a precise definition
for a self-similar resistive circuit was introduced. This
definition captures essential characteristics presented in
geometrical fractals, maintaining at the same time the
topological nature of the circuits.

In the definition of self-similar circuits discussed in the
present work (but not universally adopted), the basic cri-
terion is that the equivalent resistance of the self-similar
network should be finite. This extra requirement is phys-
ically motivated. Since the equivalent resistance of an
ideal resistive circuit is the most simple and important
observable, it should be well-defined. Following this ob-
servation, we introduced a sufficient condition for the
sequence to be a self-similar resistive circuit. That condi-
tion was the existence of a contraction for the sequence
of associated resistances of each element in the sequence
of circuits. If the criterion is satisfied, then the problem
of calculating the equivalent resistance becomes a fixed
point problem.

The approach presented in this work was illustrated in
the construction of three classes of self-similar resistive
circuits, discussed in detail. The first configuration, the
self-similar series of resistors, is a simple and pedagog-
ical case, where the formalism can be developed with
minimum technical difficulty. Tree-shaped configurations
and circuits based on the Sierpinski triangle were consid-
ered next. Those more elaborate networks have some of
the general characteristics presented by geometric frac-
tals and, at the same time, they illustrate some of their
important properties.

In this manuscript, our main goal was to introduce
an interesting and non-trivial problem which could be
used in Physics and Mathematics teaching. Nevertheless,
applications in materials science and engineering are
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expected. To cite just a few possible scenarios, electrical
properties of percolation clusters in random media and
disordered systems can be studied considering fractal
networks [23]. Sierpinski gasket can be used to model two
dimensional superconductor materials [24]. The electric
response of inhomogeneous materials can be investigated
with fractal-like models [25]. Alternative antenna designs
modeled by self-similar structures were considered [26].

Finally, the particular examples explored in this work
can be generalized. For instance, it is straightforward to
introduce an attenuation factor in the definition of the
tree circuit. In addition, the Sierpinski triangle circuit
can be modified to a pattern similar to Sierpinski carpet
[4, 9]. Self-similar circuits constructed from the general
definition presented here can have interesting patterns
and potentially important applications.
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randa, Fernando de Brito Mota, Roberto Fernandes
Silva Andrade e Caio Mário Castro de Castilho, Revista
Brasileira de Ensino de F́ısica 30, 2304 (2008).

[6] H.E. Caicedo-Ortiz, H.O. Castañeda e E. Santiago-
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