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In this work, the mechanism behind motion in closed systems is investigated by studying two simple mechanical
systems. Firstly, a simple “ballistic” car system introduces the subject of propulsion as a function of a parameter
that modulates the amount of ejected mass, thus allowing a transition between a closed to an open system.
The second example provides a physically realizable (and optimizable) system, in which a mass sliding on the
internal surface of a mechanical wheeled cavity is shown to produce a net movement, provided that dissipation is
present. Several additional ways are discussed by which to ‘open’ a system whilst keeping the mass constant. As a
function of strict momentum conservation, it is concluded that both internal mass motion and dissipation are key
factors in the only way a mechanical system can move itself in a weak sense, in contrast to a strong meaning of
‘self-propulsion’.
Keywords: closed systems, dissipation, propulsion, self-propulsion, reactionless drive.

1. Introduction

The subject of propulsion is traditionally introduced to
students as a corollary of Newton’s third law of motion
and momentum conservation of a system with variable
mass [1]. Essentially, an ‘open’ system has part of its
mass (consisting of chemical gases, ions and plasma)
ejected to provide thrust to a main body carrying a use-
ful load. The paradigm is the rocket, which has evolved
throughout history of propulsion systems, whilst still
keeping this same basic principle. New mechanisms have
been proposed to circumvent the inherent inefficiency of
this principle (as applied to rockets), in the context of
interstellar trips [2,3] and to explore ‘reactionless motion’
(the idea of a self-propelled engine or the so-called ‘space
drive’ [4, 5]). As a concept, this kind of device embodies
part of the hope for interstellar voyages because, using
the rocket principle, it is impossible currently to carry all
of the fuel necessary to reach the next star (and return).
Some widely speculative ideas are based on violating
mass conservation either by exploring the possibility of
‘negative mass’ [6], or by changing the system’s overall
inertial mass content [7]. A recent example of a potential
‘breakthrough’ was the discovery that electromagnetic
waves in resonant cavities of a certain shape were ob-
served to apparently generate thrust [8, 9], leading to
criticism of the postulated reasons for the observed mo-
tion [10]. It is clear that the subject of propulsion and
space travel provides a strong motivation for students
to delve into the meaning of many fundamental laws of
mechanics, such as momentum and energy conservation.
*Correspondence email address: ademir.junior@aeb.gov.br.

The purpose of this paper is to present students a
treatment of some simple mechanical systems that inspire
the application of physics to the meaning of reactionless
motion, i. e.: the possibility of motion without minor
mass-ejection or system-splitting. One author [2] stated
recently:

“Because it would constitute a breakthrough
to be able to move a vehicle without expelling
a reaction mass, these devices appear to be
breakthroughs”,

which further motivates this investigation.
There have been many proposals in the past of mechan-

ical oscillators which were claimed erroneously to produce
thrust under non-reactive conditions [11, 12]. Such sys-
tems were promptly discredited, but misunderstandings
concerning possible ways of motion under non-reactive
conditions still remain. In the wake of the claims and
criticism sparked by the EmDrive [8], other negative com-
ments are found in popular media targeting the general
public, e. g.: “Unless some kind of mass was being pushed
out the back of this thing, an EmDrive based on any
kind of propulsion simply shouldn’t move itself though
empty space” [13] and “Therefore, generating thrust from
a closed system is impossible, which is why physicists
have refused to accept the device from the start.” [14].

We would like to elucidate the sense in which such
statements should be understood, and emphasize the
role played by momentum conservation in generating
motion in a closed system when a certain amount of
dissipation is present. In a certain sense or interpretation,
a closed system can indeed ‘propel itself’. However, this
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sense is not a strong one: no possible change in the
system center of mass is possible. Dissipation and mass
redistribution inside and within the system boundary
play a fundamental role, together with momentum and
energy conservation in generating a net displacement
while keeping the overall mass of the system constant.
The organization of this work is as follows: in Section 2
we introduced the ballistic car as a system which contains
all the necessary ingredients to understand how motion
of closed dissipative systems is possible. Section 3 and its
two sections analyse in details a physical realization of
the ballistic car. Generalizations are discussed in Section
4. The main conclusions are drawn in Section 5.

2. The ballistic car and the limit of a
vanishing gunned wall

A person firmly fixed on the flat car shots a bullet with
mass m at t = 0 against a wall that is part of its platform
(Figure 1). The combined mass of the person and flat car
is M . From the standpoint of an observer fixed on the
ground, the bullet speed is ~v = −|v|x̂. The wall intercepts
a fraction of the bullet mass mζ (with 0 ≤ ζ ≤ 1) at time
t = τc, while the remaining mass m(1 − ζ) continues to
move freely with velocity ~ve = −|ve|x̂ for t ≥ τc. Because
the initial linear momentum of this system is zero, for
0 ≤ t < τc the car platform will move to the right with
velocity magnitude

Vt<τc
= λ

1 − λ
|v|, (1)

with λ = m/(m+M). The bullet trajectory for 0 ≤ t < τc

is x(t) = D − |v|t, while the flat car moves accord-
ing to X(t) = V t. The collision time is a solution of
x(τc) = X(τc) or τc = D(1 − λ)/v with D the gun-wall
separation as shown in Figure 1. Hence, the total flat car
displacement until t = τc is

∆X = Vt<τcτc = λD. (2)

Figure 1: The ‘ballistic car’. A person fixed on a flat car shots
a bullet with mass m and velocity v against a wall that is part
of the arrangement. The bullet hits its target at time τc. After
τc, a fraction m(1 − ζ) of the bullet continues to the left with
velocity ve and the remaining mζ is sunk in the wall.

The available internal energy of the system is provided
by the shot explosion, being given effectively by

E0 ≤ 1
2

(
λ

1 − λ

)
Mv2, (3)

as the energy fraction liberated by the explosion in the
mechanical form. The conversion efficiency for 0 ≤ t < τc

is the ratio of the kinetic energy of the main body with
V given by equation (1) and the initial energy given by
equation (3)

εt<τc
≥

1/2MV 2
t<τc

E0
= λ

1 − λ
. (4)

For t ≥ τc, the final magnitude of the car’s velocity
follows again from momentum conservation taking into
account the contribution of the remaining free mass (1 −
ζ)m as

Vt≥τc
= (1 − ζ)λ

1 − (1 − ζ)λ |ve|. (5)

The ejection velocity ve cannot be calculated by any
simple relation, it is rather a function of the complicated
interaction process of the bullet with the wall. Such rela-
tion can hardly be written down for a bullet penetrating
a wall. In fact, the bullet-wall interaction (as well as
the initial car acceleration with the recoil of the bullet
shot) is assumed here to be instantaneous, hence the
discontinuity in the derivative of the car velocity at τc.

After τc, the useful mechanical energy of the main
body is simply 1/2(M + ζm)V 2

t≥τc
or

Emb = 1
2Mv2

e

λ2(1 − ζ)2

(1 − λ)[1 − λ(1 − ζ)] ,

from which we obtain the energy conversion efficiency
ε = Emb/E0 for t ≥ τ as

εt≥τ ≥
(ve

v

)2 λ(1 − ζ)2

[1 − λ(1 − ζ)] . (6)

Now we can compare two extreme cases:

• An open system, ζ = 0. The bullet velocity deriva-
tive is continuous at τc because the wall is com-
pletely transparent. Therefore equation (1) reduces
to equation (5). It is also clear that ve = v and
therefore εt≥τ = εt<τc

= λ/(1 − λ). The motion of
the main body ∆X is unbounded and the dynamics
correspond to the rocket system with a positive
∆v, which is a velocity increment in case the flat
car is observed from a moving reference system;

• A closed system, ζ = 1. The bullet collides com-
pletely with the wall and the final car velocity is
zero (see equation (5)). The initial energy is com-
pletely absorbed by the wall so that εt≥τ = 0. The
motion of the main body is restricted to the dis-
placement ∆X until τc. However, before this time
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the conversion efficiency is εt<τc
= λ/(1−λ), which

may be interpreted as the proper efficiency of the
system be it closed or not (that is, ε does not de-
pend on ζ). The effective motion of a closed system
of this type is characterized by a positive ‘∆x’, but
no ∆v.

As ζ → 0, the wall vanishes and the system gradually
opens. Both open and closed systems are extremes of
boundary configurations that produce motion based on
momentum conservation and mass redistribution. How-
ever, dissipation plays a relevant role only in closed
systems because it is necessary to decelerate the redis-
tributed particles in order to halt the motion with a
net displacement while keeping the mass confined to the
main body.

2.1. Apparent thrust generated by the closed
system

In a rocket there is no absolute transfer of momentum,
because no external force (except for gravity, when the
rocket is launched from the surface of a massive body
like Earth) acts on the whole system. The thrust F is
usually defined as the ‘reactive force’ [15] on the main
body resulting from the ejection of particles of mass m
at rate ṁ and velocity ve

F = ṁve + Ae(Pe − P∞),

with Ae the nozzle exit area, Pe the gas pressure at
the nozzle exit and P∞ the ambient pressure. In propul-
sion engineering, the so-called ‘specific impulse’ [15] is a
relevant parameter with which to characterize the per-
formance of a thruster and is defined by

I =
∫ t

0 Fdt′

g
∫ t

0 ṁ(t)dt′
. (7)

In a closed system containing mass redistribution and
dissipation, both ṁ and the total impulse are zero, and
it it apparently meaningless to calculate the specific
impulse for these systems, unless its definition is changed.
The total impulse may be described as the result of an
apparent or ‘pseudo’ thrust F during the time τc with

F = (M + m)〈a〉. (8)

with 〈a〉 the average acceleration as given by

〈a〉 = ∆X/τ2
c , (9)

in complete analogy with the thrust defined for a rocket.
Using previous relations, for the ballistic car we find
simply

F = Mλv2

D(1 − λ)3 .

Finally, a new specific impulse I for the closed systems
should substitute the denominator in equation (7) as
simply mg or the weight of the moveable part so that

I = Fτc
mg

. (10)

For the closed ballistic car, the specific impulse is

I = v

g(1 − λ) . (11)

Another useful parameter is the thrust-to-power ratio
[16] η = F/Π with Π the input power of the system. As
the definition implies, η is a measure how much thrust
is generated in a propulsion system as a function of the
input power. For the ballistic car, the input power may
be approximated by E0/τc (rate of the available initial
energy to the interaction time) which, for the closed
ballistic car is

Π ≈ λMv3

2D(1 − λ)2 ,

and the thrust-to-power ratio is simply given by

η ≈ 2
v(1 − λ) . (12)

For pedagogical reasons, it seems logical to define two
ways by which a system of this type can move:

1. Propulsion in the strong sense: when the center of
mass of the system moves, what can only happen
when the system is truly open and actuated by an
external force;

2. Propulsion in the weak sense: when no external
force exists, the center of mass of the body remains
stationary (as in the case of the rocket system).
However, there is motion as measured, by instance,
by the change in position of the ‘geometric center ’
of the main body. Here, the word ‘propulsion’ is
merely a synonym for the general motion observed
with only part of the system, which is nevertheless
a legitimate motion.

Thus, in spite of not being caused by an external agent,
the motion of the ballistic car for ζ = 1 produces a
tangible impression. If an external observer has no access
to the car inner mechanism (implying a much stronger
kind of closure), he would be surprised to detect a non
zero displacement and would attempt to find perhaps an
explanation based on an anomalous force.

3. The dissipative mechanical cavity
oscillator

An example of a simple mechanical system implementing
the ballistic car dynamics is depicted in Fig. 2. This
figure shows a one dimensional mechanical oscillator
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Figure 2: A possible equivalent implementation of the ballistic
car: a mechanical oscillator of mass M moves on a surface which
is only half-dissipative (indicated by the friction coefficient µ).
The set is wheeled and and the observer registers the motion of
the system geometric center.

on a surface which is only ‘half dissipative’. The whole
oscillatory cycle may be divided into several phases in
which half is non dissipative and equivalent to shooting
the bullet as in the previous example. The other half is
dissipative and corresponds to the wall penetration by
the bullet.

However, we explore here with some detail another
mechanical version of the oscillator of Fig. 2, which has
the advantage of being less artificial and easily repli-
cated in the laboratory, providing an excellent way to
study the effect of dissipation on the movement of closed
systems. Engineering students will find it suitable for
studies in system optimization because, as shown below,
the maximum system displacement and apparent thrust
is strongly linked to the kind of surface used to implement
energy dissipation.

3.1. Non dissipative motion of an oscillating
cavity

A free mechanical cavity of mass M (Figure 3) is made of
a cylindrical ‘bow’ of radius R attached to a car that is
free to move in the x-direction and a small body (a bead
of mass m) constrained to move on its internal surface.
In strict terminology, the system is open in the sense
that gravity actuates along the y-axis but the cavity is
restricted to move along x̂ only. However, for all practical
purposes, the system may be regarded as being ‘closed
along x’ and of constant mass. The resulting motion
can be emulated by a torsion pendulum with a mass m
and length R carried by a car or wheeled platform in an
environment for which g = 0 (with g being the gravity
acceleration). The degree of freedom associated with the
rotational motion of the bead is neglected, and the bead
movement is restricted to the xy plane.

The car x-dynamics is referred to as a displacement
X(t) of the system center O along x̂. Besides the fixed
xy system, a suitable polar system describes the bead
position θ with the unitary vectors (r̂, θ̂), r̂ = x̂ sin θ −
ŷ cos θ and θ̂ = dr̂/dθ. The Hamiltonian function of the

Figure 3: A mechanical cavity free to move along x̂ under the
inertial reaction of a slipping bead.

system under gravity acceleration −gŷ is

H = h(θ)(1 − λ)
2M

(
p2

X + p2
θ

λR2 − 2pθpX cos θ

R

)
−

λ

1 − λ
MgR cos θ, (13)

with
h(θ) = 1

1 − λ cos2 θ
, (14)

pθ the angular momentum of the bead, pX the linear
momentum of the cavity and λ = m/(m + M) is the
mass ratio. The vector (X0, P0, θ0, ω0) represents the
initial condition associated to the phase-space variables
(X, P, θ, ω), with P = Ẋ the cavity velocity along x̂. A
special initial state is (0, 0, π/2, 0) which corresponds to
dropping the bead as shown in Figure 3. From equation
(13), the canonical momenta of the system are explicitly
given by

pX = M(P + λRω cos θ)
1 − λ

, (15)

pθ = λMR(Rω + P cos θ)
1 − λ

.

If the cavity is initially at rest, the numerical value of
the first equation in (15) is zero (P = −λRω cos θ) and
remains so throughout the dynamic evolution. This is not
true however for pθ, which is associated to an internal
degree of freedom.

It is assumed that for all θ the bead is always in contact
with the cavity surface, so that the normal force

N = λM

1 − λ

[
Rθ̇2 + (g + Ẋθ̇) cos θ

]
(16)

plays the role of centripetal force and is therefore directed
toward −r̂. The normal force function, equation (16),
contains contributions of all accelerations on the bead:
centripetal and gravity accelerations and Ẋθ̇ cos θ as
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an interaction term. Hence, the cases of interest are
the ones for which N > 0 restricting the three initial
variables θ0, θ̇0 and Ẋ0 (but not X0). The system is
equivalent dynamically to a pendulum attached to a
moving pivot [17].

The equations of motion for the set of coordinates
(X, P, θ, ω) are

Ẋ = P,

Ṗ = λh(θ)
(

Rω2 sin θ + g sin θ cos θ − fθ

mR
cos θ

)
,

(17)
θ̇ = ω,

ω̇ = h(θ)
(

fθ

mR2 − λω2 sin θ cos θ − g

R
sin θ

)
.

Equations (17) are obtained from the X and θ compo-
nents of the forces under the evolution as defined by
equations (13) plus an additional force fθ along the θ̂
direction. These differential relations already consider the
bead weight along θ̂ (the term −g sin θ/R in the fourth
equation in (17)), so that fθ may represent other internal
forces. For small amplitude angles (|θ0| . 10◦), the bead
moves as a simple pendulum with angular frequency
Ω ≈

√
g/R(1 − λ) that is higher than the equivalent

frequency of an oscillation pendulum with length R. The
oscillation period for the initial condition (0, 0, π/2, 0) is
T = cλ

√
2R/g with

cλ =
∫ π/2

−π/2

√
1 − λ cos2 θ

cos θ
dθ, (18)

from which the exact frequency Ω can be calculated.
For |θ0| ≤ π/2, the first equation of (17) is readily

integrated to give the total displacement of the cavity
center ∆X = X − X0 = λR(sin θ0 − sin θ), which is
equivalent to equation (2) in the ballistic car. Using
the condition (0, 0, π/2, 0)), the total displacement at
θ = −π/2 is 2λR and zero upon returning to the initial
position. The total average displacement as calculated
by

〈∆X〉 = 1
θ − θ0

∫ θ

θ0

∆X(θ′, θ0)dθ′

= λR

[
sin θ0 + (cos θ − cos θ0)

θ − θ0

]
, (19)

is half this value or +λR from θ0 = π/2 to θ = −π/2.
The available initial energy can be written as

E0 = − λ

1 − λ
MgR cos θ0, (20)

which, for the specific initial condition (0, 0, π/2, 0) is
zero and has a minimum for θ0 = 0. The kinetic energy
of the system is easily written as

Ek = 1
2MR2ω2

[
λ(1 − λ cos2 θ)

1 − λ

]
. (21)

In the absence of friction, the entire system will oscil-
late on average λR with no net displacement (limit of
periodic motion θ → θ0 in equation (19)), which is com-
monly interpreted as a consequence of no external force
driving the main system of mass M + m. The frictionless
wheeled cavity cannot therefore produce any net motion.

3.2. Dissipative motion

Friction is one of the forces that may be represented
by fθ in equations (17). Bearing in mind the distinction
between static and dynamic dry friction [18], the following
dissipative force model may be applied

fθ = −µ sgn(ω)N(P, θ, ω)Θ(|ω| − ωm)Θ(θ1 − θ)Θ(θ − θ2),
(22)

with µ ≥ 0, Θ(x) the Heaviside function and sgn(x) the
signal function. The force domain is delimited by angles
θ1 and θ2. Also, ωm is the minimum angular bead velocity
above which dynamical friction takes place. θ1 and θ2 are
the leftmost and rightmost limits of the friction domain,
respectively, with |θ1| ≤ π/2 and |θ2| ≤ π/2 (θ2 < θ1).
The force direction is given by the signal of ω through
sgn(x). For example, if θ1 = π/2 and θ2 = −π/2 the
cavity is entirely dissipative.

The dissipative motion is illustrated by a straight-
forward numerical integration of equations (17) using
equation (22), and by assuming θ1 = 0 and θ2 = −π/2,
so that the friction domain is along the segment OB in
Figure 3. The value ωm = 0.001 rad/s is taken as the
minimum angular velocity in equation (22). A typical
time evolution of the system is shown in Figure 4 (top)
for λ =1/6 (m = 2 kg, M = 10 kg and R = 1 m) and µ =
0.2. For these assumed numerical parameters, the cavity
period is T = 2.301 s. The cavity phase-space evolution
(X, P ) is seen in the spiral of Figure 4 (bottom). Dashed
lines correspond to undamped movement (µ = 0). The
letters in this figure are references to the sections of the
bead trajectory in Figure 3. Segment AO is the initial
undamped motion. The dissipative force actuates along
OB. The return to sector AO occurs only if sufficient
energy is available, as is the case with µ =0.2.

Contrary to the conservative case, the dissipative cav-
ity never returns to the initial condition (0, 0, π/2, 0),
but relaxes to (∆Xd, 0, θd, 0) after a certain time τd (as
indicated in Figure 4 (Top), τd = 4.836 s). The total dis-
placement is ∆Xd = 0.186 m. From the point of view of
energy balance, dissipation converts part of the available
initial energy, Eq. (20), into motion during τd with an
average velocity 〈P 〉 ' ∆Xd/τd = 0.038 m/s.

The ‘useful’ kinetic energy is M〈P 〉2/2(1 − λ), from
which the conversion efficiency ε ≈ ∆X2

d/(2gλRτ2
d ) is

determined as the rate between the generated energy and
the initially available one as given by equation (20). For
the parameters of the simulated case εµ=0.2 = 0.045%.
For weak friction (µ � 0.1), the minimum energy is close
to E0, equation (20), that is θd ≈ 0 with a long relaxation
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Figure 4: Numerical integration for the dissipative cavity for λ = 1/6, M=10 kg and µ =0.2. Top: Cavity center evolution against
the undamped case (µ=0, dashed line). Bottom: (X, P ) plot showing the undamped and friction phases of motion. The indicated
∆Xd = 0.186 m is the net cavity displacement which takes place during τd = 4.836 s.

time and low ε. For µ � 1, the bead may be treated
as colliding inelastically with the dissipative surface and
again θd ≈ 0. However, the relaxation time is the shortest
possible, close to 1/4 of the non dissipative period and
the efficiency ε ≈ 4λ/c2

λ, which is equivalent to equation
(4) of the ballistic car. Between these two extremes, θd

oscillates with eventual values of µ for which θd is exactly
zero. Thus, the relaxed state does not correspond to the
absolute energy minimum E0.

The evolution of the acceleration is well appreciated
in the cavity system, for which a specific dissipative
interaction is given. Figure 5 shows the evolution of
cavity velocity (left) and acceleration (right), which is
proportional to the cavity apparent thrust. However, the
average acceleration as calculated by

∫ τ

0 Ṗ dt = 0 (the
area below the curve in Figure 5 (Right)), because both
the initial and final cavity velocities are zero. Thus the
apparent thrust, as a performance parameter, should be

calculated from the overall displacement and relaxation
time as (M + m)∆X/τ2

c . In the case treated in the last
section(λ =1/6 and µ = 0.2) Fc = 0.095 N and the total
impulse is 0.46 Ns.

Just as in the case of the ballistic car, for the cavity
with µ � 1, the apparent thrust is

Fc ≈ 8λ

(1 − λ)c2
λ

Mg, (23)

the thrust-to-power ration is

ηc ≈ 2
cλ

√
2

Rg
, (24)

and the specific impulse is

Ic ≈ 2
cλ

√
2

Rg
. (25)
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Figure 5: Time evolution of the cavity velocity (left) and acceleration (right) for µ = 0.2. The dotted curve corresponds to the
undamped case. The average acceleration using 〈a〉 = ∆X/τ2

d is 1/1233 g and 〈P 〉 = 0.038 m/s.

Dimensionally both equation (24) and (12) have unit
[v−1] = s/m = N/W. Using the output of the case calcu-
lated in the previous section (for which equations above
are not valid), Πc = 4.05 W, Ic = 0.025 s and ηc =
23.5 N/kW. For the optimized case, one obtains instead:
∆Xµ>>1 = 0.167 m, τµ>>1 = 0.576 s, 〈P 〉µ>>1 = 0.289
m/s, 〈a〉µ>>1 ≈ 1/19 g, Fµ>>1 = 6.02 N (equation (23)),
Πµ>>1 = 34 W, Ekµ>>1 = 0.5 J, εµ>>1 = 2.5 %, Iµ>>1
= 0.177 s (equation (25)) and ηµ>>1 = 176.9 N/kW
(equation (24)). Contrary to the undamped case, the
dissipative cavity does does produce average motion, be-
cause its net displacement is not zero but ∆Xd.

4. Discussion

In fact, the total displacement observed in the dissipative
systems treated here can be decomposed into several
small mass contributions as shown in Figure 6 (A), in
which a ‘mass tank’ (a) is depleted continuously as shown
for the cavity system. The displaced beads are kept in the
cavity base (b). The equivalent process in the ballistic
car is the shooting of several bullets toward the wall with
ζ = 1. One can ask if it is possible to reuse the masses
as shown in Figure 6 (B), in which an internal elevation
mechanism (d) replenishes the tank and recharges the
system energy. However, it is easily seen that such mass
recycling does not lead to any net displacement. If there
are N beads and the unit displacement is mR/(M0 +
Nm), then the overall shift in position to the right is
NmR/(M0+Nm), with M0 the empty cavity mass. Mass
recycling would lead to a net shift to the left by the same
amount and no overall motion. The only way to take
advantage of the same masses is by fastening the whole
vehicle to the ground during mass recycling as shown
in (e), which corresponds to applying an external force

to the system. The system would be open then, just
as represented in Figure 6 (C), where there is no mass
storage or external force, but the beads are dropped by
an external agent and scape through an exit (g) as in the
rocket system, keeping the mass of the system constant.
Note that, in this case, in spite of the similarity with the
rocket, there is no momentum gain along x̂ because the
mass motion in the hole is along ŷ.

5. Conclusions

Propulsion is usually taught as a kind of energy conver-
sion and mass loss process in which particles of certain
mass and average velocity produce an acceleration of
the main body, counterbalancing external forces such as
gravity. Momentum is conserved rigorously for the whole
system (body + particles), and the ‘momentum transfer’
is, in fact, a consequence of fixing the attention to the
main body or regarding motion of only some of its parts.
By the same principle, a closed system (with constant
mass and no external force) may displace itself in space
in a weak sense.

However, the price paid for motion in a closed system
is quite high: it lasts no longer than a short interval τc,
roughly of the order l/v, with l a system size and v the
internal velocity of the movable part. It is reasonable to
speak about the system as possessing a ‘displacement
cycle’ characterized by a net “∆X” and τc, during which
all motion takes place. Worst still, the final system state
has no ∆v, implying in no net momentum change.

Although no net momentum change exists after the
displacement cycle, it is possible to define an average
transient equivalent impulse during motion as ∼ (M +
m)〈a〉τc, which is a measure of the strength of the ‘pseudo-
thrust’ as defined by (M + m)〈a〉. This designation em-
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Figure 6: In (A) the system is closed but displacement is limited
by the number of total beads in the ‘mass tank’ (a); in (B)
an elevation and ‘recharging’ mechanism (d) would attempt to
reuse the masses through an internal transport mechanism as
shown in (c). However, in this case, there is only net motion (to
the right) if the car is fastened to the ground (e). In (C), the
masses are allowed to leave the cavity through a hole (g) and
an external agent (f) recharges the system.

phasizes that the thrust does not originate from any
action imposed by an external cause. However, an ob-
server would see the closed system move as if impelled
by a peculiar force, rendering the linear momentum un-
changed. Because friction can drive out energy from the

mechanical motion, the measurable result for the observer
is a displacement of the entire body.

The functioning of such devices is strongly limited in
its ‘closure’ definition: an attempt to reuse the same dis-
placed masses in another displacement cycle is forbidden,
because they would eliminate any effect from the previ-
ous cycle. Mass recycling is possible when either a force is
applied in the opposite direction to cancel out the effect
of the reusable masses’ movement, or if a continuous
flow of masses is allowed to enter and exit the system
so as to keep its mass constant. For obvious reasons, a
system implementing mass recycling in these ways would
be anything but closed.
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