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This study presents the solutions of Schrödinger equation for the Non-Central Generalized Inverse Quadratic
Yukawa Potential within the framework of Nikiforov-Uvarov. The radial and angular part of the Schrödinger
equation are obtained using the method of variable separation. More so, the bound states energy eigenvalues
and corresponding eigenfunctions are obtained analytically. Numerical results were obtained for the Generalized
Inverse Quadratic Yukawa Potential for comparison sake. It was found out that our results agree with existing
literature.
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1. Introduction

Physicists over the years have developed strong interest
in searching for the solution of the Schrödinger equa-
tion with some potentials [1-7]. This is because, finding
the analytical solution of the Schrödinger equation is
extremely crucial in nonrelativistic quantum mechanics
and the eigenfunction contains all the necessary infor-
mation required to describe a quantum system under
consideration.

The analytical solution of the Schrodinger equation
with l = 0 and l 6= for some potentials (central and non-
central) has been addressed by many researchers in non-
relativistic quantum mechanics and relativistic quantum
mechanics for bound and scattering states problems[8-16].
Some of the potentials addressed in these studies include;
a class of Yukawa potential [17], Coulomb ring-shaped
potential [18], ring-shaped Woods-Saxon potential [19],
Hartman potential [20-21], Coulombic ring-shaped poten-
tial[22] double ring-shaped oscillator potential[23] ring-
shaped non-spherical harmonic oscillator potential[24-25],
spherically harmonic oscillatory ring-shaped potential
[26-27], Poschl Teller double-ring-shaped Coulomb po-
tential [28], Manning-Rosen potentials[29-31], inversely
quadratic Yukawa potential[32] and Eckart[33]. In most
of these studies, the authors used certain well known ap-
proximations to overcome the centrifugal barrier (l 6= 0)
and obtained the eigenvalues and eigenfunctions using
different methods.

The methods which have been employed to solve the
differential equation arising from these considerations

include; the asymptotic iteration method (AIM) [34-36],
exact quantization rules [37-38], Nikiforov–Uvarov (NU)
method [39-41], modified factorization method [42-43],
supersymmetric quantum mechanics (SUSYQM) [44-55],
and the functional analysis approach (FAA) [46-47].

The generalized inverse quadratic Yukawa potential
(GIQYP) was first proposed by [48-49]. This potential is
a superposition of the inverse quadratic Yukawa (IQY)
[32] and the Yukawa potential [50]. It is asymptotic to
a finite value as r → ∞ and becomes infinite at r = 0.
Oluwadare and Oyewumi [51] solved this potential within
the framework of the proper quantization rule and eigen-
function was obtained via the Formula Method [52].The
generalized inverse quadratic Yukawa potential model is
of the form [51]

V (r) = −V1

(
1 + e−αr

r

)2

(1)

Ikhdair et al. [48] Compared the behaviour of the Yukawa-
type potential with the Yukawa potential and the IQY
potential for screening parameter values, it was noted
that differences do not exist between these three poten-
tials.

The Ring shaped potential have a wide range of appli-
cations in quantum chemistry and nuclear physics [53].
They have very important role in describing ring-shaped
molecules like benzene and the interactions between de-
formed pair of nuclei [54-55]. They have also been used
in demonstrating some of the pseudospin symmetry in
nuclei physics [27]. The exact results can be used in
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accounting for some axial symmetric system in quan-
tum chemistry. Zhang et al. [26] proposed a non-central
potential as;

V (θ) = }2

2µr2

(
C +B cos2 θ +A cos4 θ

sin2 θcos2θ

)
(2)

Motivated by this numerous studies, we attempt to pro-
pose a non-central generalized inverse quadratic Yukawa
potential (GIQYP) by selecting V (r)as the generalized
inverse quadratic Yukawa potential (GIQYP) The non-
central generalized inverse quadratic Yukawa potential
(GIQYP) is composed of generalized inverse quadratic
Yukawa potential (GIQYP) plus a Novel Angle Depen-
dent (NAD) potential. It can be written as

V (r, θ) == −ηe−2αr

r2 − Ωe−αr

r
−H

+ }2

2µr2

(
C +B cos2 θ +A cos4 θ

sin2 θcos2θ

)
(3)

Where η = H = V 1 and Ω = 2V1
The Generalized inverse quadratic Yukawa potential

reduces to a constant potential when η = Ω = 0.
The organization of the work is as follows: In the next

section, we give a review of the NU method. In Sect. 3,
this method is applied to obtain the bound state solu-
tions with Non-Central Generalized Inverse Quadratic
Yukawa Potential. In Sect. 4, we obtain numerical results
while in Sect. 5, we give a brief concluding remark.

2. Review of Nikiforov-Uvarov Method

The Nikiforov-Uvarov (NU) method is based on solving
the hypergeometric-type second-order differential equa-
tions by means of the special orthogonal functions [56-57].
The main equation which is closely associated with the
method is given in the following form [58];

ψ
′′

(z) + τ̃ (z)
σ (z)ψ

′
(z) + σ̃ (z)

σ2 (z)ψ (z) = 0 (4)

Where σ (z) and σ̃ (z) are polynomials at most second-
degree, τ̃ (z) is a first-degree polynomial and ψ (z) is a
function of the hypergeometric-type.

The exact solution of Eq. (4) can be obtained by using
the transformation

ψ (z) = φ (z) y (z) (5)

This transformation reduces Eq. (4) into a
hypergeometric-type equation of the form

σ (z) y
′′

(z) + τ (z) y
′
(z) + λy (z) = 0 (6)

The function φ (z) can be defined as the logarithm deriva-
tive

φ
′ (z)
φ (z) = π (z)

σ (z) (7)

where
π (z) = 1

2 [τ (z) − τ̃ (z) ] (8)

with π (z) being at most a first-degree polynomial. The
second ψ (z) being yn (z) in Eq. (5), is the hypergeo-
metric function with its polynomial solution given by
Rodrigues relation

y(n) (z) = Bn

ρ (z)
dn

dsn
[σn (z) ρ (z)] (9)

Here, Bn is the normalization constant and ρ (z) is the
weight function which must satisfy the condition

(σ (z) ρ (z))
′

= σ (z) τ (z) (10)

τ (z) = τ̃ (z) + 2π (z) (11)

It should be noted that the derivative of τ(s) with re-
spect to s should be negative. The eigenfunctions and
eigenvalues can be obtained using the definition of the
following functionπ(s) and parameterλ, respectively:

π (z) = σ
′ (z) − τ̃ (z)

2

±

√(
σ′ (z) − τ̃ (z)

2

)2
− σ̃ (z) + kσ (z) (12)

where
k = λ− π

′
(z) (13)

The value of k can be obtained by setting the discrim-
inant of the square root in Eq. (12) equal to zero. As
such, the new eigenvalue equation can be given as

λn = −nτ
′
(z) − n (n− 1)

2 σ
′′

(z) , n = 0, 1, 2, . . . (14)

3. Separation of Variables for the
Schrodinger Equation

In spherical coordinates (r, θ, φ), the Schrodinger equa-
tion with potentials V (rθ), respectively, can be written
as follows[26]:

− }2

2µ∇
2

ψ (r, θ, φ) + V (r, θ)ψ (r, θ, φ) = Eψ (r, θ, φ)

(15)
where E is the non-relativistic energy of the system, µde-
notes the rest mass of the particle and } is the planck
constant. The Schrodinger equation with potential is
given by[54];[

− }2

2µ

[
1
r2

∂

∂r
r2 ∂

∂r
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂φ2

]
+ V (r, θ) − E

]
ψ (r, θ, φ) = 0 (16)

ψ (r, θ, φ) = R (r) Θ (θ) Φ (φ) (17)

Substituting Eq. (3) into Eq.(16), we have
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[
− }2

2µ

[
1
r2

∂

∂r
r2 ∂

∂r
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂φ2

]
+(

−ηe−2αr

r2 − Ωe−αr

r
−H + }2

2µr2

(
C +B cos2 θ +A cos4 θ

sin2 θcos2θ

))
− E

]
ψ (r, θ, φ) = 0 (18)

Substituting Eq. (17) into Eq. (18) and using the standard procedure of separating variables, we obtain the following
differential equations:

d2Rnl

dr2 +
[

2µEnl

}2 − 2µ
}2

(
−ηe−2αr

r2 − Ωe−αr

r
−H

)
− Λ
r2

]
Rnl (r) = 0 (19)

d2Θ (θ)
dθ2 + cosθ

sinθ

dΘ (θ)
dθ

+
(

Λ−
(

}2

2µr2

(
C +B cos2 θ +A cos4 θ

sin2 θcos2θ

))
− m2

sin2θ

)
Θ (θ) = 0 (20)

d2Φ (φ)
dφ2 +m2Φ (φ) = 0 (21)

where m2 and Λ are separation constants, which are real and dimensionless. The solution of Eq. (21) is periodic and
for bound state Φ (φ) satisfies the periodic boundary condition Φ (φ+ 2π) and its solutions become,

Φ (φ) = 1√
2π
e−imφ, m = 0,±1,±2, . . . (22)

3.1. Solutions of the radial Schrodinger equation for non-central generalized inverse quadratic
Yukawa potential

d2Rnl

dr2 +
[

2µEnl

}2 − 2µ
}2

(
−V1 e

−2αr

r2 − 2V1 e
−αr

r
− V1

)
− Λ
r2

]
Rnl (r) = 0 (23)

The radial part of the Schrödinger equation for this potential can be solved exactly for l = 0 (s-wave) but cannot be
solved for this potential for l 6= 0. To obtain the solution for l 6= 0, we employ the approximation scheme proposed
by Greene and Aldrich [59] to deal with the centrifugal term, which is given as;

1
r2 ≈ α2

(1 − e−αr)2 (24)

It is noted that for a short-range potential, the relation (eqs. 24 ) is a good approximation to 1
r2 , as proposed by

Greene and Aldrich [59,60-61]. The implies that Eq. (24) is not a good approximation to the centrifugal barrier
when the screening parameter αbecomes large. Thus, the approximation is valid when α << 1. Substituting the
approximation (Eq.24) into Eq. (23), we obtain an equation of the form;

d2Rnl

dr2 +
[

2µEnl

}2 − 2µ
}2

(
− V1α

2e
−2αr

(1 − e−αr)2 − 2V1αe
−αr

(1 − e−αr)V1

)
− Λα2

(1 − e−αr)2

]
Rnl (r) = 0 (25)

Eq. (25) can be simplified into the form and introducing the following dimensionless abbreviations εn = 2µ(Enl+V1 )
}2α2

β = 2µV1
}2

χ = 4µV1
}2α

 (26)

Using a transformation z = e−αr so as to enable us apply the NU method as a solution of the hypergeometric type

d2Rnl(r)
dr2 = α2z2 d

2Rnl(z)
dz2 + α2z

dRnl (z)
dz

(27)

d2Rnl

dz2 + (1 − z)
z(1 − z)

dRnl

dz
+ 1
z2(1 − z)2 [−εn (1 − z)2 + βz2 + χz (1 − z) − Λ]Rnl(z) = 0 (28)
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We obtain the differential equation

d2Rnl

dz2 + (1 − z)
z(1 − z)

dRnl

dz
+ 1
z2(1 − z)2 [−(εn − β + χ)z2 + (2εn + χ)z − (εn + Λ)]Rnl(z) = 0 (29)

Comparing Eq. (29) and Eq. (4), we have the following parameters τ̃(z) = 1 − z
σ(z) = z(1 − z)
σ̃(s) = −(εn − β + χ)z2 + (2εn + χ)z − (εn + Λ)

 (30)

Substituting these polynomials into Eq. (12), we get π(s) to be

π(z) = −z

2 ±

√(
1
4 + (εn − β + χ) − k

)
z2 + (−(2εn + χ) + k) z + (εn + Λ) (31)

further rearranged as;

π(z) = −z

2 ±

√(
1
4 + εn − β + χ− k

)
z2 + (k − 2εn − χ) z + (εn + Λ) (32)

To find the constant k, the discriminant of the expression under the square root of Eq. (31) should be equal to zero.
As such, we have that

k± = − (2Λ − χ) ± 2
√
εn + Λ

√
1
4 + Λ − β (33)

Substituting Eq. (33) into Eq. (31) yields

π = −z

2 ±
{ (√

η1 − √
η3
)
z − √

η1; for k+ = − (η2) + 2√
η1

√
η3(√

η1 − √
η3
)
z + √

η,
1; for k− = − (η2) − 2√

η1
√
η3

}
(34)

where  η1 = εn + Λ
η2 = 2Λ − χ
η3 = 1

4 + Λ − β

 (35)

From the knowledge of NU method, we choose the expression π(s)−which the function τ(s) has a negative derivative.
This is given by

k− = − (2Λ − χ) − 2
√
εn + Λ

√
1
4 + Λ − β (36)

with τ(s) being obtained as

τ(s) = 1 − 2z − 2
(√

εn + Λ +
√

1
4 + Λ − β

)
z + 2

√
εn + Λ (37)

Referring to Eq. (13), we define the constant λ as

λ = − (2Λ − χ) − 2
√
εn + Λ

√
1
4 + Λ − β − 1

2 −
√

1
4 + Λ − β −

√
εn + Λ (38)

Taking the derivative of τ(s) from Eq.(37), we have;

τ
′
(z) = −2 − 2

(√
εn + Λ +

√
1
4 + Λ − β

)
< 0 (39)

and σ(z) from Eq.(30), we have;
σ

′′
(z) = −2 (40)

Substituting Eq. (39) into Eq. (40), we have

λn = n2 + n+ 2n
√
εn + Λ + 2n

√
1
4 + Λ − β (41)
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Comparing Eq. (38) and (41), and carrying out some algebraic manipulation. We have;

εn = −Λ + 1
4


(
n+ 1

2 +
√

1
4 + Λ − β

)2
− χ+ β + Λ(

n+ 1
2 +

√
1
4 + Λ − β

)


2

(42)

Substituting Eqs. (17) and Eq. (32) into Eq. (31) yields the energy eigenvalue equation of the Hellman potential in
the form

Enl = }2α2Λ
2µ − V1 − }2α2

8µ


(
n+ 1

2 +
√

1
4 + Λ− 2µV1

}2

)2
− 4µV1

}2α + 2µV1
}2 + Λ(

n+ 1
2 +

√
1
4 + Λ− 2µV1

}2

)


2

(43)

The corresponding wave functions can be evaluated by substitutingπ(s)− andσ(s) from Eq. (34) and Eq. (30)
respectively into Eq. (7) and solving the first order differential equation. This gives

A(z) = z
√

εn+Λ(1 − z)
1
2 +
√

1
4 +Λ−β (44)

The weight function ρ(s) from Eq. (10) can be obtained as

ρ(z) = z2
√

εn+Λ(1 − z)2
√

1
4 +Λ−β (45)

From the Rodrigues relation of Eq. (9), we obtain

yn(z) ≡ Ωn,lP

(
2

√
εn+Λ,2

√
1
4 +Λ−β

)
n (1 − 2z) (46)

where P (θ,ϑ)
n is the Jacobi Polynomial.

Substituting A(s)andyn(s) from Eq. (44) and Eq. (46) respectively into Eq. (5), we obtain the wave function in
terms of hyper-geometric polynomial as

Rn (z) = Ωn,l z
$(1 − z)ϑ (2ω + 1)n

n! 2
F1 (−n, ?2$ + ϑ+ n; 2$ + 1; z) (47)

where Ωn,lis a normalization constant, ϑ = 1
2 +

√
1
4 + Λ − β, $ =

√
εn + Λ and (2$ + 1)n is the Pochhammer’s

symbol(for the rising factorial)
Using the normalization condition, we obtain the normalization constant as follows [60]:

∞∫
0

Rn,l (r) ×Rn,l (r)∗
dr = 1 (48)

− 1
α

0∫
1

|Rn,l (z)|2 dz
z

= 1, z = e−αr (49)

1
2α

1∫
−1

|Rn,l (y)|2 2
1 − y

dy = 1, y = 1 − 2z (50)

Substituting Eq. (47) into Eq. (50), we have

Ω2
nl

2α

1∫
−1

(
1 − y

2

)a(1 + y

2

)u [
P (a,u−1)

n (y)
]2
dy = 1 (51)

where

u = 1 + 2
√

1
4 + Λ − β (52)
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and
a = 2

√
εn + Λ (53)

Comparing Eq. (51) with the integral of the form [57]

−1∫
1

(
1 − p

2

)x(1 + p

2

)y [
P (x,y−1)

n (p)
]2
dp = 2Γ (x+ n+ 1) Γ (y + n+ 1)

n!xΓ (x+ y + n+ 1) (54)

We have the normalization constant as

Ωnl =

√
n!aΓ (a+ u+ n+ 1)

2Γ (a+ n+ 1) Γ (u+ n+ 1) (55)

3.2. Solutions of the angular Schrodinger equation for Non-Central Generalized Inverse Quadratic
Yukawa Potential

In order to get the solution of equation Eq. (20), we introduce a coordinate transformation of the form,
z = cos2θ and Eq. (20) becomes

d2Θ (z)
dz2 + (1 − 3z)

2z (1 − z)
dΘ (z)
dz

+ 1
(2z (1 − z))2

(
− (Λ+B) z2 +

(
Λ − A−m2) z − C

)
Θ (z) = 0 (56)

Similarly, Comparing Eq. (56) and Eq. (4), we have the following parameters τ̃(s) = (1 − 3z)
σ(s) = 2z (1 − z)
σ̃(s) = − (Λ+B) z2 +

(
Λ − A−m2) z − C

 (57)

Substituting these polynomials into Eq. (12), we get π(s) to be

π(z) = −1 − z

2 ±

√(
1
4 + (Λ+B) − k

)
z2 +

(
−1

2 − (Λ − A−m2) + k

)
z + 1

4 + C (58)

Further rearranged as;

π(z) = −1 − z

2 ±

√(
1
4 + Λ+B − k

)
z2 +

(
k − 1

2 − Λ + A+m2
)
z + 1

4 + C (59)

To find the constant k, the discriminant of the expression under the square root of Eq. (58) should be equal to zero.
As such, we have that

k± = −
(
Λ − A−m2 − C

)
2 ± 1

2
√

1 + 4C
√

C + A+m2 +B (60)

Substituting Eq. (60) into Eq. (58) yields

π = −z

2 ± 1
2

((
2
√

1 + 4C +
√

C + A+m2 +B
)
z − 2

√
1 + 4C

)
(61)

From the knowledge of NU method, we choose the expression π(s)−which the function τ(s) has a negative derivative.
This is given by

k− = −
(
Λ − A−m2 − C

)
2 − 1

2
√

1 + 4C
√

C + A+m2 +B (62)

with τ(s) being obtained as

τ(s) = 2 − 4z − 2
(√

1 + 4C +
√

C + A+m2 +B
)
z + 2

√
1 + 4C (63)

Referring to Eq. (13), we define the constant λ as

λ = −
(
Λ − A−m2 − C

)
2 − 1

2
√

1 + 4C
√

C + A+m2 +B − 1
2 − 1

2

(
2
√

1 + 4C +
√

C + A+m2 +B
)

(64)
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Taking the derivative of τ(s) from Eq.(63), we have;

τ
′
(z) = −4 − 2

(√
1 + 4C +

√
C + A+m2 +B

)
(65)

and σ(z) from Eq.(57), we have;
σ

′′
(z) = −4 (66)

Substituting Eq. (65) into Eq. (66), we have

λñ = 2ñ2 + 2ñ+ ñ
√

1 + 4C + ñ
√

C + A+m2 +B (67)

Comparing Eqs (67) and (64)(λ = λñ),and carrying out some algebraic manipulation. We have;

Λ =
(

2ñ+ 1 +
√

C + A+m2 +B
)2

+
√

1 + 4C
(

2ñ+ 1 +
√

C + A+m2 +B
)

+ C −B (68)

or
Λ =

(
2ñ+ 1 +

√
C + A+m2 +B

)(
2ñ+ 1 +

√
C + A+m2 +B +

√
1 + 4C

)
+ C −B (69)

The corresponding wave functions can be evaluated by substitutingπ(s)− andσ(s) from Eq. (57) and Eq. (61)
respectively into Eq. (7) and solving the first order differential equation. This gives

E(z) = z
1
4 + 1

2

√
1
4 +C(1 − z)

1
2

√
C+A+m2+B (70)

The weight function ρ(s) from Eq. (10) can be obtained as

ρ(z) = z

√
1
4 +C(1 − z)

√
C+A+m2+B (71)

From the Rodrigues relation of Eq. (9), we obtain

yñ(z) ≡ χñ,mP

(√
1
4 +C,

√
C+A+m2+B

)
ñ (1 − 2z) (72)

where P (θ,ϑ)
n is the Jacobi Polynomial.

Substituting E(s) and yñ(s) from Eq. (70) and Eq. (72) respectively into Eq. (5), we obtain the wave function in
terms of hypergeometric Polynomials as;

Θñm (z) = χñ,m zν(1 − z)ξ (2ν + 1)n

n! 2
F1 (−n, ?2ν + ξ + n; 2ν + 1; z) (73)

where χñ,m is a normalization constant, ν = 1
4 + 1

2

√
1
4 + C, ξ = 1

2
√

C + A+m2 +B and (2ν + 1)n is the Pochhammer’s
symbol(for the rising factorial)

Now using Eq. (43), we obtain the discrete energy eigenvalues as

Enñ,m = }2α2κ

2µ − V0 − }2α2

8µ


(
n+ 1

2 +
√

1
4 + κ− 2µV0

}2

)2
− 4µV0

}2α + 2µV0
}2 + κ(

n+ 1
2 +

√
1
4 + κ− 2µV0

}2

)


2

(74)

κ =
(

2ñ+ 1 +
√

C + A+m2 +B
)(

2ñ+ 1 +
√

C + A+m2 +B +
√

1 + 4C
)

+ C −B (75)

where ñis the number of nodes of the radial wave functions. The Λis the contribution from the angle-dependent part
of the potential and plays the role of centrifugal term.

ψ (r, θ, φ) = Nñm√
2π
z

√
εn+Λ(1 − z)

1
2 +
√

1
4 +Λ−β

P

(
2

√
εn+Λ,2

√
1
4 +Λ−β

)
n (1 − 2z)

(
cos2θ

) 1
4 + 1

2

√
1
4 +C

×(sin2θ)
1
2

√
C+A+m2+B

P

(√
1
4 +C,

√
C+A+m2+B

)
ñ (− cos 2θ) e−imφ (76)

where Nn ñm is the new normalization constant.
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4. Discussion of Numerical Result

To test the accuracy of our result, we have also com-
puted the energy eigenvalues of the generalized inverse
quadratic Yukawa potential using the energy equation
given in Eq. (43). Our results shown in Table S1 are in
good agreement with the result of Ref. [51] who solved
the Schrodinger Equation with this potential using the
Proper Quantization rule within the framework of the
Pekeris Approximation scheme. In Figure 1, we plot the
behavior of the non-central generalized inverse quadratic
Yukawa potential for different values of r and θ.

Figure 1: Non-central generalized inverse quadratic Yukawa
potential for different values of r and θ.

5. Conclusions

We have obtained exact bound states solutions of the
three dimensional Schrödinger equation for the Non-
Central Generalized Inverse Quadratic Yukawa Potential
within the framework of Nikiforov–Uvarov method. The
eigenvalues and the corresponding eigenfunctions of the
radial and angular parts of the Schrödinger equation
was obtained. More so, when the ring shape term van-
ishes, i.e. (A = B = C = 0), then the results are in good
agreement with Ref. [51]. Different ring shape potentials
can be obtained from this newly proposed Non central
potential. Finally, our results can find many applications
in nuclear physics and quantum chemistry such as cyclic
benzene.
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