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Teaching magnetism is one of the most challenging topics at undergraduate level in programmes with scientific
background. A basic course includes the description of the magnetic interaction along with empirical results
such as the Biot-Savart law’s. However, evaluating the magnetic field due to certain current carrying system
at any point in space is not an easy task, especially for points in space where symmetry arguments cannot be
applied. In this paper we study the magnetic field produced by both Helmholtz and Maxwell coils at all points
in space by using a hybrid methodology that combines the superposition principle and an analytical result. We
implement a computational approach, that is based on iterating n times the magnetic field produced by a finite
current-carrying wire, to evaluate the magnetic field at any point in space for coils arrangements without using
advanced calculus. This methodology helps teachers and students to explore the field due to systems with different
levels of complexity, combining analytical and computational skills to visualize and analyse the magnetic field.
After our analysis, we show that this is an useful approach to emphasize fundamental concepts and mitigate some
of the issues that arise when evaluating the magnetic field for systems proposed in introductory physics textbooks.
Keywords: teaching magnetic field, superposition principle, computational approach

1. Introduction

The electromagnetic theory is one of the fundamental
pillars of the scientific training at undergraduate level
of physicists and engineers. Within the wide variety of
topics considered in the course syllabus, magnetism is
one of the most fascinating both in science and engineer-
ing due to its applications in so many diverse areas, in
industry and in academia as well [1]. However, from an
educational point of view, this is also a non-easy topic
to teach or to learn [2,3], what has motivated different
approaches focused on the effectiveness of the methodolo-
gies to avoid possible misconceptions. On the other hand,
the continuous development of computational tools has
completely revolutionized education, providing a power-
ful way to visualise and analyse ‘invisible phenomena’
such as the magnetic field, making it a much easier prob-
lem mathematically than ever before without requiring
experimental equipment [4-8].

Evaluating the magnetic field, at some point in space,
produced by electric current elements is one of the aims
in introductory courses. It implies that students must
develop extended mathematical skills taking care of em-
pirical relations such as the Biot-Savart law. To help
students comprehend this topic better, we study from
a computational approach and using the superposition
principle, the magnetic field created by two systems: the
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Helmholtz and the Maxwell coils. The paper is orga-
nized as follows: in Section [2| we derive the analytical
expressions of the magnetic field produced by both coil
configurations in all points of space, then we introduce
our approach considering the field created by the super-
position of n finite wires as alternative to the analytical
solution. In Section [3| we present the computational im-
plementation and the numerical analysis. The results
about our methodology and its impact in teaching the
magnetic field for the coil configurations considered are
discussed in Section [4| Finally, we draw our conclusions
in Section [Bl

2. Magnetic Field Due to Coil
Configurations

The Biot-Savart law summarizes in a very clever way the
experimental results on the force exerted by an electric
current on a nearby magnet. Originally, these results were
presented in terms of measurements of the torque on a
magnet near a long wire, but were later analyzed in terms
of the magnetic field produced by each element of the
current [9]. The Biot-Savart law describes the magnetic
field dB at any point in space due to an element dl of a
current-carrying wire as follows:

ol dl x &,
a7 r2 7

dB(r) = (1)
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where I is the electric current, pg is the vacuum perme-
ability and €&, is an unit vector along = that points from
dl to any point in space. Since evaluating the magnetic
field at each point in space depends on the distance from
the electric source, an analytical expression will highly
depend on the geometry of the current-carrying wire and
hence on how complicated is the integral of Eq.. In
this context, a common exercise consists of evaluating
the magnetic field produced by current carrying circular
loop at one point on its axis. This is easily solved, as
many textbooks presented, by using ¢) the Biot-Savart
law, ii) the right-hand rule and 4ii) symmetry arguments.
However, evaluating the magnetic field on off-axis points
of the ring, turns the problem into advanced and out of
the goals of the course because of its difficulty level. In
addition, the situation becomes more complex when the
configuration involves more than one loop, such as in the
case of the Helmholtz and Maxwell coils. The latter is
not commonly found in traditional textbooks, while the
Helmholtz coils are widely discussed.

The arrangement of coils is usually introduced in the
textbook section on sources of magnetic field because of
its variety of applications (for a detailed description see
e.g. [L0H16]). In fact, they play an important role in in-
dustry, medical equipment and material characterization,
since they can produce an uniform magnetic field in a
small region of space. Specifically the Helmholtz coils
are the most simple and widely used system to study
the magnetic properties of matter, canceling Earths’s
magnetic field and in laser cooling and trapping, where
a field with a uniform gradient is desired. In what fol-
lows, we focus on the mathematical description of the
coil configurations and the computational approach.

2.1. The Helmholtz and Maxwell coils

The superposition principle states that the field created
by different sources simply added together as vectors,
thus the total field of a coil arrangement can be expressed
as the superposition of the field created by each one of
the coils. First let’s focus on the magnetic field created by
a single loop, a circular wire of radius R located in the zy
plane that carries a steady current I as shown in Fig.
In principle, it is relatively simple to evaluate analytically
the magnetic field at any point in space since it is reduced
to integrate Eq. , however it can be problematic for
points in space where it is not possible to use symmetry
arguments, even if an appropriate coordinate system is
chosen. This is a common example/exercise that appears
in many introductory textbooks including some simpli-
fications (see e.g. |[17H20]). In the most general case, it
is possible to show that after some manipulations of the
Biot-Savart law, the magnetic field created by a circular
loop in Cartesian coordinates at any point in space is
given by [20H23)]:
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Here K (k?) and E(k?) represent elliptic integrals of first
and second kind respectively. As mentioned before, even
if the problem is solved in cylindrical coordinates, ellip-
tical integrals appear, being the azimuthal component
the only one that vanishes because of symmetry. The
fact that math tools from advanced calculus are needed
to completely solve the problem, is perhaps the reason
why many introductory textbooks only present a very
simplified version of the real system, i.e. asking for the
magnetic field on an axial point at certain distance from
the loop center instead of all points in space. For this
particular case, the field expression is simply given by:

2
B(:k) = — IR ¢ (5)
2 (R? 4 22)%/?

These expressions are useful to evaluate the magnetic field
created by coil configurations. Specifically, the Helmholtz
coils consist of two circular coils of radius R, each with
N turns, that are perpendicular to a common axis as
shown in Fig. They carry equal steady currents [ in
the same direction such that their axial fields are added
to each other and the coil centers are separated by a
distance equal to their radius. Setting the origin of the
coordinate system in the middle point of the coils, as
shown in Fig. instead of the center of one them, the
magnetic field on the z axis is given by:

BGR) — Lo N TR 1
2 {R2 + (2 + %)2}

3/2

1 A
e - )"

(6)

An important feature of Helmholtz coils is that the re-
sultant magnetic field in the region between the coils is
very uniform. This can be shown easily, since dB/dz and
d*B/dz? are both zero at the point midway between the
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(a) A current loop.

(b) Helmholtz coils.

N

(c) Maxwell coils.

Figure 1: The three different coil arrangements studied in this paper.

coils, thus we may then conclude that the magnetic field
in that small region is uniform. A rigorous analysis on
the the magnetic field homogeneity and their expression
for several coil arrangements, including the Helmholtz
ones, can be found in [24].

On the other hand, the Maxwell coils consist of an
arrangement of three circular and coaxial coils separated
by certain ratios as illustrated in Fig. Following the
original Maxwell’s design [25], the central coil has a

4
Vi

7 Y
being located on either side of the main coil at distance
\/gR from its plane. As in the Helmholtz coils, in the

Maxwell’s arrangement all the three currents have the
same direction, however in this case the electric current
follows the ratio I = I.entrar = %IoutET. Under these
parameters, the total magnetic field for points located on
the axis of the coils is given by the following expression:

radius R while the two side coils have a radius

A woNIR? 1
B(Zk) - 2 (R2 + 22)3/2
7/16
+ 273/2
[‘;RQ + (z + \/éR) }
1 A
+ 7/16 k. (1)

[‘;RQ + (- /2R) 1 v

Fig. 2| shows the magnetic field intensity evaluated at
points along z-axis created by both the individual coils
and the entire system of the Helmholtz and Maxwell
arrangements. For illustration purposes we used the fol-
lowing parameters to evaluate Eqs. @ and for the
Helmholtz coils and keeping the same parameters for
the central coil of the Maxwell arrangement: R = 1m,
N =10, I =10A and z € [—1.5, 1.5] with origin of co-
ordinates in the middle point of the coaxial axis of each
system. For these set of parameters the total magnetic
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field produced by the Maxwell coils is bigger than the
produced by the Helmholtz ones, moreover in Fig. 2] we
can appreciate that the system with three coils is more
efficient producing an almost uniform distributed mag-
netic field in the region near the center. These results are
only valid for the z axis since Egs. @ and @ come from
simplifying the general expression of a loop by setting
z =0and y =0 in Eq. . A more realistic case includes
the evaluation of the magnetic field at all points in space,
which means that elliptical integrals must be used, how-
ever this is not usually commented in textbooks, not even
as a warning note or as a suggested advanced exercise.
In next section we show how the magnetic field produced
by coil arrangements can be evaluated in all points in
space using basic mathematical tools that students have
within reach, instead of introducing elliptical integrals.
This approach is based on the field expression for a finite
wire and the superposition principle, moreover it provides
an excellent scenario to complement with computational
tools.

2.2. The n-wire approach

In order to evaluate the magnetic field produced by a
loop in all space avoiding elliptical integrals, we approxi-
mate the geometry of a loop as a regular n-sides polygon.
Thus the magnetic field expression is reduced to the
superposition of the field produced by n finite wires car-
rying the same electric current, which is a much simpler
problem to solve in the three-dimensional space. The
magnetic field due to a finite wire is one of the basic
examples introduced in electromagnetism courses, this
approximation allows to explore the full solution after
applying the Biot-Savart law without loss of generality
by exploiting the superposition principle. Moreover, this
approach has been explored for several configurations,
see e.g. |26], providing a simple evaluation of the field.
This has the advantage of being easy to implement nu-
merically since the method iterates a simple geometry
to obtain a complex one, keeping the physical properties
intact.
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Figure 2: The magnetic field evaluated at points along z-axis for two coil arrangements: Helmholtz coils (left panel) and Maxwell
coils (right panel). The green, blue and yellow curves show the field produced by the individual coils each system along their coaxial
axis. The top red curve is the total magnetic field, illustrating the region of near constant field in the centre.

As it is well known, for a thin and straight wire carrying
a current I placed along the z-axis, as shown in Fig. [3]
the magnetic field at an arbitrary point P is given by:

I
B =1 (costp —cosfa)&, where
™
Z—Zj

COS 0]' =
(EENCEENE

and j = {A, B}.(8)

where cylindrical coordinates have been used for simplic-
ity to map the three-dimensional space, taking advan-
tage of the fact that dl and r are located in the same
plain. Consequently, the magnetic field is always oriented
along &, for each point P, i.e, following concentric circle
trajectories regardless of the segment size. The Eq.
gives a general description of the magnetic field for a
current-carrying wire of finite length L, however, for the
computational implementation it is useful to express it
in Cartesian coordinates considering that the wire can
be oriented in any direction. Using the law of cosines
and vector decomposition, the magnitude of the mag-
netic field for an arbitrary located wire can be re-written
as [27):

g bl (r3—ri L2 3t L2 )
4dmp 2Lry 2L ’

with p = \/2r3r? + 2r2L2 + 27202 — r{ — r3 — L*/2L.
On the other hand, the field direction can be obtained
by projecting &, along the Cartesian coordinates. From
the geometrical construction of Fig. left)7 and without
lost of generality for an arbitrary located wire, the field
orientation can be written as follows:

s — Lxr,  (rp—ra)x(r—ra)
L x| l(re—7a) X (r—TA)|

(10)
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This expression can be simplified as:

with (rp—ra)x(r—ra) =

R Vg Uy

&, = i+
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Uz

PR P

)
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where v, = (yp — ya)(z — 2a) — (y — ya)(zB — 24),
Uy = (x—xa)(z2p—24) — (xp —24)(2z — 24) and v, =
(xp —2a)(y —ya) — (x —x4)(yp — ya). Setting v =

vZ 4+ v2 +v2, the Cartesian components of the mag-

J

(11)

netic field due to a finite wire, at any point in space are
given by:

B, = B

v
B, = B%y (12)
B.=B%.

v

To illustrate the idea behind the n-wire approach, let’s
consider a n-side regular polygon carrying a current I.
Since each side corresponds to a finite wire, then Eq.
can be used to find B at any point of space. For instance,
the field at the center of the polygon can be obtained
using Fig. [3] where AB is one of the sides and p is the
radius of the inscribed circle. The angles 85 and 6, are
derived from the geometrical construction, taking into
account that the inner angle of the polygon is given by
ZAOB = 27 /n, thus ZBOC = 7 /n. Considering the n
wires and using angle properties, the magnitude of the
magnetic field in the center of a circular loop of radius r

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0282



Garcia-Farieta and Marquez

B

Ta

(0]

€20200282-5

Figure 3: Left panel: a finite straight wire carrying a steady current along z-axis. The magnetic field is evaluated at the point P.
Right panel: superposition of n straight wires forming a regular polygonal shaped wire.

is recovered when n — oo and p = r, resulting

_ NI .. n T T\ T T
B o= B Zleos(3-0) —eos(3+ )]
_ NI lim = sin (ﬁ)
n 2R n—oo n/’
poNT
g . ].
2R (13)

3. Numerical analysis

The numerical pipelines to evaluate the magnetic field due
to an arbitrarily oriented finite wire have been written
in python3 languageﬂ The implementation consists of
defining two functions to 4) compute the magnitude of
the magnetic field using Eq. @, and %) evaluate the
Cartesian components of the field following Egs. and
. In order to compute the magnetic field produced
by a current carrying system at any point in space, it
is enough to define its geometry as a superposition of n
finite wires and then iterate the routine that evaluates the
magnetic field over each wire. In our case, such a system
is an arrangement of coils modelled as n side polygons,
which satisfy the characteristics of the Helmholtz and
Maxwell coils.

Figure 4] displays a snippet of the code that imple-
ments the n-wire approach to evaluate magnetic field
due to a system that can be expressed geometrically
as a superposition of n wires. Using this approach, we
first evaluated the magnetic field produced by a single
circular loop in all points in space within a 3D grid. Fig.
illustrates the results for a single loop approximated

1The Jupyter notebook to reproduce the figures of this paper is
freely available on the author’s GitHub repository https://github.
com/jegarfa/Magnetic-field-Helmholtz-Maxwell-coils
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1 def MagnitudeBfield(x, y, z, wire, I):

mud = 4*np.pi*le-7

c = mue*I/(4*np.pi)

XA, YA, zA = wire[0][0], wire[0][1], wire[0][2]
xB, yB, zB = wire[1][0], wire[1][1], wire[1][2]

w N

]

6 rl = np.sqrt((x-xA)**2+(y-yA)**2+(z-zA)**2)

7 r2 = np.sqrt((x-xB)**2+(y-yB)**2+(z-zB)**2)

8 L = np.sqrt((xB-xA)**2+(yB-yA)**2+(zB-zA)**2)
9 CosThetal = (r2**2 - rl**2 - L**2)/(2%L*rl)

10 CosTheta2 = (r2**2 - rl**2 + L**2)/(2%L*r2)

11 distance = np.sqrt(2¥rl**2%r2%*2+2% rl¥ ¥ **242%r2
12 QK| *KD - r1**4 - r2**4 - ¥*4) / (2*L)
13 Bfield = c*(CosTheta2 - CosThetal)/distance

14 return Bfield

15

16 def Bfield(x, y, z, wire, I):

17 XA, YA, zA = wire[0][0], wire[0][1], wire[0][2]

18 xB, yB, zB = wire[1][0], wire[1][1], wire[1][2]

19 Bfield = MagnitudeBfield(x,y,z,wire, I)

20 vx = (yB-yA)*(z-zA) - (y-yA)*(zB-zA)

21 vy = (x-xA) *(zB-zA) - (xB-xA)*(z-zA)

22 vz = (xB-xA)*(y-yA) - (x-xA)*(yB-yA)

23 V = np.sqrt(vxFk2+vy**24yzH*k2)

24 Bx = Bfield*vx/v

25 By = Bfield*vy/v

26 Bz = Bfield*vz/v

27 return Bx,By,Bz

Figure 4: Python snippet of the n-wire approach to evaluate
magnetic fields at any point in space.

by a regular polygon of 15 sides inside a meshgrid of
50% points, with radius 7 = 1 m and centred at the
point (z,y,z) = (0.5,0.5,0.5) m. The figure shows the
2D projections in the xy and zz planes and the 3D rep-
resentation of the magnetic field vectors in each point of
the grid.

Then we repeated the analysis for both arrangements:
Helmholtz and Maxwell coils, by approximating the circu-
lar loops by regular polygons of 80 sides inside a meshgrid
of 503 points. The first of these systems (Helmholtz coils),
consists of two identical coils positioned in parallel to
each other in the xz plane with centers aligned with the
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Figure 5: 2D and 3D projections of the magnetic field created by a circular loop evaluated with the n-wire approach.

y-axis. The coil centers are (z1,y1,21) = (0.5,0.0,0.0) m
and (x2,y2, 22) = (0.5,1.0,0.0) m for the first and sec-
ond coils respectively. As can be noticed both coils are
separated by a distance equal to the radius 1 m. The
second coil arrangement (Maxwell coils), consists of three
coils positioned in parallel to each other in the zz plane
with centers aligned along the y-axis. We keep the ra-
dius of the middle coil as ¥ = 1 m being centred at
(T, Yms 2m) = (0.5,0.5,0.0) m. The radius of the outer
coils are r = /4/7m and they centers are located at
(z,y,2) = (0.5, r/2+ +/3/7r, 0) m respectively. As can
be noticed each coil is apart from each other by /3/7 m.
The Fig. [6] shows the behaviour of the magnetic field
intensity for both configurations: Helmholtz coils (on the
left panels) and Maxwell coils (on the right panels). The
magnetic field along axes parallel to the central one in

-
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the plane z = 0 is displayed in the upper panels, while
the lower panels show B(z,y) as a function of the spatial
coordinates in the meshgrid for the plane z = 0. In both
plots we can appreciate how the magnetic field changes
according to the distance from the central axis of the coils.
This representation in slices of B at different x values
confirms that the field passes from a relatively uniform
region at x = 0.5 m until it reaches the coils position,
where the field is very intense as expected. Moreover, at
these distances the Maxwell coils provide an even more
uniform magnetic field than the Helmholtz coils with a
higher intensity at the region 0 < y[m] < 1.

Figure [7] shows the 2D iso-contours of the magnetic
field lines in the z = 0 plane and the 3D iso-surfaces
of the norm of the field which covers the magnetic field
lines produced by the coil arrangements. The plots on
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Figure 6: Upper panels: magnetic field intensity along axes parallel to the central one in the plane z = 0. Lower panels: magnitude of
the magnetic field in the plane z = 0 as a function of the spatial coordinates. The plots on the left side correspond to the Helmholtz
coils while the ones on the right side correspond to the Maxwell coils.
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Figure 7: Upper panels: magnetic field intensity and 2D patterns of magnetic field lines in the plane z = 0. Lower panels: 3D
patterns and contour surfaces of magnetic field lines. The plots on the left side correspond to the Helmholtz coils while the ones on

the right side correspond to the Maxwell coils.

the left side correspond to the Helmholtz coils while the
ones on the right side correspond to the Maxwell coils.
From these patterns we observe that a larger volume
with strong homogeneity is achieved with the Maxwell
coil as predicted.

4. Discussion

Exploring the magnetic field is a fundamental part of elec-
tromagnetism courses where both teacher and students
have to face teaching and learning issues. Perhaps, the
main issue is related to the fact that evaluating the mag-
netic field produced by some current carrying systems, at
any point in space, require either advanced calculus or an
oversimplification of the system. Indeed, many introduc-
tory calculus-based electromagnetism textbooks, include
symmetry arguments and evaluating the field only at
particular points in space (see e.g. [17H19]). Here appears
a first contradiction, since the concept of magnetic field
is introduced referring to a quantity that has a value for
every point in space but in the exercises it is evaluated
only at specific points or regions. Omitting these key
points leads students to use incorrect assumptions and
algebra tricks when they try to find the magnetic field in
more complex systems where same assumptions cannot

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0282

be applied. An additional challenge to teach magnetism
is related to the mathematical tools required to evaluate
the field, since it is not always possible to get an analytic
expression for any point in space.

The superposition principle, combined with an ana-
lytical expression of the magnetic field of a finite wire,
provides a powerful tool to evaluate the field at any point
in space created by several current carrying systems. The
approach we implemented in this paper allows to mitigate
the above mentioned issues, keeping minimal conceptual
assumptions with the advantage of modelling more real-
istic systems and reducing the gap between the concepts
and methods when the field is evaluated. In particular
we addressed the results for two very well known coil
arrangements, the Helmholtz and Maxwell coils, but the
methodology is not limited to them. It can be extended
to several configurations as long as they can be expressed
in terms of n wires. This hybrid methodology provides
a mechanism to explore more complex systems that are
close to the real ones involving magnetic field calcula-
tions. Moreover, simulations and numerical techniques
have the advantage of characterise the physical systems
considering a wide range of free parameters, exhibiting
properties that otherwise are hidden when there are no
analytic solutions. It also encourages students to use com-
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putational tools and to create their own systems, which
is motivating mainly for engineering students. Finally,
the combination of purely mathematical and physical
methods (i.e., between the geometrical analysis and the
superposition principle in our case study), contributes to
the scientific training of future physicists and engineers
that must face situations beyond those usually proposed
in textbooks. It also gives an additional motivation to
students in their learning processes, allowing the electro-
magnetism course to be influenced by another kind of
teaching strategy.

5. Conclusions

The teaching strategies and resources for physics teaching
evolve rapidly with new technologies, specially in topics
like magnetism, where physical concepts are not easily
assimilable by students. In this paper we have introduced
a hybrid method based on superposition principle and
computation iterative method to mitigate some of the
issues in magnetism teaching. The strategy presented in
our work provides a simple method for the calculation of
the magnetic fields in several configurations. It also helps
understanding the methodology to evaluate the magnetic
field due to the Helmholtz and Maxwell coils by using
theoretical arguments supported by the Biot-Savart law
and numerical techniques.

The coil systems studied here help students to under-
stand the Biot-Savart law as a fundamental structure in
the calculation of magnetic fields at all points in space,
even in those where symmetry arguments cannot be ap-
plied. At the same time, this kind of exercises offer a
different point of view than those addressed in most of
the textbooks used in higher education on the calculation
and applications of magnetic fields.

In a pedagogical context, designing and implement-
ing computational resources of easy access is perhaps
a challenge for educators because it requires more time
to integrate the strategy. However, today it is known
that these resources become a fundamental tool for the
consolidation of scientific and technological literacy pro-
cesses which can potentially reduce the learning curve of
students with scientific background.

Extending the methodology proposed here to other
topics of electromagnetism can have a positive impact
on the way in which fundamental laws of physics are
taught such as the Biot-Savart law. In such a case, the
traditional teaching techniques based on problem-solving
become a learning space where the computational tools
are an important factor to achieve meaningful learning
from an integrated approach.
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