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A review on the Foucault pendulum motion is presented using Cartesian coordinates for the ideal case and
for small amplitude of oscillations. The choice of referential frames, the formulation and solution of Newton’s
differential equation for the non-inertial frame of the Earth and the validity of the approximations used to
simplify the determination of the solution are given. Using the angular position of the trajectory cusps, a new
method to determine the precession angular velocity of the Foucault pendulum is shown. The pendulum bob
trajectories and velocities for the referential frame in rotation with the Earth as well as for the inertial frame are
given and the Chevilliet theorem was demonstrated. In addition, the pendulum bob trajectories are shown when
an initial velocity is impinged in the direction perpendicular to the pendulum oscillation plane.
Keywords: Foucault pendulum, precession velocity.

1. Introduction

In 1851 in the Pantheon in Paris, the French physicist
Jean Bernard Léon Foucault made the public presenta-
tion of his pendulum [1]. The experiment was the first
demonstration of the Earth’s rotation without requiring
observation of the apparent motion of stars. Foucault
constructed a suspended device that avoided mechanical
interference in the pendulum motion, allowing for a
careful analysis of its oscillation plane. He made visible
the effect of the Coriolis force, that is, due to the
Earth’s rotation, the oscillation plane of the pendulum
changes direction very slowly, in the so-called “preces-
sion movement”. The Foucault pendulum produced a
great impact [2]; the experiment was repeated in many
countries (USA and other European countries) and put
to an end the philosophical discussions about Earth’s
motion. In Brazil, also in 1851, C. B. de Oliveira [3]
reported the failure to observe the precession of the
Foucault pendulum in Rio de Janeiro. Foucault’s pen-
dulum continues to stimulate public curiosity. Since
1851 much more than a hundred articles have addressed
its use for didactic purposes in classical mechanics,
various theoretical aspects on the pendulum motion
as well as technical details of its construction. In the
poll conducted by Physics World Magazine [4], it was
considered one of the ten most beautiful experiments in
physics. A historical summary about Earth’s rotation is
provided in reference [5] and Foucault’s biography can
be found in references [5, 6].

It is noteworthy to recall that Auguste Bravais [7, 8]
also in Paris in 1851, carried out another experiment
* Correspondence address: giacometti@ifsc.usp.br

to demonstrate Earth’s rotation. He measured the time
difference between the periods when a conical pen-
dulum, 10 meters long, was set to rotate clockwise
and counterclockwise. However, despite its successful
experiment to also demonstrate Earth’s rotation, the
Bravais pendulum was almost forgotten by the scientific
community [9, 10]. His experiment was repeated only by
Babović and Mekić in 2011 [9] and a full analysis of its
motion is given in the reference [11].

Another interesting experiment with the Foucault
pendulum was recalled by Cox [12] in 1951 during the
centennial anniversary of Foucault pendulum. An ad-
ditional rotating frame was used which, together with
the Foucault pendulum, rotated with the same angular
velocity of the frame in rotation with the Earth, thus
simulating an inertial frame. It was found that the
trajectory described in such a rotating frame was a
high eccentricity ellipse. In addition, as stated by the
Chevilliet theorem, the ratio between the major and
minor axes of the ellipse is the ratio between the periods
of Earth’s rotation and the pendulum swing.

The theoretical study of the pendulum motion is well
known and is frequently done from Newton’s second
law in the frame rotating with the Earth. The exact
solution of Newton’s differential equations in the three-
dimensional Cartesian coordinates is relatively elaborate
to obtain [11]. However, as it is well known and shown
in this paper, very good approximations can be made to
simplify the mathematical calculations.

The purpose of this text is to present a review on the
Foucault pendulum motion in the ideal case of small
amplitudes of oscillation and without external inter-
ferences. The text shows the frame choices, Newton’s
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equations in Cartesian coordinates in the rotating frame
and the calculations that describe the Foucault pen-
dulum motion, justifying all approximations used for
mathematical calculations. The article also shows the
pendulum trajectories in the two referential frames and
contributes with a new method to determine the angular
velocity, precession period of the pendulum and its
displacement in each oscillation, based on the angular
position of cusps of the Foucault pendulum trajectory.
The pendulum motion is discussed for the case where
the pendulum bob has an initial velocity. In addition,
the Chevilliet theorem is demonstrated.

This text is useful for students to follow many details
on the motion of the Foucault pendulum in inertial and
rotational frames and help in the study of the particle
motion in frames performing rotation and translation.

2. Frames and the Equation of Motion

In the analysis of a particle motion in rotating frames,
most of the texts in classical mechanics consider that
the inertial and non-inertial frames have coinciding
origins [13]. In this case the equation of motion of
the mass particle, m, subject to external force, ~F , in
a rotating frame with constant angular velocity, ~ω, is
written as:

m~a′ = ~F −m~ω × (~ω × ~r ′)− 2m~ω × ~vr (1)

where ~a′, ~r ′ and ~vr are respectively the acceleration,
the position and velocity of the particle in the rotating
frame. The term −m~ω× (~ω×~r ′) is the centrifugal force,
and the term −2m~ω × ~rr is the Coriolis force.

For practical reasons, in the study of particle motion
close to the Earth’s surface, as shown in Fig. 1 the
origin of the non-inertial frame (O′, x′, y′, z′) is placed at
the Earth’s surface and the origin of the inertial frame
(O, x, y, z) in the center of the Earth.

Since non-coinciding origins are used for the inertial
and rotating frames, it is necessary to adapt Eq. (1) to
this new situation, in which the origin O′ is displaced
by the vector ~R. Now, the reference (O′, x′, y′, z′) trans-
lates due to the Earth’s rotation and the centrifugal
acceleration of O′, d2 ~R/dt2 = −~ΩT × (~ΩT × ~R), is
omitted, being the vector ~ΩT is the Earth angular
velocity. Therefore, Eq. (1) must take into account this
acceleration, resulting in:

m~a′ = ~F −m[~ω × (~ω × ~r ′) + ~ΩT × (~ΩT × ~R)]
− 2m~ω × ~vr (2)

Vector ~ω is the angular velocity of the reference
(O′, x′, y′, z′) in rotation, which depends on the latitude
of O′ on the Earth’s surface, as will be shown later.
It is worth mentioning that the angular velocity vector
is invariant to a translation of the coordinate frame.

The modulus of ~R, the Earth radius, is ∼6.4× 106 m,
being much larger than the vector module ~r ′ (of the or-
der of meters). Therefore, the term ~ω×(~ω×~r ′) in Eq. (2)

can be neglected for sure. With this approximation and
separating the weight force, ~P = m~g, from the external
force, ~F , in Eq. (2):

m~a′ = ~F +m[~g − ~ΩT × (~ΩT × ~R)]− 2m~ω × ~vr (3)

that is:

m~a′ = ~F +m~ge − 2m~ω × ~vr (4)

where ~ge = ~g−~ΩT×(~ΩT× ~R) is the effective acceleration
vector of Earth’s gravity, pointing in the direction of
the plumb line, slightly dependent on the latitude of O′
because the Earth is not perfectly spherical. Usually, the
value of |~ΩT × (~ΩT × ~R)| is ≈ 3.4 × 10−2 m/s2, i.e.,
≈ 0.3% of the value of g. This means that the z′ axis, in
the vertical direction at the Earth’s surface, is redefined
in the direction of the plumb line, which is practically
the vertical direction.

Before performing the calculations, it is necessary to
write the angular velocity, ~ω, of the frame (O′, x′, y′, z′)
in rotation with the Earth, in terms of latitude and the
axes (̂i′, ĵ′, k̂′) of this coordinate frame. In Fig. 1 it is
assumed that the reference is situated in the Northern
Hemisphere, and since the axis of x′ is tangent to the
Earth’s parallel (perpendicular to ~ΩT ), it follows that:

~ω = ΩT (− cosλĵ′ + sinλk̂′) (5)

where λ is the latitude of point O′ on Earth.
The external force, ~F , in Eq. (4) is the force, ~T ,

exerted by the string on the pendulum bob. Using the
geometry of Fig. 2:

~T = −T sin θ cosβî′ − T sin θsenβĵ′ + T cos θk̂′ (6)

where the angles θ and β are defined in the figure.

Figure 1: Frames to describe the motion of a particle P in the
Northern Hemisphere. The inertial frame (O, x, y, z) is fixed at
the center of the Earth and the rotating frame with the Earth is
(O′, x′, y′, z′). The plane (x′, y′) coincides with the horizontal
plane at the Earth’s surface and z′ is the vertical direction.
The angle λ is the latitude of O′ on Earth.
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3. Differential equations and their
solutions in the Earth frame

In order to write the differential equation for the
pendulum bob (considered as a particle) in Cartesian
coordinates, we start from Eq. (4) with reference to
Fig. 2, which shows the pendulum arrangement, of
length L, in (O′, x′, y′, z′) in the rotation frame with
the Earth. Using Eqs. (4) and (6), ~ge = −gek̂′ and the
relations cosβ = x′/Lsen θ e sen β = y′/Lsen θ, obtained
from the geometry of Fig. 2:

m~a′ = −mgek̂′ − T
x′

L
î′ − T y

′

L
ĵ′ + T cos θk̂′ − 2m~ω × ~vr

(7)

A second approximation is necessary to simplify this
equation. For a very long pendulum that oscillates
with small amplitude, one has cos θ ∼= 1 and T ∼=
P ∼= mge. The validity of this approximation using
numerical values for the Foucault pendulum is discussed
in Section 4. Using these approximations and dividing
Eq. (7) by the mass, the acceleration of the pendulum
bob in the frame (O′, x′, y′, z′) is:

~a′ = −ge
x′

L
î′ − ge

y′

L
ĵ′ − 2~ω × ~vr (8)

Using ~vr = ẋ′î′ + ẏ′ĵ′ + ż′k̂′, ~a′ = ẍ′î′ + ÿ′ĵ′ + z̈′k̂′, ~ω
from Eq. (5) to perform the vector product of the
Coriolis acceleration, and equating the components in
the directions (̂i′, ĵ′, k̂′), gives:

ẍ′ = −ω2
0x
′ + 2ΩT (ż′ cosλ+ ẏ′ sinλ)

ÿ′ = −ω2
0y
′ − 2ΩT ẋ′ sinλ

z̈′ = −2ΩT ẋ′ cosλ (9)

where ω0 =
√
ge/L is the angular frequency of the

pendulum oscillation. The dot on top of the variables

Figure 2: Diagram of the pendulum in the frame (O′, x′, y′, z′)
rotating with the Earth, with angular velocity ~ω.

in Eq. (9) represents the derivative with respect to time
(velocity), while two dots mean the second derivative
(acceleration). Differential equations are typical of an
oscillatory movement, but they are coupled because they
contain velocities in the other directions of motion.

At this point the third approximation is used: motion
occurs in the horizontal plane (x′, y′) of the frame
(O′, x′, y′, z′), that is, z′ = ż′ = z̈′ = 0. Considering a
planar motion is also a good approximation, as discussed
in Section 4 using numerical values. Thus, the equations
for the pendulum bob are simplified to:

ẍ′ = −ω2
0x
′ + 2Ωẏ′

ÿ′ = −ω2
0x
′ − 2Ωẋ′ (10)

where Ω = ΩT senλ is the pendulum angular velocity
around the z′ axis and λ is the latitude of (O′, x′, y′, z′)
on the Earth’s surface. To solve these coupled differential
equations, the second equation is multiplied by the
complex number i and the resulting equation is added
to the equation of ẍ′ of Eq. (10). Then, the substitution
of z′ = x′ + iy′, provides:

z̈′ + i2Ωż′ + ω2
0z
′ = 0 (11)

whose solution includes eipt. The general solution to this
equation can be written as:

z(t) = Aeiαt +Be−iβt (12)

where A and B are constants and α and β are:

α = −Ω +
√

Ω2 + ω2
0 and β = Ω +

√
Ω2 + ω2

0

(13)

The constants A and B are determined from the
initial conditions of the motion. Although the movement
of Foucault pendulum is initiated from rest (ẋ′(0) =
ẏ′(0) = 0), the initial conditions are assumed to be
somewhat more general: y′(0) = 0, x′(0) = x0 and
ẋ′(0) = 0, ẏ′(0) = v0y. That is, the pendulum bob
is assumed to have an initial velocity in the direction
perpendicular to the plane of oscillation. Starting the
pendulum movement along the x′ axis (y′(0) = 0) does
not introduce any particularity to the study, but helps
to simplify the algebraic work to obtain x′(t) and y′(t).

After the algebraic work to determine the constants A
and B, the coordinates of the motion in the frame with
the Earth are:

x′(t) = 1
α+ β

[(βx0 + v0y) cosαt+ (αx0 − v0y) cosβt]

y′(t) = 1
α+ β

[(βx0 + v0y) sinαt− (αx0 − v0y) sin βt]

(14)

4. Motion of the Foucault Pendulum
in the Earth Frame

In order to generate the trajectory curves we used
a pendulum with the same characteristics used by
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Foucault in 1851: oscillation amplitude, x0 = 3 m,
angular frequency ω0 =

√
ge/L = 0.38 s−1 (L = 67

m and ge = 9.8 ms−2), Paris latitude of 48.86◦ and
Earth angular velocity ΩT = 7.27 × 10−5 s−1. The
simulations to obtain the trajectories were performed
using the program MathCadr.

Before showing the results, the validity of the appro-
ximations in Section 3 is discussed. The approximation
cos θ ∼= 1 to simplify Eq. (7) is excellent since for
the maximum oscillation amplitude of 3 m, one has
cos θ = 0.999. The approximation of considering a planar
motion to simplify Eq. (10) is also very good. Foucault
pendulum was 67 m long, oscillated with the maximum
angle of 2.6 degrees and rose up to ≈6 cm with respect to
the lowest point of the bob, that is, ≈0.1% of its length.
To simplify some of the calculations in what follows, the
quadratic term in Ω will be neglected since ω2

0 � Ω2.
This is also an excellent approximation because ω2

0 =
0.15 s−2 while Ω2 ≤ 5.3× 10−9 s−2.

4.1. Foucault pendulum trajectory

Figure 3 shows the bob path of Foucault pendulum in
the frame with the Earth, calculated from x′(t) and y′(t)
from Eq. (14), with v0y = 0. Note that the scale of x′
axis in the figure is given in meters while the scale for y′
is in centimeters. The time of simulation corresponds to
approximately three periods of oscillation (50 s).

Figure 3 shows that the pendulum bob precess in the
clockwise direction and at the reversal points (at the
maximum amplitude of the oscillation) the trajectory
has the cusp shape (points A and B in the figure).
At these points the pendulum bob is at rest, which
is why the trajectory has the shape of a star. The
motion of Foucault pendulum depicted in Fig. 3 is
characteristic of the initial condition of zero transverse
velocity in the Earth frame. The movement begins in
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Figure 3: The bob trajectory of the Foucault pendulum in the
Earth frame in Paris (v0y = 0). The total oscillation time is 50
s and the arrows indicate the direction of pendulum oscillation.
The numerical values are those described in the text. A and B
represent two consecutive cusps.

the negative direction of x′ axis but shifts slightly to the
right due to the horizontal component of the Coriolis
force (−2m~ω × ~vr). Upon reaching the reversal point
of movement (at the cusp), where the velocity cancels
out; the pendulum starts the movement back, diverting
again to the right. From Fig. 3 one also notes that the
pendulum bob does not pass through the origin of the
coordinate frame, which is the center of the forces.

4.2. Calculation of precession velocity
and deviation at each oscillation

The precession period of Foucault pendulum has
been determined with geometric methods as in re-
ference [14, 15] or in the book of Symon [13] that
uses three coordinate frames or polar coordinates [16].
However, to the best of my knowledge for Cartesian co-
ordinates the determination of precession period cannot
be performed from the coordinates x′(t) and y′(t). In
this work, a procedure is presented based on the angular
positions of the cusps in Fig. 3. Since the cusp positions
belong to the circle of radius equal to the maximum
amplitude of oscillation, the angular velocity of the
pendulum precession is determined without difficulty
from the angular cusps position.

The two consecutive cusps A and B (see Fig. 4) appear
at each oscillation period, that is, they appear at the
instants tn = (2π/ω0)n, where n = 0, 1, 2, . . . . The
angle formed with the x′ axis by the n-th cusp can be
calculated through the coordinates x′(t) and y′(t). For
tn = (2π/ω0)n, v0y = 0 and ω2

0 � Ω2, Eq. (14) gives:

x′n(tn) = x0 cos
(

2π Ω
ω0
n

)
y′n(tn) = x0sen

(
2π Ω
ω0
n

)
(15)

The angle θ with x′ axis of the n-th cusp is:

tan θ = y′n(tn)
x′n(tn) = − tan

(
2π Ω
ω0
n

)
,

that is,

θ = −2π Ω
ω0
n (16)

and the angular variation between two consecutive
cusps is:

∆θ = −2π Ω
ω0

(17)

thus, the modulus of the angular velocity and the period
of precession are:

ωP = ∆θ
T

= ∆θ
2π/ω0

= Ω = ΩT sinλ and

TP = 2π
ΩT sinλ (18)
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The deviation of Foucault pendulum at each oscilla-
tion is also easily calculated by:

∆d = x0∆θ = 2πx0
Ω
ω0

= 2πx0
ΩT senλ
ω0

(19)

At the Earth’s poles (latitude λ = π/2), the Foucault
pendulum would return to its original position in 24 h
(Tp = 2π/ΩT ) and at the Equator (λ = 0) the pendulum
would not present precession motion (Tp →∞). For the
city of Paris, latitude of +48.86◦, the precession period
of Foucault pendulum (clockwise) is 31 h and 53 min
and for each oscillation period it deflects 2.7 mm. These
values agree with the results by Foucault in 1851 (period
of 31 h and 47 min and deviation of 2.3 mm).

Table 1 lists the precession periods (counterclockwise)
that a pendulum, with the same characteristics used by
Foucault, would have in some South American cities at
different latitudes. In places near Equator, such as Ma-
naus, the precession period is too long to be observed and
measured. Further south in Buenos Aires, the precession
period is about two days. The long periods in Table 1
indicate the difficulty to set Foucault pendulum in South
America, because in the most cities the pendulum pre-
cesses too slowly to fascinate the public. Furthermore,
energy dissipation and the pendulum suspension become
important issues to build the pendulum.

Table 1: Precession periods of Foucault pendulum in South
American cities at different latitudes.

City Latitude (degrees) Period (hours)
Manaus −3.11 442
Rio de Janeiro −22.54 62.6
São Paulo −23.55 60
Porto Alegre −30.03 48
Bueno Aires −34.60 42

4.3. Calculation of bob velocity

To complete the description of the Foucault pendulum
motion it is also instructive to calculate the bob velocity.
For this purpose the derivative related to time of x′(t)
and y′(t) of Eq. (14) are taken with v0y = 0. The
components ẋ′(t) and ẏ′(t) of the velocity are:

ẋ′(t) = αβx0

α+ β
(sinαt+ sin βt)

ẏ′(t) = αβx0

α+ β
(cosαt− cosβt) (20)

The slope of the trajectory of the pendulum bob is
determined, giving:

dy′

dx′
= dy′/dt

dx′/dt
= ẏ′(t)
ẋ(t) = cosαt− cosβt

sinαt+ sin βt (21)

Using with α and β from Eq. (13):

dy′

dx′
= − tan Ωt (22)

from which it is concluded that initially the tangent to
the trajectory has negative slope producing the deviation
to the right of the movement, as shown in Fig. 3. Also,
the deviation varies with the constant time-rate equal
to Ω during the pendulum swinging, consistent with the
Foucault pendulum precessing with this angular velocity
(see Eq. (18)). After the pendulum precessed by π/2, the
slope becomes positive. After π, it is again negative and
so on. But the deviation is always to the right of the
movement.

The pendulum bob acceleration can be obtained ta-
king the derivatives with respect to the time of x′(t) and
y(t) in Eq. (20) and using the approximations ω2

0 � Ω2

and cos Ωt = 1. At the beginning of the movement,
when the pendulum practically oscillates along the x′

axis, ẍ′(t → 0) ∼= −x0ω
2
0 cosω0t and ÿ′(t → 0) ∼= 0,

which are the expected values for the acceleration of the
oscillatory movement. When the pendulum precesses by
π/2, ÿ′(t → π

2Ω ) ∼= x0ω
2
0 cosω0t and ẍ′(t → π

2Ω ) ∼= 0,
since it now oscillates along the y′ axis.

4.4. Pendulum with initial velocity

When an initial velocity is impressed on the pendulum
bob in the direction perpendicular to the plane of oscil-
lation, the coordinates of motion are given in Eq. (14),
with ẏ(0) = v0y. Herein, the case considered has the
pendulum bob being launched with the initial velocity,
v0y = −x0Ω. This value corresponds to the velocity of O′
due to the Earth’s rotation but in the opposite direction.
Such initial condition implies that in the inertial frame
the pendulum bob is abandoned from rest. Figure 4
shows the trajectory of the pendulum bob, which has
a petals shape in the frame (O′, x′, y′, z′). This differs
from the case where the bob is abandoned from rest,

-3 -2 -1 0 1 2 3
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Figure 4: The bob trajectory of the Foucault pendulum in the
Earth frame. The numerical data refer to the Foucault pendulum
in Paris and the initial velocity was v0y = −x0Ω = −0.16 mm/s.
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in which the trajectory has the shape of a star. As in
the case without initial velocity, the pendulum precesses
clockwise, but the pendulum bob always goes across the
origin of the coordinate frame.

This change of shape is particularly intriguing because
the initial velocity in the y′ axis direction to obtain the
trajectory of Fig. 4, v0y = −x0Ω = −0.16 mm/s, is
very small. Thus, any disturbance in abandoning the
Foucault pendulum from rest will change the shape of
the cusps. Instead of the shape in Fig. 3, the movement
will have a trajectory in the form of petals if the bob is
not abandoned from rest. Care must be taken to initiate
the movement of the Foucault pendulum bob from rest,
although for the Foucault pendulum deviations are too
small to be observed in practice.

5. Pendulum Motion in the Inertial
Frame

The motion of the Foucault pendulum is often explained
with confusing arguments in textbooks [13, 17]. As Fou-
cault’s pendulum is released from rest in the rotating
reference of Earth, it has a small initial velocity in the
direction perpendicular to the plane of oscillation in the
inertial frame. This makes the pendulum bob to perform
an elliptical trajectory in the inertial frame, as proposed
by the Chevilliet theorem. The bob path of the Foucault
pendulum in the inertial frame is shown below and the
Chevilliet’s theorem will also be demonstrated.

The bob coordinates in the reference (O, x, y, z) are
obtained from the geometry in Fig. 5 where the frame
(O′, x′, y′, z′) rotates with the angular velocity Ω =
ΩT senλ. From Fig. 5 we obtain:

x(t) = x′(t) cos Ωt− y′(t) sin Ωt
y(t) = x′(t) sin Ωt+ y′(t) cos Ωt (23)

In Fig. 5 it was assumed that the reference origins are
coincident, the axes directions were conveniently chosen
and the inertial frame (O, x, y, z) translates accom-
panying the movement of point O′. In this configuration
the centrifugal acceleration, −~ΩT × (~ΩT × ~R), of point

Figure 5: Diagram for coordinates transformation from the
rotating frame to the inertial frame.

O′ is neglected. However, it can be reasoned that it is
included in the effective acceleration of gravity ~ge as it
was done to obtain Eq. (4). Thus, no information is lost
in the calculations shown below.

Replacing x′(t) and y′(t) from Eq. (14) into Eq. (23),
the coordinates x(t) and y(t) in the frame (O, x, y, z) are:

x(t) = x0 cos
√
ω2

0 + Ω2t ∼= x0 cosω0t

y(t) = (x0Ω + v0y)
ω0

s
√
ω2

0 + Ω2t ∼=
(x0Ω + v0y)

ω0
sinω0t

(24)

5.1. Foucault Pendulum starting from rest

The bob trajectory in the inertial frame in Fig. 5 for
Foucault pendulum (v0y = 0) is a high eccentricity
ellipse. This can be easily proven by eliminating the time
from x(t) and y(t) of Eq. (24):

x2(t)
x2

0
+ y2(t)

(x0Ω
ω0

)2
= 1 (25)

which represents the ellipse with eccentricity e =√
ω2

0−Ω2

ω2
0

. For the case of the Earth frame, the appro-
ximation ω2

0 � Ω2, gives an eccentricity of ∼= 1, that
is, in the inertial frame the trajectory of the pendulum
movement is an ellipse with a high eccentricity as shown
in Fig. 6. The figure also indicates that the bob starts
the movement to the right side, which is the direction of
Earth’s rotation. The total displacement of the Foucault
pendulum bob in the direction y(t) is twice the value of
the minor axis of the ellipse and equal to ∆y = 2x0Ω0 =
0.86 mm. This agrees with the value of 1 mm measured
in the experiment.

The Chevilliet theorem can be demonstrated by re-
writing Eq. (25) in terms of the periods of motion:

x2(t)
x2

0
+ y2(t)

(x0
TΩ
T )2

= 1 (26)
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Figure 6: Elliptical trajectory of the Foucault pendulum in the
inertial frame. The numerical values used refer to the Foucault
pendulum in Paris. The arrow indicates the direction of bob
movement.

Revista Brasileira de Ensino de F́ısica, vol. 43, e20190140, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2019-0140



Giacometti e20190140-7

where TΩ = 2π/Ω and T = 2π/ω0. Using the definitions
of the ellipse axes, the ratio between the major and
minor axes is x0

TΩ
T /x0. It is equal to the ratio TΩ/T

of the rotation period of the frame on the Earth with
the period of Foucault pendulum, which amounts to a
demonstration of the Chevilliet’s theorem.

5.2. Pendulum with initial velocity

As already discussed, starting the Foucault pendulum
bob with a small initial velocity, v0y = −x0Ω = −0.16
mm/s, in the frame (O′, x′, y′, z′) in rotation with the
Earth, is equivalent to abandoning the bob at the rest in
the inertial frame (O, x, y, z). Therefore, it will oscillate
as a simple pendulum in the inertial frame, that is,
always on the same plane, as shown in Fig. 7. This is
easily proven from x(t) and y(t) in Eq. (24) by replacing
v0y = −x0Ω:

x(t) = x0 cosω0t and y(t) = 0 (27)

Therefore, as y(t) = 0, the pendulum swings in the
inertial frame as a simple pendulum along the x axis, as
shown in Fig. 7.
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Figure 7: Linear trajectory for the Foucault pendulum in the
inertial frame, launched with initial velocity v0y = −x0Ω =
−0.16 mm/s. The numerical values used refer to the Foucault
pendulum in Paris.

6. Final Comments

This paper brings together a full description of the
Foucault pendulum motion in the inertial and rotating
frames using Cartesian coordinates, for small ampli-
tude oscillation and without any external interference.
Approximations were used to determine pendulum mo-
tion: (a) the centrifugal acceleration [−~ω× (~ω×~r ′)] was
neglected compared to the acceleration [−~ΩT×(~ΩT× ~R)]
due to Earth’s rotation, and (b) since the Foucault pen-
dulum is very long, the differential equation is simplified
and the bob motion is restricted to the horizontal plane
on the Earth’s surface. The new contribution here is
the method to determine the angular velocity and the
precession period of the Foucault pendulum from the

angular position of cusps formed by the trajectory at
the extreme points of the oscillation.

The solution to the Foucault pendulum motion can
also be calculated using polar coordinates [16], which
is a more appropriate system for writing the motion
equations. More elaborated solutions are also known,
for example, considering the three-dimensional motion in
the Cartesian coordinates [11, 18]. Also, other mechanic
formalisms [18–20] are used to obtain the equations of
motion. In summary, for more than a century and a half,
the Foucault pendulum was the subject of very detailed
studies.

To initiate the movement of the Foucault pendulum,
care must be taken, since a small initial perturbation in
the bob, in the direction perpendicular to the oscillation
plane, modifies the pendulum trajectory to that shown
in Fig. 4, although such small deviations are difficult
to see in practice for the Foucault pendulum. However,
other disturbances may be introduced into the pendulum
motion, for example, by the electromagnetic mechanism
used to compensate the energy loss or by the pendulum
string support. They can cause an additional motion
that changes the angular precession velocity, which
is intensified when using a pendulum of very short
length [21].

The expressions for the coordinates could differ from
the ones given by Eq. (14) and produce some confusion
to students when reading papers or books from different
authors. For example, the approximation that ω2

0 �
Ω2 could be used to simplify the notation. However,
this approximation does not affect the results for the
trajectory, because as discussed through this work it
applies very well for the Foucault pendulum.

To finalize, it is also possible to consider the case of
the Bravais pendulum mentioned in the introduction of
the paper. The solution to Eq. (14) for the motion of the
Foucault pendulum, with a suitable initial transversal
velocity, also applies to the conical movement of the
Bravais pendulum [11], as long as its length can be
considered very long.
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pliquées 1re série 19, 1 (1854)
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