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Physicists are starting to work in areas where noisy signal analysis is required. In these fields, such as Economics,
Neuroscience, and Physics, the notion of causality should be interpreted as a statistical measure. We introduce
to the lay reader the Granger causality between two time series and illustrate ways of calculating it: a signal X
“Granger-causes” a signal Y if the observation of the past of X increases the predictability of the future of Y when
compared to the same prediction done with the past of Y alone. In other words, for Granger causality between
two quantities it suffices that information extracted from the past of one of them improves the forecast of the
future of the other, even in the absence of any physical mechanism of interaction. We present derivations of the
Granger causality measure in the time and frequency domains and give numerical examples using a non-parametric
estimation method in the frequency domain. Parametric methods are addressed in the Appendix. We discuss the
limitations and applications of this method and other alternatives to measure causality.
Keywords: Granger causality, autoregressive process, conditional Granger causality, non-parametric estimation

1. Introduction

The notion of causality has been the concern of thinkers
at least since the ancient Greeks [1]. More recently, Clive
Granger [2], in his paper entitled “Investigating Causal
Relations by Econometric Models and Cross-spectral
Methods” from 1969, elaborated a mathematical frame-
work to describe a form of causality – henceforth called
Granger Causality1 (GC) in order to distinguish it from
other definitions of causality. Given two stochastic vari-
ables, X(t) and Y (t), there is a causal relationship (in
the sense of Granger) between them if the past observa-
tions of Y help to predict the current state of X, and
vice-versa. If so, then we say that Y Granger-causes X.
Granger was inspired by the definition of causality from
Norbert Wiener [3], in which Y causes X if knowing the
past of Y increases the efficacy of the prediction of the
current state of X(t) when compared to the prediction
of X(t) by the past values of X alone2.

In the multidisciplinary science era, more and more
physicists are involved in research in other areas, such as
Economics and Neuroscience. These areas usually have
big data sets. Data analysis tools, such as GC, come in
handy to extract meaningful knowledge from these sets.

*Correspondence email address: vinicius.lima.cordeiro@usp.br
1It is also referred as Wiener-Granger causality.
2Other notions of causality have been defined, one worth mentioning
is Pearl’s causality [4]. Over the years, Pearl’s causality has been
revised by him and colleagues in a series of published works [5,6].

Causality inference via GC has been widely applied
in different areas of science, such as: prediction of finan-
cial time series [7–9], earth systems [10], atmospheric
systems [11], solar indices [12], turbulence [12, 13], in-
ference of information flow in the brain of different ani-
mals [14–18], and inference of functional networks of the
brain using fMRI [19, 20], MEG [21], and EEG [22]. It
appears as an alternative to measures like linear correla-
tions [23], mutual information [24, 25], partial directed
coherence [26], ordinary coherence [27], directed trans-
fer function [28], spectral coherence [29], and transfer
entropy [30, 31], being usually easier to calculate since
it does not rely on the estimation of probability density
functions of one or more variables.

The definition of GC involves the prediction of future
values of stochastic time series (see Fig. 1). The measure-
ment of the GC between variables may be done in both
the time and the frequency domains [26,32–34].

In the present work, we will focus on the frequency
domain representation of the GC [26,32] and, for peda-
gogical purposes, will discuss illustrative examples from
previous works by other authors [26,34]. Our main goal is
to provide a basic notion of the GC measure to a reader
not yet introduced to this subject.

This work is organized as follows: in Section 2, we
present the concept of an autoregressive process – a
model of linear regression in which GC is based (it is also
possible to formulate GC for nonlinear systems, however
such a formulation results in a more complex analysis
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Figure 1: When time series Y (t) Granger-causes time series
X(t), the patterns in Y (t) are approximately repeated in X(t)
after some time lag (two examples are indicated with arrows).
Thus, past values of X can be used for the prediction of future
values of Y .

which is beyond the scope of this work [35,36]). Sections 3
and 4 are used to develop the mathematical concepts
and definitions of the GC both in the time and frequency
domains. In Section 5.1, we introduce the nonparametric
method to estimate GC through Fourier and wavelet
transforms [34]. In Section 6 we introduce examples of
the conditional GC (cGC) to determine known links
between the elements of a simple network. We then close
the paper by discussing applications, implications and
limitations of the method.

2. Autoregresive process

Autoregressive processes form the basis for the parametric
estimation of the GC, so in this section we introduce the
reader to the basic concepts of such processes [37]. A
process X(t) is autoregressive of order n (i.e., AR(n)) if
its state at time t is a function of its n past states:

X(t) =
n∑

i=1
aiX(t − i) + ε(t), (1)

where t is the integer time step, and the real coefficients
ai indicate the weighted contribution from i steps in the
past, to the current state t of X. The term ε(t) is a noise
source with variance Σ that models any external additive
contribution to the determination of X(t). If Σ is large,
then the process is weakly dependent on its past states
and X(t) may be regarded as just noise. Fig. 2 shows
examples of an AR(2) (a) and an AR(4) (b).

Fitting the autoregressive coefficients ai and the noise
variance Σ, for a recorded signal, is usually done by
solving a Yule-Walker set of equations [15,38]. For a brief
review on this topic see the Section A of the Appendix.

3. Granger causality in time domain

In this section we develop the mathematical concepts and
definitions of GC in time domain. Consider two stochastic

Figure 2: Autoregressive processes. (a) time series of an AR2
process with coefficients (a1, a2) = (0.3, −0.5). (b) time se-
ries of an AR4 process with coefficients (a1, a2, a3, a4) =
(−0.2, 0.5, 0.6, −0.2).

signals, X1(t) and X2(t). We assume that these signals
may be modeled by autoregressive stochastic processes of
order n, independent of each other, such that their states
in time t could be estimated by their n past values:

X1(t) =
n∑

i=1
aiX1(t − i) + ε1(t), (2)

X2(t) =
n∑

i=1
ciX2(t − i) + ε2(t), (3)

where the variances of ε1 and ε2 are, respectively, Σ11
and Σ22, and the coefficients ai and ci are adjusted in
order to minimize Σ11 and Σ22.

However, we may also assume that the signals X1(t)
and X2(t) are each modeled by a combination of one
another, yielding

X1(t) =
n∑

i=1
aiX1(t − i) +

n∑
i=1

biX2(t − i) + ε∗
1(t), (4)

X2(t) =
n∑

i=1
ciX2(t − i) +

n∑
i=1

diX1(t − i) + ε∗
2(t), (5)

where the covariance matrix is given by

ΣΣΣ =
[
Σ∗

11 Σ∗
12

Σ∗
21 Σ∗

22

]
. (6)

Here, Σ∗
11, Σ∗

22 are the variances of ε∗
1 and ε∗

2 respec-
tively, and Σ∗

12 = Σ∗
21 is the covariance of ε∗

1 and ε∗
2.

Again, the coefficients ai, bi, ci and di are adjusted to
minimize the variances Σ∗

11 and Σ∗
22.

If Σ∗
11 < Σ11, then the addition of X2(t) to X1(t)

generated a better fit to X1(t), and thus enhanced its
predictability. In this sense, we may say there is a causal
relation from X2 to X1, or simply that X2 Granger-causes
X1. The same applies for the other signal: if Σ∗

22 < Σ22,
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then X1 Granger-causes X2 because adding X1 to the
dynamics of X2 enhanced its predictability.

We may summarize this concept into the definition of
the total causality index, given by

F1.2 = log
(

Σ11Σ22

det(ΣΣΣ)

)
= log

(
Σ11Σ22

Σ∗
11Σ∗

22 − (Σ∗
12)2

)
. (7)

If F1.2 > 0, there is some Granger-causal relation between
X1 and X2, because either Σ∗

11 < Σ11 or Σ∗
22 < Σ22,

otherwise there is correlation between X1 and X2 due
to Σ∗

12 > 0. If neither Granger-causality nor correlations
are present, then F1.2 = 0.

To know specifically whether there is Granger causality
from 1 to 2 or from 2 to 1, we may use the specific indices:

F1→2 = log
(

Σ22

Σ∗
22

)
, (8)

F2→1 = log
(

Σ11

Σ∗
11

)
, (9)

F1↔2 = log
(

Σ∗
11Σ∗

22
det(ΣΣΣ)

)
, (10)

such that

F1.2 = F1→2 + F2→1 + F1↔2, (11)

where F1→2 defines the causality from X1(t) to X2(t),
F2→1 is the causality from X2(t) to X1(t), and F1↔2 is
called instantaneous causality due to correlations between
ε∗

1 and ε∗
2. Just as for the total causality case, these

specific indices are greater than zero if there is Granger
causality, or zero otherwise.

4. Granger causality in frequency
domain

In order to derive the GC in frequency domain, we first
define the lag operator Lk, such that

LkX(t) = X(t − k), (12)

delays X(t) by k time steps, yielding X(t − k). We may
then rewrite equations (4) and (5) as:

X1(t) =
(

n∑
i=1

aiL
i

)
X1(t) +

(
n∑

i=1
biL

i

)
X2(t) + ε∗

1(t),

(13)

X2(t) =
(

n∑
i=1

ciL
i

)
X1(t) +

(
n∑

i=1
diL

i

)
X2(t) + ε∗

2(t),

(14)

and rearrange their terms to collect X1(t) and X2(t):(
1 −

n∑
i=1

aiL
i

)
X1(t) +

(
−

n∑
i=1

biL
i

)
X2(t) = ε∗

1(t),

(15)(
−

n∑
i=1

ciL
i

)
X1(t) +

(
1 −

n∑
i=1

diL
i

)
X2(t) = ε∗

2(t).

(16)

We define the coefficients a(L) = 1 −
∑n

i=1 aiL
i, b(L) =

−
∑n

i=1 biL
i, c(L) = −

∑n
i=1 ciL

i and d(L) = 1−
∑n

i=1 diL
i,

and rewrite equations (15) and (16) into matrix form:(
a(L) b(L)
c(L) d(L)

) (
X1(t)
X2(t)

)
=
(

ε∗
1(t)

ε∗
2(t)

)
(17)

where a(0) = d(0) = 1 and b(0) = c(0) = 0.
We apply the Fourier transform to equation (17) in

order to switch to the frequency domain,(
ã(ω) b̃(ω)
c̃(ω) d̃(ω)

)
︸ ︷︷ ︸

AAA(ω)

(
X1(ω)
X2(ω)

)
︸ ︷︷ ︸

X(ω)

=
(

ε∗
1(ω)

ε∗
2(ω)

)
︸ ︷︷ ︸

ΣΣΣ(ω)

, (18)

where ω is the frequency and AAA(ω) is the coefficient
matrix whose elements are given by

ã(ω) = 1 −
n∑

i=1
ai exp(−jωi),

b̃(ω) = −
n∑

i=1
bi exp(−jωi),

c̃(ω) = −
n∑

i=1
ci exp(−jωi),

d̃(ω) = 1 −
n∑

i=1
di exp(−jωi).

The expressions above are obtained by representing the
lag operator in the spectral domain as Li = exp (−jωi).
This derives from the z-transform, where the represen-
tation of the z variable3 in the unit circle (|z| = 1) is
z−i = exp (−jωi) [40, 41].

To obtain the power spectra of X1(ω) and X2(ω), we
first isolate X(ω) in equation (18):(

X1(ω)
X2(ω)

)
=
(

H11(ω) H12(ω)
H21(ω) H22(ω)

)
︸ ︷︷ ︸

H(ω)

(
ε∗

1(ω)
ε∗

2(ω)

)
, (19)

where H(ω) = A−1(ω) is called the transfer matrix,
resulting in the following spectra:

S(ω) = 〈X(ω)X†(ω)〉 = H(ω)ΣΣΣ(ω)H†(ω), (20)
3The lag operator L is similar to the z-transform. However, z is
treated as a variable, and is often used in signal processing, while
L is an operator [39].
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where 〈.〉 is the ensemble average, † the transposed con-
jugate of the matrix, and S(ω) is the spectral matrix
defined as:

S(ω) =
[
S11(ω) S12(ω)
S21(ω) S22(ω)

]
. (21)

In equation (21), S11(ω) and S22(ω) are called the
autospectra, and the elements S12(ω) and S21(ω) are
called the cross-spectra.

We can expand the product in equation (20) to obtain
S11(ω) and S22(ω) (see Section B of the Appendix for
details) as:

S11(ω) = H̄11(ω)Σ11H̄†
11(ω)︸ ︷︷ ︸

Intrinsic

+ H12(ω)
(

Σ22 − Σ2
12

Σ2
11

)
H∗

12(ω)︸ ︷︷ ︸
Causal

, (22)

S22(ω) = Ĥ22(ω)Σ22Ĥ†
22(ω)︸ ︷︷ ︸

Intrinsic

+ H̄21(ω)
(

Σ11 − Σ2
21

Σ2
22

)
H̄∗

21(ω)︸ ︷︷ ︸
Causal

, (23)

where the symbols .̄ and .̂ are used to differentiate the
terms below from the variables H11, H21, and H22, as
follows:

H̄11(ω) = H11(ω) + Σ12H12(ω)Σ11,

H̄21(ω) = H21(ω) + Σ12H11(ω)Σ11,

Ĥ22(ω) = H22(ω) + Σ12

Σ22
H21(ω).

Once we have the S11(ω) and S22(ω) spectra as the
sum of an intrinsic and a causal term, we may define
indices to quantify GC in frequency domain just as we did
in the time domain (Section 3). For instance, to calculate
the causal index, we divide the spectra by their respective
intrinsic term in order to eliminate its influence. Thus,
the causality index I2→1(ω) is defined as:

I2→1(ω) = log
(

S11(ω)
H̄11(ω)Σ11H̄∗

11(ω)

)
, (24)

and analogously, I1→2(ω),

I1→2(ω) = log
(

S22(ω)
Ĥ22(ω)Σ22Ĥ∗

22(ω)

)
. (25)

The instantaneous causality index I1↔2(ω) is defined as:

I1↔2(ω) = log

(
H̄11(ω)Σ11H̄∗

11(ω)
) (

Ĥ22(ω)Σ22Ĥ∗
22(ω)

)
det(S(ω)) .

(26)
In equations (24) to (26), we have one index for each

value ω of the frequency. Conversely, in the time domain

there was a single index for the GC between the two
signals X1 and X2. Just as discussed in Section 3, the
indices I2→1(ω), I1→2(ω) and I1↔2(ω) are greater than
zero if there is any relation between the time series. They
are zero otherwise.

Just like in the time domain, the total GC in the
frequency domain is the sum of its individual components:

I(ω) = I2→1(ω) + I1→2(ω) + I1↔2(ω),

= log
(

S11(ω)S22(ω)
det(SSS(ω))

)
. (27)

The total GC is related to the so-called coherence C12(ω)
between signals (see Section C of the Appendix):

I(ω) = − log(1 − C12(ω)). (28)

Moreover, we recover the GC in time domain through [15,
34]:

Fi→j = 1
ωf − ω0

∫ ωf

ω0

Ii→j(ω)dω. (29)

5. Estimating Granger causality from
data

In the last two sections we have mathematically defined
the GC in both time and frequency domains. Here, we
discuss how to calculate GC. In Section 5.1, we address
a non-parametric estimation method that involves com-
puting the Fourier and wavelet transforms of X1(t), and
X2(t) [42–44]. In Section D of the Appendix, we address
the parametric estimation of GC, which involves fitting
the signals X1(t), and X2(t) to auto-regressive models
(Section 2).

5.1. Calculating GC through Fourier and
Wavelet Transforms

Here, we will give a numerical example for calculating
and interpreting GC using a nonparametric estimation
approach based on Fourier and wavelet transforms [34].
Our example consists of calculating the spectral matrix
S(ω) through the Fourier transform of the signals. For
two stationary4 signals X1(t) and X2(t), the i, j element
of the spectral matrix in equation (21) is

Sij(ω) =
〈X̃i(ω)X̃∗

j (ω)〉
T

, i = 1, 2 and j = 1, 2, (30)

where T is the total duration of the signal, X̃i(ω) is
the discrete Fourier transform of Xj(t) (calculated by a
4Stationarity, by definition, refers to time shift invariance of the
underlying process statistics, which implies that all its statistical
moments are constant over time [45]. There are several types of
stationarity. Here, the required stationarity conditions for defining
power spectral densities are constant means and that the covariance
between any two variables apart by a given time lag is constant
regardless of their absolute position in time.
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fast fourier transform, FFT, algorithm) and X̃∗
j (ω) is its

complex conjugate.
The variable ω contains the values of the frequency

in the interval [0, fmax] corresponding to where the FFT
was calculated. If ∆t is the sampling time interval of the
original signals, then the sampling frequency is fs = 1/∆t
and fmax = fs/2, whereas the frequency interval contains
nω = 1 + T/(2∆t) points. Then, for m signals (m = 2 in
our example), we have a total of nω spectral matrices SSS
of dimensions m×m. Recall that the diagonal elements of
SSS are called the autospectra, whereas the other elements
are called the cross-spectra.

The transfer matrix, HHH(ω) and the covariance matrix ΣΣΣ
are given by the decomposition of SSS(ω) into the product
of equation (20). The Wilson algorithm [34,46,47] (see
also Section E of the Appendix) may be used for the
decomposition of spectral matrices.

After determining these two matrices, we may calcu-
late the GC indices through the direct application of
equations (24) to (26).

For example, consider the autoregressive system stud-
ied in Ref. [34], which is given by:

X1(t) = 0.55X1(t − 1) − 0.8X1(t − 2) + CX2(t − 1) + ε1(t),
X2(t) = 0.55X2(t − 1) − 0.8X2(t − 2) + ε2(t).

(31)

Here, X1(t) and X2(t) are AR(2). The variable t is the
time step index, such that the actual time is t′ = t ∆t =
t/fs. Besides, we know by construction that X2(t) influ-
ences X1(t) through the coupling constant C (although
the opposite does not happen). The terms ε1(t) and ε2(t)
are defined to have variance Σ11 = Σ22 = 1 and covari-
ance Σ12 = 0 (they are independent random processes).
To obtain a smooth power spectrum, we simulated 5000
trials of the system in equation (31) and computed the
average spectra across trials. We set the parameters as
C = 0.25, fs = 200 Hz and T = 25 s, resulting in 5000
data points.

When C = 0, X1(t) = X2(t), both processes are in-
dependent, and oscillate mainly in 40 Hz (Fig. 3a). For
C > 0, the process X1 receives input from X2, generating
a causal coupling that is captured by the GC index in
equations (24) and (25): a peak in 40 Hz in I2→1 indicates
that process 2 (which oscillates in 40 Hz) is entering pro-
cess 1 in this very frequency (Fig. 3c). The flat spectrum
of I1→2 indicates that, on the other hand, process 2 does
not receive input from 1. The absolute value of C changes
the intensity of the GC peak. The instant causality in-
dex, I2↔1(ω) = 0 from equation (26), because Σ12 = 0
for all ω. The total GC in the system is obtained from
the spectral coherence, equation (28). However, only the
specific GC index reveal the directionality of the inputs
between 1 and 2.

This simple example illustrates the meaning of causal-
ity in the GC framework: a Granger causal link is present
if a process runs under the temporal influence of the
past of another signal. We could have assumed C as a

Figure 3: GC of a pair of autoregressive processes. GC for the
system given in equation (31): by construction, the process 2
causes 1 by providing it input through the coupling constant
C = 0.25. Parameters: total time T = 25 s and sampling
frequency fs = 200 Hz, resulting in 5000 time steps. a. Spectral
matrix components calculated via equation (30). b. Coherence
between signals 1 and 2, equation. (28). c. GC from 2 to 1 and
1 to 2, equation. (24) and (25): a peak in 40 Hz in the I2→1
GC index indicates that 2 Granger-causes 1, whereas the flat
zero I1→2 shows, as expected, that 1 does not influence 2. The
peak is in 40 Hz because process 2 has its main power in this
frequency (see panel a).

time-varying function, C(t), or even different parame-
ters for the autoregressive part of each process alone;
or the processes 1 and 2 could have been of different
orders, implying in complex individual power spectra.
These scenarios are more usual for any real world appli-
cation [43, 48]. Then, instead of observing a clear peak
for the GC indices, we could observe a more complex
pattern with peaks that vary in time.

Instead of using the Fourier transform (which yields a
single static spectrum for the whole signal), we may use
the Wavelet transform [43,49,50] to yield time-varying
spectra [51,52]. Then, the auto and cross-spectra from
equation (30) may be written as

Sij(t, ω) =
〈Wi(t, ω)W ∗

j (t, ω)〉
T

, (32)

where Wi(t, ω) is the Wavelet transform of Xi(t) and
W ∗

i (t, ω) is its complex conjugate. To compute the Wavelet
transform, we use a Morlet kernel [43], with scale s = 6
oscillation cycles within a wavelet – a typical value for
this parameter [53]. Similarly to what we did to the power
spectrum, we measure the wavelet transforms for 5000
trials of the system in equation (31) in order to aver-
age the results. It is important to stress that a wavelet
transform is applicable in this case because ensemble
averages are being taken. Otherwise, estimates would be
too unreliable for any meaningful inference.
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In practice, there is one matrix SSS for each pair (t, ω); or
more intuitively, we have nT = T/∆t matrices SSS(ω), each
one for a given time step t. The decomposition of SSS(ω) in
equation (20) is done through Wilson’s algorithm. Then,
we may calculate GC’s indices via equations (24) to (26)
for each of the SSS(t, ω) matrices with fixed t. This calcu-
lation results in I2→1(ω), I1→2(ω) and I1↔2(ω) for each
time step t. Finally, we concatenate these spectra across
the temporal dimension, yielding I2→1(t, ω), I1→2(t, ω)
and I1↔2(t, ω).

For example, consider the same set of processes in
equation (31), but with time-varying C(t) = 0.25 H(t0 −
t), where H(x) = 1 for x ≥ 0 (zero otherwise) is the
Heaviside step function. The parameter t0 is the time
step index in which the coupling from 2 to 1 is turned off.
This scenario is equivalent to having a set of concatenated
constant C processes, such that the processes with t > t0
have C = 0. Then, we expect the analysis in Fig. 3 to
be valid for all the time steps t < t0, and no coupling
should be detected whatsoever for t > t0.

That is exactly what is shown in Fig. 4: a sharp tran-
sition in the I2→1(t, ω) happens exactly at t = t0 when
C is turned off. The index I1→2(t, ω) remains zero for all
the simulation. Again, this illustrates the meaning of GC
in our system: whenever there is a directional coupling
from a variable to another, there is nonzero GC in that
link, in the example from signal X2(t) to X1(t).

6. Conditional Granger Causality

The concepts developed so far may be applied to a case
with m variables. In this case, in order to try and infer

Figure 4: Time-varying GC in the frequency domain. GC of
the system defined in equation (31), but with time-varying
C(t) = 0.25 H(t0 − t). The spectral matrix is calculated via a
Wavelet transform, equation (32), and decomposed for each time
step t, yielding a temporal decomposition of the frequencies of
the signals. a. Coupling constant as function of time. b. GC index
from 2 to 1, I2→1(t, ω). c. GC index from 1 to 2, I1→2(t, ω).

the directionality5 of the interaction between two signals,
in a system with m signals, we may use the so-called
conditional Granger causality (cGC) [15,33,54,55]. The
idea is to infer the GC between signals i and j given the
knowledge of all the other m − 2 signals of the system.
This is done by comparing the variances obtained consid-
ering only i and j to the variances obtained considering
all the other signals in the system. The AR model from
Eqs (4) and (5) ends up having a total of m variables.

We may write the cGC in time domain as

Fi→j|k,...,m, (33)

or in the frequency domain as

Ii→j|k,...,m(ω). (34)

But one may ask: “isn’t it simpler to just calculate the
standard GC between every pair of signals in the system,
always reducing the problem to a two-variable case?”

To answer that question, consider the case depicted in
Fig. 5a: node 1 (X1(t)) sends input to node 2 (X2(t)) with
a delay δ12 and sends input to node 3 (X3(t)) with a delay
δ13. Measuring the pairwise GC between X2(t) and X3(t)
suggests the existence of a coupling between them even
if it does not physically exist (as in Fig. 5b). This occurs
because signals X2(t) and X3(t) are correlated due to
their common input from X1(t), and the simple pairwise
GC between X2(t) and X3(t) fails to represent the correct
relationship between the three nodes of Fig. 5a. The cGC
solves this issue by considering the contribution of a third
signal (X1(t) on this example) onto the analyzed pair
(X2(t) and X3(t)), as described below.

Figure 5: A system that GC fails to describe. a. Node 1 (X1(t))
sends input to node 2 (X2(t)) with delay δ12 and to node 3
(X3(t)) with delay δ13. b. A simple GC calculation wrongly infer
a link from X2(t) to X3(t) if δ12 < δ13, or from X3(t) to X2(t)
if δ13 < δ12. These links are not physically present in the system
and appear only due to the cross-correlation between X2(t) and
X3(t) caused by the common input X1(t).

5Whether i Granger-causes j or vice-versa.
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To describe the system in (Fig. 5), equation (19) may
be written asX1(ω)

X2(ω)
X3(ω)

 =

H11(ω) H12(ω) H13(ω)
H21(ω) H22(ω) H23(ω)
H31(ω) H32(ω) H33(ω)

ε∗
1(ω)

ε∗
2(ω)

ε∗
3(ω)

 ,

(35)
where X3(t) has the noise term ε3(t) with variance Σ33.
The corresponding spectral matrix SSS(ω) is

SSS(ω) =

S11(ω) S12(ω) S13(ω)
S21(ω) S22(ω) S23(ω)
S31(ω) S32(ω) S33(ω)

 , (36)

and the noise covariance matrix is

ΣΣΣ =

Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

 . (37)

We want to calculate the cGC from X2(t) to X3(t)
given X1(t), i.e. F2→3|1 in the time domain and I2→3|1(ω)
in the frequency domain. The first step is to build a
partial system from equation (35) ignoring the coefficients
related to the probe signal X2(t), resulting in the partial
spectral matrix SSSp(ω):

SSSp(ω) =
[
S11(ω) S13(ω)
S31(ω) S33(ω)

]
. (38)

From this partial system, we can calculate SSSp(ω) and
SSS(ω) using the nonparametric methods already discussed
above. Suppose that for SSS(ω), we obtain the transfer
matrix HHH(ω) and the covariance matrix ΣΣΣ (equation (37)),
whereas for SSSp(ω) we obtain the transfer matrix GGG(ω)
and the covariance matrix ρρρ:

ρρρ =
[
ρ11 ρ13
ρ31 ρ33

]
. (39)

The matrices HHH(ω) and ΣΣΣ are 3×3. The matrices GGG(ω)
and ρρρ are always one dimension less than the original
ones, because they are built from the leftover rows and
columns of the original system without the coefficients
of the probe signal.

In the time domain, F2→3|1 is defined as

F2→3|1 = log
(

ρ33

Σ33

)
, (40)

or, in general,

Fi→j|k = log
(

ρjj

Σjj

)
, (41)

which is used to calculate the cGC from i to j given k,
in time domain. Note that if the link between i and j
is totally mediated by k, ρjj = Σjj , yielding Fi→j|k = 0.
However, the standard GC between i and j would result
in a link between these variables. For our example in
Fig. 5, we obtain F2→3|1 & 0, meaning that the influence

of X2(t) to X3(t) is conditioned on signal X1(t), and
hence is almost null.

In the frequency domain, we first must define the
transfer matrix QQQ(ω) = GGG(ω)−1HHH(ω). However, the di-
mensions of matrix GGG(ω) do not match the dimensions of
matrix HHH(ω). To fix that, we add rows and columns from
an identity matrix to the rows and columns that were
removed from the total system in equation (35) when we
built the partial system (i.e. we add the identity rows
and columns to the rows and columns corresponding to
signal X2(t)

that was
removed
for generating SSSp(ω)), such that:

G(ω) =
[
G11(ω) G13(ω)
G31(ω) G33(ω)

]
⇒

G11(ω) 0 G13(ω)
0 1 0

G31(ω) 0 G33(ω)

 .

(42)
We can now safely calculate QQQ(ω) = GGG(ω)−1HHH(ω),

from where we obtain I2→3|1(ω):

I2→3|1(ω) = log
(

ρ11

|Q11(ω)Σ11Q†
11(ω)|

)
, (43)

or, in general,

Ii→j|k(ω) = log
(

ρjj

|Qjj(ω)ΣjjQ†
jj(ω)|

)
. (44)

To illustrate the procedures for determining cGC, con-
sider the system defined in Fig. 6 composed of 5 inter-

Figure 6: Many interacting components system. Illustration of
a system with 5 interacting signals, having physical relations
between them. We want to check whether GC or cGC is capable
of capturing these interactions.
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acting elements [26]6:

X1(t) = 0.95
√

2X1(t − 1) − 0.9025X1(t − 2) + ε1(t)
X2(t) = 0.5X1(t − 2) + ε2(t)
X3(t) = −0.4X1(t − 3) + ε3(t)
X4(t) = −0.5X1(t − 2) + 0.25

√
2X4(t − 1)+

+ 0.25
√

2X5(t − 1) + ε4(t)
X5(t) = −0.25

√
2X4(t − 1) + 0.25

√
2X5(t − 1) + ε5(t).

(45)

Here, X1(t) sends its signal to X2(t), X3(t) and X4(t)
with coupling intensities 0.5, −0.4 and −0.5, respectively.
Also, X4(t) sends input to X5(t) and vice-versa with
couplings −0.25

√
2 and 0.25

√
2 respectively. Note that

X1 sends signals to X2 and X4 with 2 time steps of
delay, and to X3 with 3 time steps of delay. X4 and X5
exchange signals with only 1 time step of delay.

Calculating the cGC index through equations (41)
and (44), we recover the expected structure of the net-
work (Figs. 7a and 8, respectively). The gray shades
in Fig. 7 and the amplitude of the peaks in Fig. 8 are
proportional to the coupling constants between each pair
of elements. For comparison, Fig. 7b shows the simple
pairwise GC, which detects connections that are not
physically present in the system. Again, this occurs be-
cause the hierarchy of the network generates correlations
between many pairs of signals that are not directly con-
nected, as discussed in the example of Fig. 5.

It is important to note that the cGC connectivity not
always reflects the underlying physical (or structural)
connectivity between elements [35]. The example system
in Fig. 6 is an illustrative simple case in which we ob-
tained a neat result. However, real-world applications,
such as inferring neuronal connectivity from brain signals,
result in a cGC matrix that is more noisy due to multiple
incoming signals and multiple delays. Thus, cGC is most
generally referred to as giving “functional” connectivity,
instead of structural connectivity.

7. Conclusion

Granger causality is becoming increasingly popular as a
method to determine the dependence between signals in
many areas of science. We presented its mathematical
formulation and showed examples of its applications in
general systems of interacting signals. This article also
gives a contemporary scientific application of the Fourier
transform – a subject that is studied in theoretical physics
courses, but usually lacks practical applications in the
classroom. We also used wavelet transforms, which may
motivate students to learn more about the decomposi-
tion of signals in time and frequency domain, and its
limitations through the uncertainty principle.

6Baccalá and Sameshima [26] analysed this system using partial
directed coherence and directed transfer function.

Figure 7: cGC and GC matrices in the time domain for a sys-
tem of many interacting components. The system is given by
equation (45) and is depicted in Fig. 6. a. Conditional GC,
equation (41), captures exactly the physical interactions of the
system. b. Simple pairwise GC, equation (29), captures the inter-
actions, but also captures underlying correlations coming from
the hierarchy of the network. Real systems often do not have
a clear cGC matrix as given in panel a due to second order
effects. The covariance matrices ΣΣΣ and ρρρ were calculated using
the nonparametric method.

We showed numerical examples, and explained them in
an algorithmic way. We included the inference of steady
and time-varying coupling, and the inference of connec-
tivity in hierarchical networks via the conditional GC.
A limitation of the GC is that it is ultimately based on
linear regression models of stochastic processes (the AR
models introduced in Section 2). Other measures, such
as the transfer entropy, are more suitable to describe
nonlinear interactions, and do not need to be fitted to
an underlying model. Even though the nonparametric
estimation of GC does not rely on fitting, it is still a
measure of linear interaction. It is also possible to show
that both GC and transfer entropy yield the same results
for Gaussian variables [56].

In spite of the existing debate about what exactly
the GC captures, specially in the neuroscience commu-
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Figure 8: cGC and GC matrices in the frequency domain for a system of many interacting components. The same system as
depicted Fig. 6. Each panel in row i and column j corresponds to the cGC index between elements i and j in the frequency domain,
equation (44).

nity [57, 58], GC has become a well-established measure-
ment for the flux of information in the nervous system [59].
And here, we hope to have provided the necessary tools
to those who wish to learn the basic principles and ap-
plications underlying GC.
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