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A scientific theory consists of a symbolic framework containing laws and concepts that are derived by deductive
reasoning from fundamental laws and primitive concepts, and complemented by the correspondence or the relation
between the symbolic concepts and the real objects. The symbolic framework is understood as a representation of
the real, constructed by our minds like a realistic painting. In accordance with this point of view, scientific laws
are not discovered but conceived or created by our minds. We show how this approach is organized by rational
thinking, which is understood as an innate ability of the mind that emerges between childhood and adolescence.
We also examine with some detail the structure of the past scientific theories, pointing out their postulates, or
fundamental laws, and the primitive concepts. We will restrict ourselves to some of the physical theories, starting
with those that emerged in the Hellenistic period, and then proceed to examine other theories until the end of
the seventeenth century.
Keywords: Rational thinking, structure of theories, physical theory, fundamental laws and primary concepts.

1. Introduction

Scientific knowledge [1–4] is a cultural heritage [5]
that has been developed since at least the Hellenistic
period, having undergone an excitement and experienced
a great thrust in the seventeenth century, called the
scientific revolution [6–13]. Along the course of time,
the scientific knowledge was systematized in scientific
theories, examples of which among the physical theories
are Euclid’s geometry, Ptolemy’s astronomy, Newton’s
mechanics, Maxwell’s electromagnetism, Clausius’ ther-
modynamics, Boltzmann’s kinetic theory, Gibbs’ sta-
tistical mechanics, Einstein’s relativity, and quantum
mechanics. How were these scientific theories achieved?
How was scientific knowledge acquired? It is widespread
the idea that scientific knowledge is acquired by a
method that was developed in the period of the scientific
revolution, and called the scientific method. The method
consists of a detailed observation of the phenomena,
followed by the formulation of a hypothesis by inductive
reasoning, which is then tested by careful experiments.
Inductive reasoning is understood as a way of inferring

a general proposition from many specific observations.
For instance, we may imagine Kepler involved in finding
which curve will fit the observation data for the orbit
of Mars. He tries several curves until he comes up with
an ellipse. Or, we may imagine Galileo, after observing
many times the oscillations of lamps suspended by long
cords, inferring that the period of oscillation of a simple
pendulum is proportional to the square root of its length.
However, if we consider the law of inertia conceived by

Galileo, it is difficult to see how it could be a result of
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induction as the motion of the inanimate bodies around
us indicates otherwise. Of course, he could prepare
appropriate experiments to observe inertial motion, as
he in fact did it. But in this case, he would already
have the idea of inertia, and induction would be useless.
Similarly, it is difficult to understand how Copernicus
could infer by induction that the earth revolves around
the sun if our daily observation indicates the contrary.
It is well known that Kepler arrived at the planetary
motion laws from the astronomical observations carried
out by Brahe. But he did not give any clue of how
he reached the third law although he provided in his
writings the exact date when this law appeared in his
mind. These few examples indicate that the formulation
of hypotheses is, in fact, an exercise of one’s creativity,
which we may call an adventure of the mind [5]. It
may emerge in several ways, including in the form of
an epiphany as that narrated by Kepler.
No matter how the hypotheses or the fundamental

laws are achieved, they are an essential part of a scientific
theory and from them other laws are derived. In addition
to the laws, a scientific theory includes another category
consisting of the concepts in terms of which the laws are
expressed. However, the scientific theory is not just an
arbitrary set of laws and concepts but has a structure
dictated by rational thinking.
Rational thinking, which is an innate ability of the

mind, requires that the derivation of a law from another
be carried out by deductive reasoning. By this type of
reasoning, a logical conclusion follows from a premise,
which is certainly true if the premise is true. Rational
thinking also requires that deductive reasoning have
a point of departure to avoid circular reasoning. This
requires that one or more laws should be underivable,
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which are the postulates or the fundamental laws. In
an analogous manner, some of the concepts are derived
from others but there must be one or more of them
that cannot be derivable from the others, as required
by rational thinking. These are the primitive concepts,
the main examples of which are time and space.
The set of laws and concepts organized by rational

thinking constitutes an abstract structure that can be
one of the fields of mathematics such as geometry.
The connection with the real world is achieved by the
introduction of a correspondence between the abstract
concepts and the real objects. Any scientific theory has a
list of correspondence, sometimes called interpretation.
The abstract concepts are thus understood as repre-
sentations of the real object. It is usual to denote the
abstract and the real concepts by the same words. If that
is the case, the meaning being used should be determined
by the context, when necessary.

It is the purpose of the present paper to describe
in details the structure of a scientific theory, pointing
out the role of rational thinking and deductive reaso-
ning. In the following, we examine with more detail
the structure of some of the past scientific theories,
remarking their postulates, or fundamental laws, and
the primitive concepts. We will restrict ourselves to the
physical theories, starting with those that emerged in the
Hellenistic period, and then proceed to examine other
theories until the end of the seventeenth century.

The common feature of these theories is that the
mathematics employed is geometry. When Galileo spoke
of mathematics as the language of nature, he meant
geometry, and even Newton used geometry in his Princi-
ples. This changed at the end of the seventeenth century
when the differential and integral calculus was invented
independently by Newton and Leibniz. This new field
of mathematics offered a powerful tool for the new
scientific theories that appeared from the beginning of
the eighteen century and are also worth of a detailed
analysis in the light of the point of view regarding
scientific theories presented here.

The theories will be presented and analyzed here by
using a terminology as close as possible to that of the
original text. However, for brevity and clearness, some-
times we will make use of algebra, displayed equations,
and modern symbols as long as these recourses do not
spoil the original meaning. It should be mentioned for
instance that Galileo and Newton in his Principles wrote
no equations in the analytical sense that we understand
them nowadays.

2. Structure of Knowledge

2.1. Rational thinking

L’homme n’est qu’un roseau le plus faible de la nature;
mais c’est un roseau pensant [14]. This is how Pascal
described the human condition. Man is not but a
reed, the weakest in nature; but it is a thinking reed.

Thinking brings dignity and splendor to man, declared
Pascal. Even when we doubt ourselves, said Descartes,
we are thinking: je pense donc je suis [15]. The develop-
ment of natural sciences by Descartes was deeply based
on a special type of thinking, rational thinking, and
for this reason, Cartesian thinking became synonymous
with rational thinking. The thinking faculty of man,
praised by Pascal and Descartes, and other abilities of
the mind such as consciousness and linguistic faculty
emerged in the course of human evolution along with
the physical specializations such as the bipedalism, the
enlarged brain, and the adaptation for speaking [16].
Rational thinking is innate to each human being and

evolves at the last stage of the process of cognitive de-
velopment occurring from childhood to adolescence [17].
According to Piaget, there are four stages of cognitive
development [18–20]. In the sensorimotor stage, from
birth to two years, a child perceives the world through
movement and their senses. The preoperational stage
consists of two substages. The first, from two to four
years of age, is characterized by the use of symbols to
represent the world such as toys and drawing. In the
second, from four to seven years of age, the child becomes
more curious and begin to use a primitive reasoning
but is engaged in irreversible thought. In the concrete
operational stage, from seven to eleven year of age, the
child thinks logically and understand reversibility but
is limited to physical objects. In the formal operational
stage, beginning at eleven years of age, the child acquires
the logical abstract thought, or rational thinking.
Everyone is endowed with rational thinking. Although

it can be improved, this ability cannot be taught because
in order to learn it from someone we must be provided
with rational thinking itself, in which case learning
is unnecessary. However, we may characterize it or,
equivalently, we may enunciate the rules dictated by
rational thinking. Considering that rational thinking is
innate so are these rules. Since the rules are innate
they appear to us as obvious or self-evident thoughts.
One of them is that contradictory propositions cannot
both be true. Other rules are those related to deductive
reasonings. The most relevant rule is the origination rule
of rational thinking stating that a deductive reasoning
must have a beginning, an origin. A deductive reasoning
is always carried out from a starting point, excluding
thus a circular reasoning.

2.2. Symbolic framework

According to Craik, when rational thinking is employed
in connection with the observation of real events, it leads
to discoveries and to the prediction of new events [21].
After observing a set of real events, the observer’s mind
draws some conclusions concerning these events and,
based on these conclusions and by a reasoning process
some rules are elaborated from which new events are
predicted. This reasoning process is carried out by the
use of a symbolic model constructed by the mind, a
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Figure 1: Drawing of the Statue of Liberty by a child of three
years old.

mental model, which parallels or is in correspondence
with the real events [21].
The mental model is a symbolic representation of the

real world. In this sense, it is similar to the mental
framework created by children to represent the physical
world around them [17], as proposed by Luquet to ex-
plain the children drawings. Luquet argued that children
create an internal model, a visual image inscribed on
the mind [22]. The children drawing is the imprinting
of the internal model in a material medium, and is a
realistic representation of a real object, as in the example
given in Figure 1. Luquet also considered the pre-
historic rock paintings by the primitive men as realistic
representations of real objects such as pre-historical
animals [23], as shown in Figure 2.
The mental framework, being inscribed in a person’s

mind, is not accessible to others unless it is printed out.
Each one of the drawings shown in Figures 1 and 2 is
understood as the imprinting of a mental framework,
in this case, a graphic imprinting. We may think of
other types of imprinting such as the spoken language,
the written language, a small scale model, or any other
symbolic framework such as the symbolic language of
mathematics. There are various reasons for imprinting
in addition to the desire of communicating to others
the mental framework. One reason might be a way
of recording the mental framework for the purpose of
remembering it in the future. Or there might be no
reason at all, and the imprinting is just an attempt to
imitate nature [16].
A symbolic framework is the imprinting of a mental

framework and as such it consists of graphic or written
symbols that are real representations of real objects.
The mental framework might then be understood as
consisting of symbols that are the mental versions of
the symbols of the symbolic framework. We may thus
assume that the mental and the symbolic framework are
two versions of the same framework, the former being
internal and not accessible to others, and the latter being
the imprinting of the former and accessible to others.
Whatever the case, the symbolic framework should not

Figure 2: A prehistoric rock painting of a family of capybaras
in the Serra da Capivara National Part.

be identified as the real thing. It is the representation
of the real but it is not the real, as illustrated by the
painting by Magritte, and by the Maxwell equations,
shown in Figure 3.
Figure 4 illustrates the relationship between the thin-

king abilities, the symbolic framework, and the real
world. They form the structure of cognition. We remark
again that the symbolic framework is created by the
thinking abilities which are not learned but are innate.
More clearly, the capacity for creating a framework is
innate but the creation of a specific symbolic framework
needs external stimuli. In this sense, it is analogous to
the acquisition of language by children. The capacity for
learning a language is innate but it is necessary external
stimuli to acquire a specific spoken language.

2.3. Scientific theory

A scientific theory is a symbolic framework created by
rational thinking as illustrated on Figure 5. The problem
we face now is to state the main features of the symbolic
framework which are determined by rational thinking.
We distinguish at least two categories of symbols of a
scientific theory. One of them consists of the concepts
and the other consists of the relations that connect
them. A concept may be derived from other concepts but
they cannot all be derived concepts otherwise a circular
reasoning would take place, in contradiction with the
origination rule. Thus some concepts are underivable
and are called primitive concepts. The origination rule
requires that the relations cannot all be derived from one
another. Some relations are underivable, and are called
primary relations. The relations that we are referring
to are known as laws and the primary relations as
postulates, or principles, or fundamental laws.
The symbolic framework ruled by rational thinking

can be understood as being constructed by starting
from the primitive concepts and primary relations. From
them, other concepts and relations can be obtained. New
concepts are obtained by defining new ones from the
primitive concepts or from the concepts already defined.
New relations are derived by using deductive reasoning
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Figure 3: At the left, a painting by Magritte warning: this is not
a pipe. Indeed, it is a representation of a pipe. At the right, the
Maxwell equations, which are not light but a representation of
light.

either from the primary relations or from the relations
already derived.
A major example of a symbolic framework construc-

ted in this form, and which we are calling scientific
theory, is the Newtonian mechanics, that appeared in
the seventeenth century. However, scientific theories
emerged before that period [9], a relevant example of
which being the Euclidean geometry. Some primitive
concepts of Euclidean geometry are points, lines and
planes. In Newtonian mechanics, time and space are
primitive concepts. The velocity however is a derived
concept defined in terms of space and time. In Euclidean
geometry, the fifth postulate, which is usually stated in
terms of parallel lines, is a primary relation whereas the
Pythagorean theorem is a derived relation. In Newtonian
mechanics, the second law relating force and acceleration
is a primary relation whereas as the conservation of
linear momentum is a derived relation.

The features of a scientific theory given above is
very similar to those presented by Russo in his analysis
of how science was born in the Hellenistic period [9].
According to Russo a scientific theory holds the following
features: (a) their propositions are not about real objects
but about theoretical ones; (b) its structure is based
on deductive reasoning, and consists of a few primary
relations; and (c) its application to the real world is
based on a correspondence rule. The first two features
are in accordance with the properties of the symbolic
framework, whereas the third gives the relation of the
symbols and the real objects. It is worth mentioning
that the representational aspect of a scientific theory was
a fundamental aspect of the structure of the physical
sciences advanced by Duhem [24–26]. According to
him, a physical theory is a system of mathematical
propositions, deduced from a small number of principles,
which aim to represent as simply, as completely, and as
exactly as possible a set of experimental laws [24].

Without the correspondence rule which gives the
real counterparts of the theoretical concepts, sometimes
called real interpretation or simply interpretation, there
is no connection to the real world and a scientific theory
is not properly a science but just an abstract theory.
However, it is not necessary that all theoretical concepts

Figure 4: Illustration of the structure of cognition. The thin-
king abilities are innate structures of the mind. The symbolic
framework is created and developed by the thinking abilities
and is a representation of the real world.

have real counterparts. This is specially true in the
case of quantum mechanics where the concept of wave
function has no real correspondence. It is also the case
of other theories that sometimes are called non-realistic.
One example of this last type is the Ptolemy theory,
which includes deferent circles and epicycles that are
understood as lacking the real correspondences, but it
is nonetheless a genuine scientific theory.
When a real counterpart is a physical quantity such

as time or space it is susceptible to be measured. The
measurement of a physical quantity requires the defini-
tion of a unit of measure and we remark that we should
not identify the definition of unit with the definition
of the concept itself. This is particularly important in
the case of primitive concepts. For instance, we may
defined the unit of time as that being given by a simple
pendulum with a certain length. However, this is not
the definition of time, which is a primitive concept,
and undefinable. Another relevant example is that of
temperature, which is measured by the thermometer.
Although this device gives the unit of temperature,
it does not define temperature. In fact, temperature,
within the science of thermodynamics is a primitive
concept.
The structure of the scientific theory described above

gives sense to what is meant by a scientific explanation.
If a certain phenomena is ruled by a certain law then
the explanation of the phenomena amounts to the
explanation of this law which in turn is understood
as how this law is derived from the fundamental laws.
Therefore, a scientific explanation is the reduction of a
law to a more fundamental law, or to the postulates of
the theory.
It is worth mentioning that the structure of the

scientific theory that we are presenting here, based on
postulated and theorems, primitive and derived con-
cepts, it is not an axiomatization or an attempt to
axiomatize the theories. The axiomatization will not
make a theory more correct of more valid. Of course,
consistency is desirable but consistency, whose negation
leads to contradiction, is part of our rational thinking
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Figure 5: Illustration of the structure of the scientific knowledge.
Rational thinking is an innate structure of the mind. The
scientific theory is constructed by rational thinking and is a
representation of the real phenomena.

and thus the theories are supposed to be conceived with
consistency.
An invaluable tool used to reach knowledge is the

so-called thought experiment [27] that was used by
Einstein in his explanation of the fundamental principles
of the relativity theory. Thought experiments were also
attributed to Galileo but this view was challenged in
the grounds that Galileo in fact performed the experi-
ments [28]. A thought experiment is understood as a
statement concerning events taking place in real world
without actually performing experiments or making ob-
servations. It is a kind of knowledge about the real world
called synthetic a priori statement [4]. We follow here
the logical positivists and deem this type of knowledge
as impossible [4]. The thought experiment may have
unconsciously been impressed on our minds, being in
fact based on past experiments and observations, or
it might be a form of reasoning based on a mental
model created by the mind, and thus understood as a
symbolic framework [29]. In fact, it is the expression of
a hypothesis in the same sense that the fifth postulate
of Euclid is a hypothesis, a postulate, and not a though
experiment as one might think at first sight.

2.4. Laws of nature

Law in its common sense refers to a practice or a rule
of conduct prescribed by an authority or through a
general agreement. It is applied to man as a being in full
possession of reason and understanding. As it applies to
man, who is endowed with free will, a law may or may
not be obeyed. A question then arises concerning the use
of the term law in scientific language. In the seventeenth
century, Boyle stated that nature, being devoid of
understanding, cannot follow a prescribed rule, and that
he used the word law of nature only for brevity [30]. The
argumentation of Boyle seems sound but in the course
of time the word law as used in science changed from a
prescriptive to a descriptive meaning [30].
The present scientific meaning of law emerged before

the middle of the sixteenth century in the fields of optics

and astronomy [30]. In his work on optics, Roger Bacon
in the thirteenth century used the terms laws of reflec-
tion, laws of refraction, and in general laws of nature.
Later on these terms were used by Kepler in his works
in the same subject. In astronomy, Regiomontanus in
the fifteenth century used the term law and Copernicus
referred to the regular motion of heavenly bodies as laws
in the same sense that we use them [30]. With Descartes
and Newton, the use of law in the modern sense became
standard in scientific language.
The descriptive meaning of law fits perfectly well

into the structure of scientific knowledge presented here.
In accordance with this structure, a scientific law is
understood as a theoretical proposition which represents
or describes the behavior of a real event. For a better
understanding let us consider the Galileo law of falling
bodies, which symbolically is given by the equation
x = at2, where x is the space, t is the time and a is
a constant. This equation belongs to the mathematical
structure meaning that x and t are the abstract concepts.
It is a law of nature in the sense that if we interpret x
and t as the real space and the real time, then if we
measure the space at each instance of time, the values
found for space will be proportional to those of time
squared. This example shows that the term law is used
in the descriptive sense and not in the prescriptive sense.
In other words, we cannot say that nature prescribes to
itself some laws to be obeyed, the collection of which
would constitute the real theory.

The scientific laws are theoretical relations that des-
cribe the real phenomena. We could not say that the
scientific laws are hidden in nature and that they should
be discovered or revealed, or that the purpose of science
is to search for the real theory hidden in nature. This
does not mean that we are denying the existence of the
real, but just avoiding to assign to nature something that
is a creation of our minds. From these considerations, we
conclude that we cannot say that a theory is realistic or
more realistic than another, simply because there is no
real theory.

If the real theory existed, it would be the perfect and
true theory, the theory of everything, the final theory,
as nature is unique, and it would make sense to search
for such a theory. As it does not exist, the search for it
is a search for a chimera. The reduction of one theory
to another, understood as deeper and more general, is
sometimes pursued because the second is supposed to
be closer to the real theory. However, the reduction will
not make the theory more valid. The terms model and
approximate theory are sometimes used in the place of
theory because it is considered that the approach is not
yet the supposed real theory.

3. Euclid

Euclid lived around the beginning of the third century
BC. He is connected to the city of Alexandria and
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must have been acquainted with its great library. He is
the author of the mathematical treatise called the Ele-
ments concerning mostly with the subject of geometry
[31, 32].
The approach to geometry used by Euclid in the

Elements is based on the derivation of propositions by
deductive reasoning starting from assumptions explicitly
stated at the beginning of the treatise, called postulates.
This method was invented and developed by the Gre-
eks during the period between six and three hundred
years BC, receiving a substantial contribution from the
Pythagoreans [33]. Long before this period, some rules of
Geometry were already known to the Babylonians and to
the Egyptians [31]. Some knowledge of the Pythagorean
theorem was familiar to the Babylonians. However, their
knowledge of geometry was related to the practical
tasks demanded by building and land surveying, and the
geometric rules they used were taken to be plain truths
and not understood as theorems, that is, as propositions
to be demonstrated.

The Elements consist of thirteen books containing 465
propositions, obtained by deductive reasoning from five
common notions and five postulates. In addition, they
contain 131 definitions, including point, line and surface:
A point is that which has no part.
A line is breadthless length.
A surface is that which has length and breadth only.
The definitions of some terms of the Elements as

those above are clearly circular, and for this reason these
terms should be regarded as primitive [33]. However, the
choice of which terms should be considered primitive is
not unique. It seems natural to consider point, straight
line, and plane as included in the set of primitive terms
as did Hilbert in his studies on the foundations of
geometry [33].

The common notions and the postulates of the Ele-
ments are primary statements, that are not derivable
from other statements. The five common notions are
understood as universal primary statement and we
regard them as part of the structure that we have called
rational thinking. The five postulates are geometric
primary statement, understood as part of the scientific
theory itself. The first postulate states that it is possible
to draw a straight line connecting two points and that
it is unique. The second is equivalent to say that two
straight lines with a common segment are identical. The
third states that it is possible to draw a circle with a
given point as its center and radius equal to a given
rectilinear segment. The fourth asserts that all right
angles are equal. The statement of the fifth postulate,
illustrated in Figure 6, is: If two straight lines in a plane
are intersected by a line segment forming two interior
angles on the same side whose sum is less than two right
angles then the two lines, if extended indefinitely, will
meet each other on the side of the line segment where the
angles are less than two right angles. But this postulate
is best known in the following simpler and equivalent

Figure 6: Illustration of Euclid’s fifth postulate. If the sum of
the angles α and β is strictly less than two right angles, then
the blue straight lines will meet, if extended indefinitely.

form: Through a given point can be drawn only one line
parallel to a given straight line [33].
It is usual to consider Euclidean geometry as pure

mathematics but here we are enlarging its meaning and
framing it as a scientific theory. This understanding
is accomplished by creating a list of correspondence
between the theoretical terms and the real objects, which
is always possible to do. For instance, a straight line
could correspond to a stretched rope or an edge of a
rectangular table. In fact, for the ancient Greeks, the
geometry was not just a mathematical abstraction but
also real although in an idealized form so as to identify
a line with a very thin thread [33]. This explains why
the category of primitive terms is not distinguished in
the Elements [33]. The definition of terms, including the
ones that we call primitive, are in fact understood by
the Greeks as definitions of real objects such as a line is
a breadthless length.
The deductive reasoning used by Euclid is here

exemplified by his demonstration of the Pythagorean
theorem, which is the proposition 47 of book 1 of the
Elements [32]: In right-angled triangles the square on the
side subtending the right angle is equal to the squares on
the sides containing the right angle. It is understood that
the equality here concerns the equality of the areas of the
figures. It is a usual practice in dealing with geometry to
make no distinction between the geometric figure and its
measure. Thus AB may refer to a straight line segment as
well as to its length. Although this should be avoided, we
will use here the same procedure hoping that the correct
meaning can be inferred by the reader from the context.
The demonstration is carried out by Euclid by showing

that (a) the area of the rectangle BDLM is equal to
that of the square ABFG and (b) the area of the
rectangle CELM is equal to that of the square ACKH, as
illustrated in Figure 7. Since the two rectangles make up
the square BCED the demonstration is finished. To show
the proposition (a) we proceed as follows. The triangles
ABD and FBC are congruent because the angles ABD
and FBC are equal and the lengths of BD and BC are
equal and so are the lengths of FB and AB. From the
congruence it follows that their areas are equal. Now, the
area of the triangle BDA is half the area of the rectangle
BDLM because they have the same base BD and the
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Figure 7: Illustration of proposition 47 of book 1 of the
Elements, which is the Pythagorean theorem. The area of the
square BCED is equal to the sum of the areas of the squares
ABFG and ACKH.

same height. Similarly, the area of the triangle FBC is
half the area of the square ABFG because they have the
same base FB and the same height. Since the triangles
BDA and FBC have the same area so do the rectangle
BDML and the square ABFG, which is proposition (a).
The proposition (b) is demonstrated in an analogous
manner.
The demonstration that we have just made uses other

theorems, not explicitly mentioned, that are derived
directly or indirectly from the five postulates. One of
them is the proposition 41 of book 1, which states that
the area of a triangle is half the area of a parallelogram
of the same base and of the same height. Other familiar
propositions of book 1 are as follows. The sum of any
two sides of a triangle is greater than the remaining side
(proposition 20). The sum of the three interior angles of
a triangle is equal to two right angles (proposition 32).
Triangles with the same base and same heights have the
same area (proposition 37).
In book 2 one finds the geometrical equivalents of

certain algebraic identities. Book 3 contains the well
know theorems about circles such as the proposition 31:
The triangle inscribed in a semicircle is rectangular. The
geometry of Euclid is restricted to geometric figures that
can be constructed from straight lines and circumferen-
ces, which are drawn by a ruler and a compass. Book
4 is devoted to the construction with these Euclidean
tools of regular polygons with three, four, five, six,
and fifteen sides. In book 5 and 6, Euclid develops the
theory of proportion. The geometric mean is given as
proposition 13 of book 6. The last tree books deals
with solid geometry, including the construction of the
five regular polyhedra: tetrahedron, octahedron, cube,
icosahedron, and dodecahedron. The other books of the
Elements deal with number theory and its relation with
geometry.

4. Aristarchus

Aristarchus is from the island of Samos and it is
certain that he was active in 281 bc on account of his
observation of the summer solstice of that year [31, 34].
He wrote a treatise On the Sizes and Distances of the
Sun and Moon, and another also on astronomy, that did
not survive, in which he proposed a heliocentric theory.
We learn this fact from Archimedes who wrote that
Aristarchus formulated the hypothesis that the earth
revolves in a circumference around the sun which is also
the center of the sphere of the fixed stars [31, 34].

The heliocentric hypothesis is not present in the
treatise On the Sizes and Distances, which we are about
to examine, possibly because this treatise was written
before that on the heliocentric theory. In the treatise
On the Sizes and Distances the sun and the moon
are assumed to move around circles centered in the
earth. The treatise is an extension of geometry and
geometric methods of topography to an astronomical
scale [9]. It contains 6 hypotheses and 18 propositions
which are derived from the hypotheses following the
same deductive reasoning employed by Euclid in the
Elements.

The hypotheses, or postulates, contained in the trea-
tise are as follows [34]:

1. The moon receives its light from the sun.
2. The earth correspond to a point and is the center of

the sphere in which the moon moves. That is, the
earth can be considered a point when compared to
the distance to the moon.

3. When the moon appears to us exactly halved, the
great circle which separates its dark and illumina-
ted parts is in direction of our eye.

4. When the moon appears to us exactly halved, its
distance from the sun is then less than a quadrant
by one thirtieth of a quadrant. That is, 87◦.

5. The breadth of the shadow of the earth is that of
two moons.

6. The moon subtends one fifteenth part of a sign of
the zodiac. One sign of the zodiac encompasses 30◦,
so that the moon subtends 1/15 of 30◦, or 2◦.

From the postulates, Aristarchus could derive the
following results: The distance of the sun from the earth
is greater than 18 and less than 20 times the distance of
the moon from the earth. The apparent size of the sun is
the same as that of the moon. The diameter of the sun
is greater than 19/3 and less than 43/6 the diameter of
the earth.

The first result [35] can be derived as follows. From
postulate 3, it follows that when the moon appears
exactly in half phase, the earth, moon, and sun are
arranged in a right triangle as shown in Figure 8.
From this figure we see that the ratio r between the
distance sun-earth and the distance moon-earth is the
reciprocal of sinα. The value of α given by postulate 4 is
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Figure 8: When the moon appears exactly in half phase, the
angle earth-moon-sun is 90◦. The value used by Aristarchus for
the angles β is 87◦ which gives α equal to 3◦. The modern value
of α is 10′.

3◦, and the sine of this angle is 0.052 which gives for r the
value 19. However, this was not the reasoning employed
by Aristarchus because at that time the trigonometry
had not been invented [34]. What he did was to find
lower and upper bounds for this quantity.
Aristarchus employed an inequality involving an arc

of a circumference and a tangent, which is

AB
_

AB
>

AC
_

AC
, if

_

AB >
_

AC . (1)

In modern terms, this inequality is equivalent to say that
tan x/x is an increasing function of x. Using inequalities
of this type and following the Aristarchus reasoning for
an arbitrary value of α, we find the result 54/α < r <
60/α. The derivation of this result involved

√
2 which we

replaced by 7/5 as did Aristarchus. Replacing α by 3◦,
we reach the bounds 18 and 20 found by Aristarchus.
The second result is the proposition 8. Aristarchus

states that the same apparent sizes of the sun and
of the moon follows from solar eclipse observations.
During a solar eclipse, the moon just covers the sun
indicating that their apparent discs are equal in size.
The hypothesis 6 states that the apparent size of the
moon is 2◦ and so is that of the sun. This value is to
big but Archimedes states that Aristarchus discovered a
value for the apparent size of the sun equal to 1/720 of
the zodiac, or 30′ [34].
The third result concerns the size of the sun, which

Aristarchus derived based on the observation that during
a lunar eclipse the diameter of the shadow of the earth
on the moon is twice the diameter of the moon. The
diagram of Figure 9 shows that the rectangular triangles
DAB and FBC are similar, from which follows that
AD/BF=DB/FC. Denoting by s, e, and p the radius of
the sun, the earth and the dashed circumference shown
in Figure 9, we see that AD=s − e and BF=e − p.
But DB=SE, the distance sun-earth, and FC=EM, the
distance moon-earth, and the ratio DB/FC becomes the
ratio SE/ME which we denote by r. Collecting these
results we find

s− e
e− p

= r. (2)

Figure 9: The diagram shows the arrangement of the sun,
the earth, and the moon at a lunar eclipse. The points S, E,
and M, which are the centers of the sun, the earth, and the
moon, are collinear. The straight line ABC is tangent to the
circumferences, and DB and FC are parallel to SEM.

As the apparent sizes of the moon and the sun are the
same it follows that their sizes are proportional to their
distances to the earth, that is, s = rm, where m is the
radius of the moon.
Now we need the relation between the radius p of the

dashed circumference shown in Figure 9 and the radius
of the moon. At first sight it appears that the dashed
circle is equal to the disk of the shadow of the earth
projected on the moon. Although this is not the case,
they are very close. Since from postulate 5, the size of
the shadow of the earth is twice the size of the moon, we
may write p = 2m. Replacing this result into equation
(2) and recalling that s = rm, we find the relation

s

e
= r + 1

3 . (3)

Using the values 18 and 20 for r we obtain the bounds
19/3 and 7 for the ratio between the diameters of the
sun and the earth. The method of Aristarchus was more
complicated and he found the bounds 19/3 and 43/6.

5. Archimedes

Archimedes spent most of his life in Syracuse where he
died at the age of 75 during the siege of this city, which
occurred in 212 bc [36, 37]. He wrote various treatises
on several subjects such as geometry, optics, mechanics,
statics, and hydrostatics, some of which are known to
have been lost. The surviving works include On the
Equilibrium of Planes, on the subject of statics, and On
Floating Bodies, concerning hydrostatics [36, 37]. The
former deals with the equilibrium of flat objects, and
was written in two books containing 7 postulates and
25 propositions. The treatise in hydrostatic deals with
the equilibrium of bodies in liquids, and consists of two
books containing 2 postulates and 19 propositions. The
key concept in both treatises is the center of gravity of
bodies.
In the two treatises, Archimedes not only employs the

same deductive method used by Euclid in the Elements
but makes the geometry the underlying theory in both
treatises. The main basic concepts related specifically
with statics and hydrostatics are weight, equilibrium,
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Figure 10: Illustration of the demonstration of the Archimedes
law of lever for n = 2 and m = 3. The weight of the big yellow
block is equal to the three small yellow bricks. The weight of
the big blue block is equal to the two small blocks. The small
bricks are identical and are equally spaced.

and center of gravity. No explicit definition of these
concepts are given. Concerning weight and equilibrium,
these terms are used in their meaning in the common
language and in fact there is no need for their explicit
definitions. We understand them as primitive concepts.
As to the third, it is implicit defined by Archimedes as
the point at which a body must be suspended to be in
indifferent equilibrium [37].

5.1. Equilibrium of bodies

The first postulate concerns the equilibrium of bodies
as in a beam balance and states that equal weights at
equal distances are in equilibrium. From this postulate,
one derives at once the proposition 5 of book 1. If a
certain number of bricks of equal weights are distributed
along a straight line and are equally spaced, the point
of equilibrium is the middle point between the first and
the last brick. The equilibrium point is also the center
of gravity.
The sixth postulate is essential to demonstrate the

law of lever but it is not very clearly formulated. We
state this postulate in the following form which will be
suitable to demonstrate the law of lever. If a body with
its center of gravity at a point P is in equilibrium with
other bodies and is replaced by a set of bodies having the
same weight, then the equilibrium is maintained as long
as the center of gravity of the set of bodies is placed
at the same point P. In propositions 6 and 7 of book
1, Archimedes gives the law of the lever stating that
two bodies are in equilibrium at distances reciprocally
proportional to their weights.
Following the reasoning of Archimedes, we present the

demonstration of the law of the lever for the case of two
bodies with the ratio r of weights equal to n/m where
n and m are two integers, and m > n. The center of
gravity of the heavier body is placed at A and the center
of gravity of the lighter one at B, as shown in Figure 10,
and they are in equilibrium with C being their center of
gravity. We have to show that the ratio of the distances
AC to CB is n/m. The demonstration is carried out in

Figure 11: This mobile after Calder illustrates the Archimedes
law of the lever. Each small circle is located at the vertical
passing through the center of gravity of the mobile attached to
the circle. If a mobile is replace by another one with the same
weight, the equilibrium is unaltered.

two steps. In the firs step, the body at A is replaced by
m bricks with the same weight in such a way that their
center of gravity coincides with the point A. In same
manner, the body B is replaced by n bricks with the
same weight in such a way that their center of gravity
coincides with the point B. By the sixth postulate the
equilibrium is not disturbed and the n + m bricks will
be in equilibrium.

In the second step of the demonstration, the bricks
are arranged is such a way that they are equally spaced,
maintaining the two centers of gravity unaltered, so that
the equilibrium still takes place by the sixth postulate.
Since the bricks all have the same weight and are
equally spaced then by the proposition 5 the point of
equilibrium is the middle point between the last and
first brick. Now FE=FB+BE and FB=BE=AC so that
FE=2AC, and DF=DA+AF and DA=AF=CB so that
DF=2CB. Taking into account that FE and DF are in
the ratio of n to m, so are AC and CB and this ends the
demonstration.

If the ratio r of the weight is not rational, the
demonstration is carried out as follows. The two bodies
are replaced by two rectangular plates having the same
weights. The width of the plates are equal and their
lengths are such that they touch each other without
superposition. Referring to the Figure 10, the plates
have lengths DF and FE, which are proportional to their
weights so that the ratio of FE and DF is r. We have
argued above that this is also the ration between AC
and CB, and this completes the demonstration.

In modern terms we write the law of lever as

p1(x0 − x1) = p2(x2 − x0), (4)

where p1 and p2 are the weights of the bodies and x1,
x2, and x0 are the positions of the bodies and of the
equilibrium with respect to a point of reference along an
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Figure 12: A segment of a parabola AOB with vertex at O and
axis OC. The inclined dashed line is parallel to AB and tangent
to the parabola at F. The center of gravity G is on the parallel
FH to the axis at F.

axis. From this equation we find the point of equilibrium,

x0 = p1x1 + p2x2

p1 + p2
. (5)

It should be remarked that this equation is not properly
the definition of the center of gravity as this quantity is
defined as the point at which a body must be suspended
to be in indifferent equilibrium. Using the law of the
lever we conclude that the center of gravity is given by
equation (5). An application of the law of the lever is
illustrated in Figure 11.
Other propositions of the book 1 deal with the center

of gravity of parallelograms and triangles. The location
of the center of gravity of these plane figures is determi-
ned by the use of the sixth postulate applied to figures of
the same area and by the use of the proposition 5 applied
to figures of the same area. Proposition 14 states that
the center of gravity of a triangle is at the intersection
of any two medians.

The aim of book 2 is the determination of the center of
gravity of a segment of a parabola, shown in Figure 12.
In proposition 8, Archimedes shows that the center of
gravity is located at a point G of the diameter FH such
that FG=(3/2)GH.

5.2. Hydrostatics

The treatise in hydrostatics, in two books, has two
postulates. The first part of the first postulate is: If
contiguous parts of a fluid are on the same level, then the
most compressed part pushes away the least compressed
part. And the second part is: Each part of the fluid is
compressed by the fluid which is right above, except
when the fluid is enclosed in something and is under
pressure from something else. The second postulate is:
Let it be granted that bodies which are forced upwards
in a fluid are forced upward along the perpendicular to
the surface which passes through their center of gravity.

In book 1, Archimedes derives from the two postulates
the main laws of hydrostatics. The principle of flotation
is proposition 5: “Any solid lighter than a fluid will, if
placed in the fluid, be so far immersed that the weight

Figure 13: ACBO is a paraboloid of revolution around the axis
OC, and G is its center of gravity. F is the center of gravity of the
part of the paraboloid inside the fluid. In the left panel F and G
are in the same vertical, which is the condition for equilibrium.
In the right panel the paraboloid is inclined, and F is at the left
of the vertical dashed line passing through G, an arrangement
that restores the equilibrium.

of the solid will be equal to the weight of the fluid
displaced.” The Archimedes principle is the proposition
6: “If a solid lighter than a fluid be forcibly immersed in
it, the solid will be driven upwards by a force equal to the
difference between its weight and the weight of the fluid
displaced.” The statement of proposition 7 is: “A solid
heavier than a fluid will, if placed in it, descend to the
bottom of the fluid, and the solid will, when wighted in
the fluid, be lighter than its true weight by the weight of
the fluid displaced.” This proposition gives a method of
determining the density of a solid in relation to that
of the fluid.
In book 2, Archimedes derives the condition for the

stability of a floating body. One condition is that the cen-
ter of gravity G of the floating body be in the same verti-
cal as the center of gravity F of the immersed portion, as
seen in Figure 13. If they are not in the same vertical the
body is not in equilibrium. It is implicit in his writing
that Archimedes the equilibrium is restored if F lies on
the opposite site of the vertical passing through G in re-
lation to the former position of F, as shown in Figure 13.
Using these conditions, Archimedes derives the requi-

rements for the equilibrium for a body with the shape
of a paraboloid of revolution truncated perpendicular to
the axis of revolution. Let as consider such a body with
specific gravity less than that of a fluid, placed in a fluid
with its axis inclined to the vertical and with the base
outside the fluid as shown in Figure 13. Then, if the
axis OC is less or equal (3/4)p, where p is the principal
parameter, the body will not remain in this position but
will return to the position where the axis is vertical [36],
as can be seen in Figure 13. The principal parameter p is
the distance of the focus to the vertex of the parabola.
In the remaining of book 2, Archimedes considers the
stability for other densities and other values of the ration
of the axis and the principal parameter.

6. Ptolemy

Ptolemy lived in Alexandria from 100 to 175, appro-
ximately, and he has been certainly associated with
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its great library [38]. The Almagest [39] is his most
important treatise on astronomy, having received this
name from the medieval Arabic astronomers. He also
wrote treatises on geography, optics and other subjects of
astronomy such as the determination of the distances of
planets. The Almagest is a systematic exposition of the
Greek astronomy which became a standard textbook on
astronomy in antiquity and the middle ages [39]. Many
results contained in this book is due to Hipparchus who
lived in the second century BC [33].
The theory presented in the Almagest describes the

motion of heavenly bodies without consideration of its
causes. The motion is taken for granted and it remains to
the theory to describe their trajectories which is carried
out by the use of geometry supplemented by the concept
of time, understood as a primitive concept.
The Almagest consists of thirteen books written in

a logical order. Book 1 contains the hypotheses, which
includes a clear statement that a geocentric viewpoint is
assumed. The hypotheses or postulates are as follows:

1. The stars move from east to west in circular orbits
as if they were pinned in a spherical vault that
rotates periodically.

2. The earth is approximately a sphere.
3. The earth is at the center of the spherical starry

vault and thus on its axis of rotation.
4. The earth can be considered to be a point when

compared with the size of the sphere of the fixed
stars.

5. The earth does not have any motion.

Ptolemy assumes that the heavenly bodies are subject
to two types of motions. One is the diurnal motion that
carries all heavenly bodies from east to west. The fixed
stars have only this type of motion, which is identified
with the rotation of the celestial sphere. In addition to
this motion, the moon, the sun, and the planets have a
specific motion, which is the yearly motion.

The location of a body is determined by its distance
from the observer and the position of its projection
on the celestial sphere centered at the observer, the
starry vault. The projection is the apparent position
seen by the observer and is determined by the use of
a celestial coordinate system consisting of two angles.
The astronomy of the Almagest deals mainly with the
apparent position and apparent motion on the celestial
sphere, and it is usual to omit the word apparent as we
will do.

Trigonometry was a basic tool used by Ptolemy.
The basic problem addressed by trigonometry is the
determination of the length of a chord that is subtended
by an given arc of a circumference. Ptolemy used a
circumference of radius equal to 60 and arcs measured
in degrees. The chord is thus 120 times the sine of
half an arc. Ptolemy elaborated a table of chords where
we can see that the chord of an arc of one degree is
1 + (2/60) + (50/3600). For such a small value, the

Figure 14: The trajectory of the sun S is the eccentric
circumference centered at point O. It moves at constant speed
along the circumference which means that the angle SOA
increases uniformly. The earth T is off the center. The angle
STA, which is the angle an observer sees the sun with respect
to A, varies non-uniformly.

chord becomes virtually equal to the arc. Since the arc
is measured in degrees, it follows that this numerical
value is π/3, from which we find the value of π used by
Ptolemy, namely 3 + (17/120) = 377/120 or 3.14167.
The journey of the sun along its path on the celestial

sphere, called ecliptic, is not uniform. It is slight faster
in one part of the year and is slight slower in the other
part of the year. From the spring equinox to the summer
solstice its takes 94.5 days whereas from this last event
to the autumnal equinox it takes 92.5 days. Based on
these observational data, Hipparchus conceived a model
that describes this anomaly motion of the sun, which
was used by Ptolemy in book 3. In this model the sun
revolves around the earth in an eccentric circular orbit
as shown in Figure 14. The speed of the sun along the
circular orbit is constant which means that the angle
SOA increases uniformly. The earth is off the center. An
observer at the earth sees the sun with an angle STA
which varies in in an non uniform manner.

As the point S moves at constant speed along its
trajectory, the lengths of the arcs AB, BC, CD, and
DA are proportional to their respective travel times,
and the same happens to the angles AOB, BOC, COD,
and DOA. As the sum of these angles is 360◦, the
angle AOB will be equal to 94.5/365.25 times 360◦,
or 93.14◦. Similarly, BOC will be 91.17◦. It will be useful
to determine the angle OAT. This angle is obtained by
subtraction a right angle from half the sum of AOB and
BOC, or 2.155◦.
Let us denote by θ the angle STA, which is the angle

that an observer sees the sun in relation to the spring
equinox, and by φ the angle which the straight line OS
makes with the direction TA. Then the following relation
between can be derived by geometric reasoning

tan θ = ε sin θ0 + sinφ
ε cos θ0 + cosφ, (6)
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Figure 15: The point G revolves counterclockwise around the
earth T along the great circumference at a constant angular
velocity. The moon L moves clockwise along the small circle
around the point G at a constant angular velocity.

where θ0 is the angle OTA and ε is the eccentricity, which
is the ratio between OT and the radius of the eccentric
circumference. These two parameter are found by taking
into account that θ equals one and two right angles when
φ, respectively equals 93.14◦ − 2.155◦ = 90.985◦ and
90.985◦ + 91.17◦ = 182.155. Replacing these values in
equation (6), one finds that the angle ATX equals 65.5◦
and the eccentricity is 1/24.
The equation (6) can be understood as the equation of

motion, which gives the observation angle θ in terms of
time. It suffices to recall that the point S moves around
O with an angular velocity ω = 360/365.25 degrees per
day which allows us to write φ = ωt where t is the time.

We present now the simplest model considered by
Ptolemy for the motion of the moon, which is treated
in book 4 of the Almagest. The model was introduce
by Hipparchus and consists of two circle, as shown in
Figure 15, the great one being the deferent and the small
one the epicycle. The center O of the deferent revolves
counterclockwise around the earth T at a constant
angular velocity ω1 whereas the moon L moves clockwise
around O with a constant angular velocity ω2. Denoting
by θ the angle LTA, by φ1 the angle GTA, and by φ2 the
angle that the straight line GL makes with the direction
TA, the following relation can be derived by geometric
reasoning

tan θ = r sinφ2 − sinφ1

r cosφ2 + cosφ1
, (7)

where r is the ratio between the radius of the epicycle
and the radius of the deferent. Bearing in mind that φ1
and φ2 are linear in the time t, this equation gives θ in
terms of t. The values employed by Ptolemy are ω1 equal
to 13◦3′54′′ per day, ω2 equal to 13◦13′46′′ per day, and
r equal to 5.25/60.

For the planets, Ptolemy conceived a model, shown
in Figure 16, which can be understood as modification

Figure 16: The planet P orbits counterclockwise along the
epicycle centered at the point G which revolves along the
deferent circumference centered at O. The earth T is off
the center and E is the equant point.

of the deferent-epicycle model. The earth T is off the
center O of the deferent circle and the center G of the
epicycle moves counterclockwise along the circumference
but not at a constant speed. The planet P revolves
counterclockwise around the point G at a constant
angular velocity ω1. The manner in which the point G
moves is as follows. Let E be a point, called equant,
located in opposition of the point T, such that TO equals
OE. In the present model, the point G revolves around
E at a constant angular velocity ω2.
Let φ1, φ2 and φ3 be the angles that the straight lines

GP, EG, and OG, respectively, make with the direction
TA. Using geometric reasoning, the following equation
can be obtained for angle θ between TP and TA,

tan θ = ε sin θ0 + sinφ3 + r sinφ1

ε cos θ0 + cosφ3 + r cosφ1
, (8)

tanφ2 = ε sin θ0 − sinφ3

ε cos θ0 − cosφ3
, (9)

where θ0 is the angle OTA, ε is the eccentricity, the ratio
between OT and the radius of the deferent circle, and r
is the ratio between the radius of the epicycle and the
ratio of the deferent circle. The elimination of φ3 between
these two equations give θ in terms of time as φ1 and φ2
are linear in time.
The model just described is appropriate for the supe-

rior planets, Mars, Jupiter and Saturn. Ptolemy assigned
to these planets the following values for the eccentricity
ε and for the ratio r of radius of the epicycle and the
radius of the deferent:

planet ε r
Mars 0.100 0.658
Jupiter 0.046 0.192
Saturn 0.057 0.108

We have rounded the figures to the third decimal place.
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The model for the inferior planets, Mercury and
Venus, is more complicated but includes the epicycle,
the deferent circle and the equant point. It suffices to
mention here an important additional feature of the
model which is the requirement that the center of the
epicycle be collinear with the sun [38]. This constraint
prevents the inferior planets from arbitrarily moving
away from the sun.

7. Ibn al-Haytham

Hasan Ibn al-Haytham, also known by his Latinized
name Alhazen, was born in the last third of the tenth
century and lived in Cairo where he died after 1040
[40, 41]. He wrote on many subjects including mathema-
tics, astronomy, medicine, and optics. His major work
was in the field of optics, called the Book of Optics
[41–44], dealing with visual perception, reflection and
refraction of light. He was greatly influenced by the
work of Ptolemy on the same subject, and his book
had a great influence in the development of optics
between the thirteenth and the middle of the seventeenth
century [41].
Ibn al-Haytham based his theory of sight in light rays

and not in visual rays as did Euclid and Ptolemy. The
perception of a visual object is due to light rays coming
from the visible object towards the eye. Light is an inhe-
rent property of self-luminous bodies and is propagated
to other bodies which become also luminous. Each point
on the surface of a luminous object is understood as a
source of light rays, propagating light in all directions,
if transparency permits, through rectilinear trajectories.
The theory is based on geometry so that the principles

and concepts of geometry are taken for granted. In
addition, there are principles and concepts related to
the optics. The most important of these concepts is
that of light ray, which we understand as a primitive
concept within the theory. The principles concerning the
reflection of light are as follows. Let us consider a plane
tangent to the surface of reflection of a body at the point
of reflection and draw the normal to this point.

1. The line of incidence, the line of reflection and the
normal lie in the same plane.

2. The incident line and the reflection line form equal
angles to the normal.

3. The image of the object is the point where the
extension of the line of reflection intersects the
normal dropped from the object at the reflective
surface.

These principles are explicit stated in the Optics of
Ptolemy [45]. The difference lies in the use of light rays
by Ibn al-Haytham instead of visual rays.
The principle concerning image location is known as

the cathetus rule because the normal to the reflective
surface is referred to as the cathetus [46].
Let us denote the object point by O, the sight point

by S, the reflection point by R, and the image point by I,

Figure 17: Reflection on a plane and on a spherical mirror. The
light ray coming from the object O is reflected at the point R
of the reflecting surface and reaches the point S. The image I is
formed at the point where the cathetus OI crosses the extension
of the reflected ray.

as illustrated in Figure 17. The image I is formed where
the cathetus OI crosses the extension RI of the reflected
ray RS. In a plane mirror the cathetus is perpendicular
to the surface of reflection. In a spherical mirror, it is the
line that connects the object to the center of the sphere
and thus perpendicular to the reflecting surface. A
problem posed by Ibn al-Haytham is the determination
of the reflection point, given the object and the sight
points. When the mirror is spherical, either convex or
concave, this problem is known as the Alhazen problem.
The refraction of light was also treated by Ibn al-

Haytham in his Book of Optics. The principles of
refraction are:

1. The incident ray, the refracted ray and the normal
to the interface between the two media lie in the
same plane.

2. When a light ray passes from a less to a more dense
medium, the angle between the refracted ray and
the normal, the refraction angle, is smaller that the
angle between the incidence ray and the normal,
the incidence angle.

3. The image of the object is the point where the
extension of the line of refraction intersects the
normal dropped from the object at the reflective
surface.

These principles are also explicit stated in the Optics of
Ptolemy [45]. The difference lies in the use of light rays
by Ibn al-Haytham instead of visual rays.
Let us denote the object point by O, the sight point by

S, the refraction point by R, and the image point by I, as
illustrated in Figure 18. The image I is formed where the
cathetus OI crosses the extension RI of the refracted ray
RS. In a plane interface the cathetus is perpendicular to
the surface of refraction. In a spherical interface, it is the
line that connects the object to the center of the sphere
and thus perpendicular to the interface.
Ibn al-Haytham tried to establish quantitative rules

concerning the relation between the angle of refraction
and the angle of incidence. However, the rules he found
are not generally valid and he did not reach the well
known sine law of refraction [40], which is usually
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Figure 18: Refraction through a plane and through a spherical
interface. The light ray coming from the object O is refracted at
the point R of the interface and reaches the point S. The image
I of the object O is formed at the point where the cathetus OI
crosses the extension of the refracted ray.

written as

sinα
sin β = n, (10)

where α and β are the incidence and refraction angles,
respectively, and n is a constant. Ptolemy also failed
to reach this law as well as Grosseteste, Witelo, and al-
Farisi, who were directly influenced by the work of Ibn al-
Haytham. Kepler also tried to obtain a law of refraction
and concluded that the refraction angle is proportional
to the incidence angle, which is in accordance with the
sine law for small angles [47]. The sine law was eventually
stated by Harriot in 1601 and by Snell in 1628, in both
cases in unpublished papers, and by Descartes in his
Dioptrics published in 1637 [9].
The sine law was in fact discovered much earlier by

Ibn Sahl, who described the law in his Book of Burning
Instruments written around the year 984, probably in
Baghdad [40, 48]. Ibn Sahl did not infer the laws from
experiments but instead introduced the law as follows.
Let R be the the point of incidence of a ray and let
C and K be two fixed points on interface between two
media such that these three points are collinear as shown
in Figure 19. Given the refracted ray RS, it is extends
and B and A are the points where the extension crosses
the normals to the interface at the points C and K,
respectively. Next, the point O is determined on the
normal BC in such a way that RO equals RA, and OR
will be the incident ray.

By construction, we see that the ratio RA/RB is
equal to the ratio RK/RC. As the segments RK and
RC are fixed, it follows that for any refracted ray the
ratio RA/RB is constant. But RA=RO and RO/RB is
constant, which is the refraction law. It can be written
in a more familiar form by writing

RO
RB = CR/RB

CR/RO , (11)

and bearing in mind that the numerator is the sine of the
angle CBR=MRS, which is the angle of refraction, and
the denominator is the sine of the angle COR=ORN,
which is the angle of incidence.

Figure 19: Illustration of the law of refraction as formulated by
Ibn Sahl. OR and RS are the incident and the refracted rays and
BR is the extension of RS. The points B and C are located at
the vertical passing through O. The length of AR is equal to
OR. The ratio RA/RB is equal to the ratio RC/RK.

We have seen above that the image location of an
object, either by reflection of by refraction, relies on
the cathetus rule, introduced as a principle. The rule
remained unchanged until it was challenged by Benedetti
in a publication of 1585 and by Kepler in his Optics
published in 1605 [46]. In its place they introduced a
method of location based on binocular vision. When an
object is directly seen by each of two sight points, it
means that two light rays originating from the object
reaches each one of these sight points. Thus, the object
is located at the point where the rays meet. If the
object is seen indirectly, through reflection of refraction,
the image is located where the extensions of the two rays
reaching the sight points meet. Kepler applied this idea
to reflection and refraction. For the case of reflection of
plane mirrors and refraction through plane interface, the
result is the same as that obtained by the cathetus rule.
It should be remarked that the location of the image will
depend on the sight point, excepted in the case of plane
mirrors.

8. Copernicus

Nicolaus Copernicus was born in 1473 at Torun, Poland.
He studied at the University of Krakow where he went
in 1491 and from 1496 he spent about eight years in
Italian universities. From 1504, he lived in two nearby
cites in northern Poland. First in Lidzbark until 1510
and then in Frombork until his death in 1543 [38, 49, 50].
In this city he wrote his heliocentric theory called On
the Revolutions of the Heavenly Spheres [51], completed
around 1532 but published in 1543 just before he
died. He formulated his theory much earlier as a brief
description of his ideas circulated in manuscript form
probably before 1514 [38, 49, 50, 52].
The Copernicus theory is distinct from the Ptolemy

theory in placing the sun and not the earth in the center
of the world, but it is very similar in other aspects.
The fixed stars are pinned in a celestial sphere, which
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Figure 20: The trajectory of the earth T is the eccentric
circumference centered at point O. It moves at constant speed
along the circumference which means that the angle TOA
increases uniformly. The sun S is off the center and the angle
TSA varies non-uniformly.

does not rotate, and the planets, the earth, and the
moon follow perfect circles. The daily rotation of the
starry vault is apparent and caused by the rotation
of the earth around the axis passing from the north
and south poles. The motion of the celestial bodies
are taken for granted and it only remains to describe
geometrically their orbits and positions at each instant
of time. Copernicus describes the motion by use of
geometrical figures such as deferents, eccentric circles,
and epicycles. Like the Ptolemy theory, it is a kinematic
theory, describing the motion of heavenly bodies without
consideration of its cause.
The principles of the Copernicus theory contained in

his Revolutions [51] can be state as follows:

1. The sun is at rest at the center of the immobile
sphere of the fixed stars.

2. The earth is spherical and rotates daily from west
to east around its fixed poles. This explains the
apparent daily motion of the firmament.

3. The size of the earth is insignificant when compa-
red with the size of the heavens.

4. The earth is regarded as one of the planets.
5. The motion of the planets around the sun is

uniform, eternal, and circular or compounded of
circular motions.

6. The sphere of the fixed stars is the highest. Then
follows the spheres of Saturn, Jupiter, Mars, Earth
with the Moon, Venus, Mercury, and the Sun at the
center of the spheres.

From these principles and the specific models for the
planets the aim of the theory is the determination of
their positions in relation to the sphere of fixed stars.

One of the first consequences of the theory refers to the
position of the earth. If the apparent position of the sun
is at a certain sign of the zodiac then the position of the
earth will be at the opposite sign. Copernicus gives the

Figure 21: Earth T, Venus V, and Mars M revolving around
the sun S. Venus has an inner orbit whereas Mars has an
outer orbit with relation to the earth orbit. A, B, C are three
distinct positions of the earth. The position A corresponds to
the maximum value of the angle SAV. The position B occurs
when Mars is in opposition to the sun, and position C occurs
when the angle SCM is equal to a right angle.

following examples: when the earth is passing through
the Goat, the sun appears to be in the Crab.
The model for the orbit of the earth around the

sun consists of a eccentric circumference as shown in
Figure 20. It is similar to that employed by Ptolemy
for the orbit of the sun around the earth, but now the
roles of the sun and earth are interchanged. The earth
T moves with constant speed along the circumference
resulting in a non-uniform variation of the angle AST.
Using data coming from his own observations on the
motion of the sun, Copernicus finds an eccentricity equal
to 0.0323 and the angle OSA equal to 96◦40′.

To describe the motion of the moon around the
earth, Copernicus adds a small epicycle to epicycle of
the Ptolemy model shown in Figure 15. The moon
revolves counterclockwise around a certain point which
by its turn revolves clockwise around a point moving
counterclockwise around the earth. The model for the
planets is similar to that of Ptolemy, illustrated in
Figure 16. with the earth replaced by the sun.

There are two important consequences that can be
drawn concerning the revolution of the planets around
the sun. From an observer at the earth, the angle
between an inferior planet and the sun cannot be larger
than a certain value because these planets have an inner
orbit. The maximum elongation is 28◦ for Mercury and
46◦ for Venus [38]. The outer orbits of the superior
planets explains their apparent retrograde motion on the
starry vault.

Within the Copernicus theory it is possible to deter-
mine the distance of a planets from the sun in relation
to the distance ST of the earth from the sun [38]. Let
us consider an inferior planet such as Venus, as shown
in Figure 21. If the maximum angle SAV is determined
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then the ratio VS/TS is equal to the sine of SAV. For a
superior planet such as Mars, we determine the time it
takes for the earth to move from position B to C. The
first position occurs when an opposition of the planet
takes place. The second position occurs when the angle
of Mars and Sun is equal to a right angle. The arc BC
is proportional to time elapsed from B to C. The ration
MS/TS is equal to the inverse of the sine of the angle
BSC.

9. Kepler

Johannes Kepler was born in 1571 at Weil der Stadt,
Germany. He studied from 1589 at the University of
Tübingen, where he became acquainted with the Coper-
nicus theory [49, 53]. In 1594, he moved to Graz where he
lived for six years and then, in 1600, he went to Prague
where he became a collaborator to Tycho Brahe. He
stayed there until 1612 when he moved to Linz where he
lived until 1626. He died two years later. Kepler benefited
from the comprehensive works of Tycho Brahe which
consisted of the most accurate astronomical observations
at the time. These observational data became a star
catalog which was published by Kepler in 1627.
The major astronomical work of Kepler was New

Astronomy [54, 55] which contains the areal and the
ellipse laws for the planetary motion, published in 1609
while he was in Prague. The harmonic law of planetary
motion, concerning the relation between the period and
distance of a planet from the sun, appeared in the book
Harmonices Mundi [56] published in 1619.

Kepler turned his attention to the theory of Mars
around the time he joined Tycho in Prague [53]. In the
course of the investigation he found it necessary to get
more detailed knowledge about the orbit of the earth
such as its position at any instant of time. He assumed
that the earth moves uniformly on an eccentric circumfe-
rence around the sun and considered the position of the
earth at three times separated by the sidereal period
of Mars [57]. In these three instants of time Mars is
found in the same position as shown Figure 22. From
the astronomical observation of Mars in relation to the
sun, the angles of the triangles SAM, SBM, SCM could
be found and the three positions, A, B, and C, could be
obtained in relation to S and M.

From the three position of the earth, Kepler determi-
ned the radius and the center of the circumference with
respect to the sun, and thus the position of the earth on
the circumference at any instant of time as the motion
was assumed to be uniform. This method yielded the
values 0.02401 for the eccentricity of the earth [57]. In
the following, Kepler realized that the speed of the earth
was inversely proportional to its distance from the sun
from which he concluded that the line from the earth to
the sun sweeps equal area in equal times [53].

Next he turned to the determination of the distances
from Mars with the purpose of finding its orbit. He first

Figure 22: The earth T revolves along the eccentric circumfe-
rence around the sun S. The points A, B, and C represents the
positions of the earth at three instants such that the mars M is
at the same position.

tried to fit the observational data to a circular orbit with
an equant point, in accordance with the hypothesis of
Ptolemy and Copernicus of assigning circular or com-
pounded circular motions to heavenly bodies. However,
he found discrepancies with the distance from Mars
obtained from the observational data of Thyco Brahe.
The orbit could not be circular but the data showed that
the Martian orbit was oval but there was no indication
that it should necessarily be an ellipse [57]. Nevertheless,
Kepler chose an ellipse to describe the orbit of Mars on
account of physical causes, that is, by imagining that
a physical cause of motion would result in an elliptical
orbit [57].
The statement of the harmonic law by Kepler was

as follows: the ratio of the periodic times of any two
planets is precisely the ratio of the mean distances raised
to the power one and a half [56]. Kepler does not give
any indication of how he arrived at this law but say
that it appeared in his mind on 8 March 1618 [53]. This
law as well as the areal and the ellipse laws cannot be
considered to be derived from other laws and in this
sense it should be understood as basic principles within
the Copernicus theory as long as the circular motion
principle is replaced by the ellipse law. It should be
pointed out that the Kepler laws did not change the
kinematics character of the theory. Kepler attempted to
find the causes of orbital motion [49] but his planetary
laws cannot be understood as a logical derivation from
any principle.

10. Galileo

Galileo was born in 1564 at Pisa, Italy. In 1581, he
was enrolled at the University of Pisa as a student
of medicine but left the university in 1585 without a
degree. In the following years he taught mathematics
at Florence and Siena, and in 1589 he was appointed
to the mathematical chair at the university of Pisa,
marking the beginning of his scientific career. He stayed
in Pisa until 1592 when he was nominated professor
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Figure 23: The phases of Venus at three positions A, B, and C
of the planet with respect to the sun S and the earth T. At the
right the phases of Venus as seen from the earth at the three
positions.

of mathematics at the University of Padua, where he
stayed until 1610. Galileo became acquainted with the
telescope in 1609 and in the beginning of the following
year he discovered the four moons of Jupiter. This great
achievement earned him to be called to Florence to
be the primary mathematician of the Grand Duke. He
moved to Florence in September 1610 and lived there
until his death in 1642 [28, 58].
The four moons of Jupiter together with other obser-

vations were reported in The Sidereal Message published
in 1610 [59, 60]. It is worth mentioning that the four
moons of Jupiter were also discovered independently
by Simon Mayr who gave them their current names:
Io, Europa, Ganymede, and Callisto [61]. By the end
of 1610, Galileo noted that Venus showed phases like
the moon, as illustrated in Figure 23. This crucial event
confirmed for Galileo the correctness of the Copernicus
theory as the Ptolemy theory could not account for
this phenomena [28]. However, the theory of Tycho
Brahe, which places the sun revolving the earth and
the planets around the sun, could also account for the
phenomena. The rejection by Galileo of the geocentric
theory was more properly a result of his commitment to
the heliocentric theory [58]. If the heavenly bodies are
made of the same stuff as that of the earthly bodies and
obey the same laws then a large body, the sun, could not
revolve around a small one, the earth [28].
The nature of comets was the subject of the Essayer,

published in 1623 [62]. In this book, Galileo criticized
the view of one of his opponent that terrestrial parallax
was crucial in finding the distance of a comet. Galileo
argued that indeed parallax is a genuine research tool,
but only if the object seen is proven to be a real physical
object. His criticism was methodological as he had no
theory concerning the comets [28]. The book discussed
not only comets, but other subjects and was essentially a
reflection on the methods of scientific inquiry and on the
chief role played by mathematics in the investigation of
nature [28, 58]. He states in the Essayer that the universe
è scritto in lingua matematica, e i caratteri son triangoli,

cerchi, ed altre figure geometriche, senza i quali mezi è
impossibile à intenderne umanamente parola [62].

The last two treatises written by Galileo were the
Dialogue Concerning the Two Chief World Systems,
published in 1632 [63], and the Discourses and Mathe-
matical Demonstrations Relating to Two New Sciences,
published in 1638 [64, 65]. These two treatises consisted
of discussions in the form of a dialogue among three
men: Salviati, representing the point of view of Galileo,
Simplicio, a follower of Ptolemy and Aristotle, and
Sagredo, an enlightened layman. The first treatise was
divided into four days and dealt mainly with astronomi-
cal topics presenting a defense of the Copernican theory.
The second treatise was also divided into four days and
treated several topics including suction pumps, weight
of air, strength of materials, natural oscillations, and
motion of bodies under gravity. In the third day of
this treatise, Galileo reaffirms his methods of scientific
inquiry stating that principles once established by well-
chosen experiments become the foundation of the entire
structure.

The study of vibrations appeared much earlier is the
Galileo carrier as can be inferred from the following
statement: Io ho ben mille volte posto cura alle vibra-
zioni, in particolare, delle lampade pendenti in alcune
chiese da lunghissime corde, inavvertentemente state
mosse da alcuno [64]. His pendulum law states that
the time of oscillations is proportional to the square
root of the length of thread. Galileo emphasized that
each pendulum vibrates naturally with a determined
frequency, which is independent of the weight of the
oscillating body [64].

10.1. Motion of bodies

The theory of motion was given in the third and fourth
days of the Two New Sciences. Although Galileo is
very concerned with the cause of motion, the theory is
kinematics. The causes of motion is not included in an
explicit form. A relevant feature of the theory is that the
laws are independent of the weight of the bodies, a result
established by Galileo earlier in his carrier, exemplified
by the well known statement that the final velocity of
a body in free fall starting from rest does not depend
on the weight of the body. It is also implicit that the
laws are meant for the motion in which friction is absent
or negligible. In the following we will use the language
of algebra as a way of expressing the postulates and
propositions but we should bear in mind that Galileo
expressed them in geometric terms.

Galileo defines two types of motion. The first type
is the uniform motion, which means a motion with
constant speed. Along a straight line a particle traverses
equal distances in equal times. From this last statement
it follows that the distance traveled is proportional to
the elapsed time. If a particle traverses two distances in
equal time then the distances will be in the same ratio
as the speeds. Thus the speed one of a body in relation
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to another one is determined by comparing the distances
they traveled in a given interval of time. Denoting by x
the distance and by t the interval of time, the uniform
motion is written as x = ct. The second type is the
uniformly accelerated motion. Along a straight line a
particle acquires equal increments of speed in equal
intervals o time. Denoting by v the velocity then

v = at, (12)

that is, the velocity is proportional to the time elapsed.
Next, Galileo demonstrates the first proposition rela-

ted to the uniformly accelerated motion. The distance
traversed by a body in uniformly accelerated motion,
starting from rest, is the same distance traversed by a
body in uniform motion with velocity equal to half the
final velocity of the accelerated motion. If v is the final
velocity, x the distance, and t the interval of time, the
first proposition states that

x = v

2 t, (13)

where v = at. Replacing v = at into the equation (13),
it follows immediately that

x = a

2 t
2, (14)

which constitutes the second proposition of the uni-
formly accelerated motion.
The demonstration of the first proposition given by

Galileo is as follows. Let us represent by the line AB
of Figure 24 the time it takes for a body in uniformly
accelerated motion to traverse a certain distance. The
final velocity is represented by the line BC. Draw a line
parallel to AB at middle point F between B and C, which
represent the constant velocity of the uniform motion.
It is clear that the rectangle ABDE and the triangle
ABC have the same area. The demonstration would be
finished if the area of the triangle ABC is shown to be
the distance traversed by the body. But Galileo failed to
make this cognitive step. Instead, he argues that “what
the momenta may lack” in AEF “is made up by the
momenta” in FDC, completing the proof. The cognitive
step was taken by Huygens who showed that the area
of the triangle is identified as the distance traversed
by the body [66, 67]. In his treatise on the Pendulum
Clock, he showed this result by using upper and lower
bounds for the distance traversed as can be seen in
Figure 24.

The fundamental law of the theory of motion concerns
the free fall of bodies: A body in free fall follows a uni-
formly accelerated motion. Its immediate consequence
is that bodies in free fall follows the law (14). Galileo
introduces a second principle, which we call the law of
inertia: If a body is in motion in a horizontal plane the
body follows a straight line with the velocity unaltered.
Using these two principles Galileo demonstrates that the
trajectory of a projectile is parabolic.

Figure 24: AB represents the time and BC the final velocity
of a uniformly accelerated motion. (a) Representation used by
Galilleo. (b) Representation used by Huygens.

Galileo assumes that the motion of a projectile can
be decomposed in a horizontal motion, which follows
the law of inertia, and a vertical motion, that follows
the law of free fall. Suppose that a body is moving
on an elevated horizontal plane and approaches the
edge of the plane. Denoting by x and y the horizontal
and vertical distances from the edge, then the motion
of the body from the instant it leaves the plane is
described by

x = ct, y = g

2 t
2, (15)

because the horizontal motion is uniform and the vertical
is uniformly accelerated. From these equations we get the
relation between x and y,

y = g

2c2x
2, (16)

which describes a parabola.
Galileo also considers the oblique launching. This is

achieved by using a plane with a certain inclination. He
shows that if the angles of inclination differs from 45◦
by the same amount, the horizontal distance traveled by
the projectile is the same.

10.2. Motion in inclined planes

The motion of bodies in inclined planes was a major
subject of the studies of Galileo. The laws concerning
this subject are derived from the following postulate:
The final speeds acquired by bodies descending inclined
planes with the same heights are equal. This postulate is
equivalent to say that the final velocity is the same as
that acquired by the body in a free fall from a height
equal to the height of the inclined plane. From this
postulate it follows that the motion along the plane is
also a uniformly accelerated motion, although Galileo
did not seem to demonstrate this result explicitly from
the postulate.

If we use the relation x = (v/2)t, where x is the length
of the inclined plane and t the time of descending, one
concludes that t is proportional to x because the final
velocity v is the same for all inclined planes of the same
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Figure 25: The final velocity of a body starting from rest
descending the three inclined planes or any descending curve
depends only on the height.

height. This is one of the several propositions derived by
Galileo from his principles.
Some of the propositions derived by Galileo were

derived later on by Huygens in 1673 in his treatise on the
Pendulum Clock [66, 67]. These include the propositions
represented by the equations (12), (13) and (14). From
results (12) and (14) it follows that

v2 = 2ax, (17)

that is, the distance traversed by a body in uniformly
accelerated motion, starting from rest, is proportional
to the velocity squared, which is proposition 3 of the
Pendulum Clock. If the motion does not start from rest
but with a velocity v0 then the equations (12), (13), (14)
and (17) are replaced by v = v0 + at, x = (v0 + v)t/2,
x = v0t+ (a/2)t2, and v2 = v2

0 + 2ax.
The distinguish feature of the Huygens approach is his

extension of the laws of inclined plane to any descending
curve. The final velocity of a body descending any curve
is the velocity it acquires by a free fall from a height
equal to the vertical distance h from the initial point
and the horizontal passing from the final point, that is,

v2 = 2gh, (18)

where g is the increase of velocity per unit time in the
uniformly accelerated free fall. To show this proposition
Huygens consider three inclined planes as shown in
Figure 25. From the postulated of the inclined plane,
the final velocity at point B starting from A is the same
as that start from point G. Starting from G, the final
velocity at C is the same as starting from E. Finally,
the final velocity at D will be the final velocity acquired
by the body if it descends the inclined plane ED which
turns out to be the velocity of free fall from E to F.
According to the equation (17) this is given by equation
(18), which consists of proposition 8 of the Pendulum
Clock. This result is immediately generalized by any
number of inclined planes and thus to any curve such
as that of Figure 25.

11. Descartes

René Descartes was born in 1596 at La Haye (now
Descartes), France. He attended the Jesuit College at

La Flèche most likely from 1607 until 1615. He then went
to the University of Poitiers, earning a degree in canon
and civil law in 1616, after which he moved to Paris.
From 1618 he was in military service in the Netherlands
and in Germany. He quit the army in 1620 and spent a
few years in France, then stayed in Italy in the period
1623–1625 and went back to France, particularly to
Paris. Descartes returned to the Netherlands in 1628
where he lived until 1649. In this year he was invited
to the court of Sweden. He died there in 1650 [68, 69].
Descartes wrote treatises on philosophy, mathematics

and natural sciences [68, 69]. In 1637, he published his
Discourse on the Method [15, 70] where he emphasized
the use of reason in the development of sciences. This
book was accompanied by three essays: Optics, Meteo-
rology and Geometry. This last essay is a mathematical
treatise on analytic geometry. The analytic geometry
was developed not only by Descartes but also by Fermat,
and the idea of representation geometric figures by the
use of algebra might have appeared before them [33].
The basic idea of analytic geometry, stated by Des-

cartes at the very beginning of his Geometry, is that
a geometric figure can be represented by straight lines.
In geometry the area of a square of sides of length x is
equal to x2. Thus x2 is understood as an area and not as
a length. Consider now two similar triangles and let the
lengths of two corresponding sides be equal to 1 and x,
and the lengths of another two corresponding sides be x
and y. Then considering that the triangles are similar it
follows that 1/x = x/y from which we find y = x2. Now
x2 is understood as the length y of a line segment and not
as an area. In general any analytic expression involving
the length x of a line segment can be understood as the
length y of a certain line segment.
An essential feature of analytic geometry is the use

of a frame of reference consisting, in the case of plane
geometry, of two non parallel straight lines, the axes.
Thus each point of a plane figure is represented by two
straight lines connecting a point of the curve to the
two axes. The analytic relation between the lengths x
and y of these two lines, the coordinates, represent the
plane figure. As an example, let us consider a parabola,
which is geometrically defined as a conic section, the
section plane being parallel to a side of the conic surface.
Let x be the distance of a point of a parabola to the
symmetric axis and y be the distance of this point to
the line perpendicular to the symmetric axis at vertex
of the parabola. Let p be the length of a certain segment.
A geometric property of a parabola is that the area of the
square with side x is equal to the area of the rectangle
with sides y and p. This is a geometric relation between
the areas of two plane figures and may be used to define
a parabola. Writing this relation in the analytic form
py = x2, or yet as y = x2/p, it describes a parabola if
x and y are interpreted as the coordinates of a frame of
reference.
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Figure 26: At left, AB and BF are the incident and reflect rays
at the point B of the reflecting surface CBE. The point B is the
center of the circumference. At right, AB and BI are the incident
and refracted rays at the point B of the interface CBE of two
media. The point B is the center of the two circumferences.

11.1. Optics and rainbow

In his essay on Optics [15, 70], Descartes assumes that
light is as an action of the medium that is transmitted
from one point to the other, stressing that nothing
material moves. However, in his reasonings he employs
the analogy of light with the motion of a material ball,
which means that in fact he uses the emission theory of
light. Thus we judge that it is more reasonable to present
his theory of reflection and refraction of light contained
in his Optics using that light moves from one a luminous
body to our eyes with a certain velocity, in agreement
with the behavior of a material ball.
The principles of the Descartes optics are as follows.

Light is transmitted through straight lines in a trans-
parent homogeneous media. When light hits a plane
surface, the transmission is split into two orthogonal
transmissions. One of them is perpendicular to the plane
surface at the point of incidence. The other is parallel to
the plane surface and belongs to the plane of incidence.
Reflection and refraction occur in such a way that the
parallel transmission remains unchanged.

The laws of reflection are obtained by considering an
incident light ray AB hitting a surface CBE as shown
in Figure 26. AB is decomposed into two segments AC
and AH, which means that the motion of point A to B is
decomposed into two projections. One from A to H, or
from C to B, and the other from A to C, or from H to B.
In the reflection, the parallel transmission is unchanged,
which means that B goes into E, where BE is equal to
CB. As to the perpendicular component HB, it changes
direction in reflection, which means that it changes to
BH. The composition of the components BE and BH
gives the segment F. where F is on the circumference
centered at B and radius AB. It follows immediately
that the angle of incidence ABH is equal to the angle
of reflection HBF.

To find the law of refraction, one proceeds in a similar
manner except that now the component HB now changes
into the component BG, as shown in Figure 26. To locate
the point G, we draw a circumference with center at B

Figure 27: An illustration contained in the Meteorology of
Descartes [15] explaining how the rainbow is formed. A light
ray coming from the sun suffers an internal reflection in a drop
of water and reaches the observer’s eye. The principal arc of
the rainbow is produced by the ray ABCDE, which undergoes a
single internal reflection, whereas the secondary arc is produced
by the ray FGHIKE, which undergoes two internal reflections.

and a radius BI such that the ratio BI/AB is equal to
the ratio of the velocities of light in the two media. From
the point E we draw a vertical line that meet the great
circumference at point I, and from this point we draw
a line parallel to BE which meets the point G in the
extension of BH. The components of BI are BE and BG.
By construction of the refracted ray B, it follows that
ratio BI/AB is equal to the ratio sinα/ sin β, where α
is the angle of incidence ABH and β is the angle of
refraction IBG. Now, the ratio BI/AB= k is the ratio
of the radii of the two circumferences which is equal to
the ratio of the velocities and thus a constant. We may
write than the law of refraction as

sinα
sin β = n, (19)

where n is the same for all values of the inclination of
the incident ray.
A fascinating topic discussed by Descartes was the

rainbow, contained in his Meteorology [15, 70]. An
illustration contained in this treatise is reproduced in
Figure 27. Descartes considers a spherical drop of water
and how a light ray is reflected inside it. A light ray
coming from the sun enters the sphere at point A, suffers
an internal reflection in B and then exit through C, as
shown in Figure 28. The angle angle on incidence α at
A is equal to the angle OAP and the angle of refraction
β is OAB, and they are related by relation (19). The
angle APC is the angle which the rainbow subtends.
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Figure 28: A spherical drop of water. At left, the light ray suffers
one internal reflections, giving rise to the principal arc of the
rainbow. At right, the light ray suffers two internal reflection,
giving rise to the secondary arc of the rainbow.

Defining by φ half this angle wee see from Figure 28
that φ = 2β−α. Given an angle of incidence this relation
gives φ as β is related to α by (19). Descartes chooses
the value of α which gives the maximum the value of φ.
Carrying out the maximization we find

sinφ = 1
n2

(
4− n2

3

)3/2

. (20)

Replacing n = 250/187 which is the value employed by
Descartes we reach the result 2φ = 41◦30′ which is the
result found by Descartes.
The result just obtained gives the elevation angle

corresponding to the principal arc of the rainbow. To
find the elevation angle corresponding to the secondary
arc of the rainbow we have to consider two reflections
inside the raindrop as shown in Figure 28. Now the angle
φ is related to α and β by φ = 90◦ + α − 3β. Descartes
chooses the minimum value of φ. The minimization of
this expression with the condition (19) leads us to the
result

sinφ = 1
8n3 (n4 + 18n2 − 27). (21)

Replacing the value n = 250/187, we reach the result
given by Descartes, 2φ = 51◦54′.

12. Pascal

Pascal was born in 1623 at Clermont, France. In 1631, his
father and children moved to Paris. His education began
in 1632, receiving lessons from his father himself [71].
According to his elder sister, he never went to a school
and never had a teacher other than his father [72]. In
1640, the family settled in Rouen. In 1647, Pascal moved
to Paris and, except for two long stays in Clermont, he
lived in Paris until his death in 1662. Pascal is mainly
remembered for his Pensées, concerning the human
condition. The students of physical sciences also remem-
ber him by his contribution to hydrostatics and this
studies of the barometer. He also wrote on philosophy,
philosophy of mathematics, and mathematics [71].
In his book New Experiments Concerning the Vacuum

[73], published in 1647, Pascal reported experiments

that were extensions of those conducted by Torricelli
in 1643. Torricelli filled a tube, having one end closed,
with mercury and turned it in a vertical position with
its mouth inside a vessel with mercury. He observed
that the column of mercury reached always the height of
“un braccio, e un quarto, e un dito più” [74]. Torricelli
explained that we are immersed at the bottom of a
sea of air which has a certain height, and that the
weight of the air equilibrates the column of mercury [74].
Torricelli concluded that it is not necessary to attribute
the explanation of the experiment to a repugnance of
nature to vacuum and Pascal drew the same conclusions
from his new experiments. In a letter to his brother-in-
law, he explains that it is the weight and pressure of the
air that equilibrate the column of mercury [75].

In a response to an opponent concerning these ex-
periments, Pascal reinforces his views concerning the
vacuum and set forth his views on the scientific method,
emphasizing the use of rational thinking and an appro-
ach based on principles or postulates, as did Euclid. He
stressed that one also should avoid circular reasoning
and circular definition. Pascal gives the following exam-
ples of a circular definition, taken from his opponent,
that should be avoided: light is the luminairy movement
of luminous bodies [72].

In the Account of the Great Experiment on Equili-
brium in Liquids of 1648 [75], Pascal attached the report
from his brother-in-law concerning the experiment that
he carried out at the top of Puy de Dôme, near Clermont,
in 19 September 1648, at the request of Pascal. He
found that the column of the mercury was 23 inches
and 2 lignes at the top and 26 inches and 3.5 lignes
in the Minims, at Clermont. Pascal himself performed
the experiment in the tower of Saint-Jacques, Paris, and
found a difference of two lignes between the top and
bottom of the tower [75].

The Treatises on the Equilibrium of Liquids and on
the Weight of the Mass of Air [76] were completed
in 1654 but published in 1663 [71], one year after
his death. They are a systematization of the ideas
concerning the equilibrium of fluids some of which were
similar to those of Stevin, Torricelli, and Mersenne. In
these treatises, Pascal presents the concept of pressure
and describes several experiments on the equilibrium of
fluids, explaining them in the light of his hydrostatic
principle.

Pascal states the hydrostatic principle in the first tre-
atise in the following terms: The liquids weigh according
to their height. If vessels of distinct shapes, such as those
of Figure 29, have the same base, then the force of the
liquid on the base will be the same as long as the level
of the liquid is the same. We rephrase this statement
by saying that the pressure at the bottom is the same,
although Pascal did not use the term pressure in the
treatises.

If one applies the hydrostatic principle to the machine
of Figure 29, we see that it is possible to equilibrate two
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Figure 29: Illustration of the Pascal hydrostatic principle.
At left, four vessels with distinct shapes but with the same base.
The pressure at the bottom is the same in all the four vessels.
At right, the small body equilibrates the large body.

bodies of distinct weights. As the pressure at the level
AB is the same as that of the level CD, then the force
will be proportional to the area of the right section of the
tube. Then, if two bodies are placed in the two tubes,
as shown in Figure 29, then they will be in equilibrium
if the ratio of their weights is equal to the ratio of the
two areas. We write this result as p1/p2 = a1/a2, where
p1 and p2 are the weights, and a1 and a2 the areas.
Suppose that the small body is forced down by a very
small distance b1. The large body will go up a distance
b2 such that a1b1 = a2b2. Replacing this result in the
previous equation, one finds

p1b1 = p2b2. (22)

Pascal exemplifies the above result by saying that it
is the same thing to make a hundred pounds of water go
an inch, as it is to make a pound of water go a hundred
inches. He also points out that this relation is the true
cause of the equilibrium, and it is similar to the principle
used in other machine such as lever machine. Indeed, let
us consider the Archimedes law of lever, p1`1 = p2`2,
where `1 and `2 are the lengths of the arms of the
lever. If the body weighing p1 is pushed down a very
small distance b1, the body weighing p2 will go up a
distance b2 such that b1/`1 = b2/`2, from which we reach
equation (22).
Pascal also shows that the two bodies remains in

equilibrium if they are perturbed. To this end he uses
the principle of center of gravity according to which the
equilibrium is lost if the common center of gravity moves
downward under a perturbation. He shows that this
is not the case of his hydraulic machine. According to
Pascal, he demonstrated this principle in a small treatise
on mechanics, now lost.

The Archimedes principle is shown by considering that
a body immersed in water is under pressure by the water
in all sides. But the pressure in the lowest parts of the
body is larger that the pressure in the highest parts
with the result that the upward force is greater that
the downward force. Pascal then concludes that the net
force will be that of the water displaced by the body.

In the second treatise, Pascal explains that the weight
of the air is the origin of the pressure on every part of a
body immersed in it in a way similar to a body immersed
in a liquid. He states that the weight of air, which gives

rise to the atmospheric pressure, is the origin of all effects
which up to his time were attributed to the repugnance
of nature to vacuum. The atmospheric pressure explains
why it is difficult to open a clogged bellows, or why
water flows upwards when a syringe is placed in water
and its piston is withdraw. It is also behind the acts of
breathing and sucking, particularly, the act of sucking
made by a baby in breastfeeding. Pascal also explains
that the atmospheric air may vary according to humidity
and height.

As the mass of air is limited, the height of the column
of liquid in a vertical tube sealed at the top and the
mouth immersed in the liquid is also limited. This is
the reason why it is impossible to raise water by suction
pumps in wells with depths larger than this maximum
value. This value is 31 feet for water, two feet three
inches and five lignes for mercury, and 34 feet for oil.

It is quite clear that Pascal used an experimental
approach in his scientific work. A good example is the
experiment carried out by his brother-in-law at the top
of the Puy-de-Dôme. Other examples are presented in
the treatises on the equilibrium of liquids and the weight
of air including the crucial vacuum within a vacuum
experiment. In this experiment a Torricelli apparatus
is placed inside an evacuated location to show that
there is no column of mercury. However, the experiments
described by Pascal are not properly devised to infer or
to discover a law of nature. They are devised to show the
correctness of his fundamental principle or to show that
they can be explained by his fundamental principle.

13. Huygens

Christiaan Huygens was born in 1629, at the Hague,
Netherlands. He was taught at home by a tutor until he
was sixteen. In 1645, he went to the University of Leiden
and in 1647 to the Orange College at Breda, completing
his studies two years later. He moved to Paris in 1666
where he lived for fifteen years. He went back to the
Hague in 1681 where he lived until his death in 1695 [77].

Huygens carried out researches in astronomy, me-
chanics, statics, optics, and probability. In astronomy,
he discovered in 1655 a moon of Saturn, later called
Titan, and resolved the puzzling three spherical form of
Saturn found by Galileo. He explained in a publication
of 1659 that it was a solid ring orbiting Saturn with an
inclination of 20◦ to the ecliptic [77].

His treatise on the Pendulum Clock was published in
1673, dealing with the oscillations of a pendulum and the
construction of pendulum clocks. In the second part he is
concerned with the cycloidal pendulum which he showed
to hold the isochronous property. In the end of this book
he published the laws related to the centrifugal forces
without giving their derivations. These derivation were
contained in a treatise written in 1659 but published
only in 1703 [77]. These works on mechanics were based
on the theory of Galileo.
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Figure 30: (a) Parabolic trajectory ABC of a projectile B
launched horizontally from point A. The motion is decomposed
into a uniform motion AD and a uniformly accelerated motion
DB. (b) Circular trajectory of a body H tied to a thread HN over
a horizontal plane. The motion is decomposed into a uniform
motion GL and a uniformly accelerated motion LH.

It seems that Huygens was led to the development of
a wave theory of light to account for the same properties
of light that have been considered by Descartes, particu-
larly the sine law of refraction and the independence of
light when crossing each other [78]. His Treatise on Light
published in 1690 [79, 80] but he had written it in 1678
[77]. Huygens considered the speed of light to be finite,
a crucial feature in the development of the wave theory.
In the introductory part of his treatise he estimated
the speed of light to be 16 2/3 earth diameters per
second based on the astronomic observations of Rømer
concerning the delays on the eclipses of the moons of
Jupiter.

13.1. Centrifugal force

The relation between force and velocity in a circular mo-
tion was derived by Huygens [81] using an analogy with
the motion of a projectile, as illustrated in Figure 30.
According to Galileo, the motion of a projectile can be
understood as being composed by a horizontal uniform
motion and a vertical uniformly accelerated motion. Let
us consider the circular motion of a body tied to a
thread, as shown in Figure 30. The motion occurs on
a horizontal plane so that the weight of the body plays
no role. We denote by r the radius of the circumference
and by v the velocity of the body.
If the body is released from the thread when it

is at the point G, it continues in rectilinear motion
with constant velocity. Huygens, thus considers that the
circular motion is composed by this rectilinear motion
and a uniformly accelerated motion in the direction of
the center of the circumference. If after an interval of
time t the body is at the point H then the arc GH is
equal to vt. Now, assuming that the arc GH is small
compared to r, the following geometric relation can
be obtained: LH/GH=GH/2r. In accordance with the
assumption made, the cord GH equals vt and we find
LH=v2t2/2r, and indeed the component LH corresponds
to a uniformly accelerated motion, that is, LH=at2/2
where a = v2/r.

Figure 31: (a) Simple pendulum: the trajectory ABC is an arc
of circumference. (b) Cycloidal pendulum: the trajectory DEF
is a cycloid and the period of oscillation is independent of the
amplitude.

Huygens argues that the force acting on the body by
the thread is proportional to the distance LH and thus
proportional to the quantity a = v2/r. Next, he gives
the following reasoning. In a free fall the acceleration
of distinct bodies are the same. However, the force
acting on the body is proportional to its gravity or solid
quantity. Therefore, the force acting on a body executing
a circular motion is proportional to its solid quantity. If
we denote this quantity by m, the centrifugal force F
derived by Huygens can be written in the form

F = m
v2

r
, (23)

although he did not write it in this explicit form.

13.2. Cycloidal pendulum

Its seems that Galileo considered the period of a simple
pendulum to be independent of the amplitude of swin-
ging. In his treatise on the Pendulum Clock [66, 67],
Huygens remarks that the period of a simple pendulum
is greater for larger amplitudes and thus not isochronous
[77]. He shows that, in contrast to a simple pendulum
which follows a circular path, a pendulum that follows a
cycloidal curve is isochronous, as illustrated in Figure 31.
This result was derived by using the Galileo theory of
motion, for which he gives a summary of its principles
and derive some of its propositions.

A cycloid, shown in Figure 32, is a curve traced by a
point at the edge of a circle rolling without sliding along
a straight line. Defining θ as the angle OCP, a point A
of the cycloid is given parametrically by

x = r(θ − sin θ), (24)

y = r(1− cos θ), (25)

where x is the horizontal distance HA and y is the
vertical distance KA, and r is the radius CO of the
circumference which generates de cycloid. A body is
released from rest at the point G defined by x0 =
r(θ0 − sin θ0) and y0 = r(1 − cos θ0) where θ0 is the
angle OCD. The problem is the determination it takes
to reach the lowest point F of the cycloid [82].
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Figure 32: The curve OAF is a cycloid. A body released from
rest at any point of the trajectory, such as the point G, will take
the same time to reach the lowest point F. Any point A of the
cycloid OAF is mapped onto a point P of the semicircumference
OPM. Any point of the trajectory GAF is mapped onto the small
semicircumference LBF.

As the vertical distance traversed by the body is y−y0,
then according to (18), the velocity at the point A is

v =
√

2g(y − y0). (26)

The time it takes for the body to travel the distance s
of the small inclined segment tangent to the cycloid at
A is τ = s/v. Let ` be the length ` of the small segment
tangent to the circumference LBF at the point B. Next,
we wish to determine the relation between ` and s, which
is accomplished by finding their slopes. A property of
the cycloid states that a tangent of the cycloid at A is
parallel to the line PM. From this property the slope of
the small segment at A is equal to two right angles minus
θ/2. Let us denote by φ the angle BNL. Then the slope
of the small segment at B is equal to two right angles
minus φ. From these results we find

s cos θ2 = ` sinφ. (27)

The relation between the angles φ and θ is determined
as follows. Let us denote by a the radius of the small
circumference. As the diameter LF is equal to GM, we
find 2a = r(1 + cos θ0) or

a = r cos2 θ0

2 . (28)

The segment HM is 2r − y = r(1 + cos θ) = 2r cos2 θ/2
and equal to a(1 + cosφ) = 2a cos2 φ/2. Therefore,

r cos2 θ

2 = a cos2 φ

2 , (29)

which is the desired relation between θ and φ. It can be
written as

cos θ2 = cos θ0

2 cos φ2 . (30)

Replacing the result (30) in the expression (26), we
get v in terms of θ0 and φ,

v = 2√gr cos θ0

2 sin φ2 . (31)

Figure 33: Illustration of the Huygens principle. BC and DE are
wave fronts originating from the point A, whereas the small arcs
are secondary front waves originating from the points on the arc
BC.

Collecting the results above we find the following expres-
sion for τ = s/v,

τ = `
√
gr(cos2 θ0/2) = `

a

√
r

g
. (32)

The time of descent is obtained by summing all
segments ` when θ varies from θ0 until two right angles,
or when φ varies from zero until two right angle. The sum
of these segments is the length of a semi-circumference or
radius a, that is, πa. Thus the time of descent is π

√
r/g.

The period T of a pendulum is four times the time of
descent, or

T = 2π
√

4r
g
, (33)

and is independent of θ0, and thus independent of the
amplitude of oscillations.

13.3. Wave theory of light

Huygens introduces the concept of light waves in analogy
with sound propagation. Sound spreads through the air
from its origin in successive growing spherical surfaces.
In same manner, light spreads by spherical surfaces
called waves in resemblance to waves produced in water
when a stone is thrown in it. However, sound and
light are very distinct in respect to underlying media
supporting their spreading. The sound that reaches
our years is transmitted through the air whereas the
light that reaches our eyes is conveye by a matter
called ethereal by Huygens. It pervades places devoid
of air, such as the Torricelli vacuum, allowing light to
traverse it.
Huygens postulates that every particle of a luminous

body is a center of spreading of a spherical light wave.
He also postulates that each point of a spherical front
can be regarded as the origin of a secondary wave, as
can be seen in Figure 33. These postulates constitutes
the fundamental principle upon which is based his wave
theory.
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Figure 34: Reflection of light waves. AB is an incident front
wave and CD is the reflection front wave. CE is an arc of the
circumference with center at A and radius AC equal to BD and
understood as a secondary wave front with origin at A.

The reflection of a wave light is constructed as follows.
Let AB be a wave front of an incident light wave and
CD that of a reflected light wave as shown in Figure 34.
The points C and D are understood as belonging to the
secondary front waves having their origins at the points
A and B, respectively. Since the front waves have the
same radius it follows that BD equals AC. From this
result we conclude that the angle BAD equals the angle
ADC. But these two angles are identified as the angle of
incidence α and and angle of reflection β, respectively,
and the law of reflection, α = β, becomes demonstrated.
The sine law of refraction is derive as follows. Let AB

be a wave front of an incident light wave and CD that of
a refracted light wave, as shown in Figure 35. The points
C and D are understood as belonging to the secondary
front waves having their origins at the points A and B,
respectively. As the rectangular triangles ABD and ACD
have a common hypotenuse, and bearing in mind that
BAD is identified as the angle of incidence α and ADC
is identified as the angle of refraction, we conclude that
sinα/ sin β = BD/AC. Now, the radius AC of the first
wave front is distinct from the radius BD of the second
wave front because because they are proportional to the
speed of light in the medium. Denoting by v1 and v2 the
speeds in the upper and lower media, then BD/AC =
v1/v2 and sinα/ sin β = v1/v2, which is the sine law of
refraction.
After reaching the refraction law, Huygens showed

how his principle could lead to the Fermat principle
of least time. Fermat postulated that among all the
paths connecting two given points, the actual path
taken by a light ray is that with least time. In a
correspondence of 1662, he demonstrated that the sine
law of refraction was a consequence of his principle [78].
Huygens demonstrated the reverse, that the least time
principle was a result of the sine law, as follows. Let A
and C two points on distinct media and ABC a light
ray connected them, as shown in Figure 36. Let AFC
another path connecting these two points. The line OF

Figure 35: Refraction of light waves. AB is an incident front
wave and CD is the refraction front wave. CE is an arc of the
circumference centered at A and radius equal to AC which is
equal to BD times the ratio between the wave velocities of the
lower and upper media. CE is understood as a secondary wave
front with origin at A.

is parallel to AB, AO and BH are perpendicular to AB,
and GF is perpendicular to BC.
As the angle BFH and BFG can be identified as the

angle of incidence and refraction, respectively, then from
the law of sines, the ratio HF/BG is equal to the ratio of
the speeds of lights on the two media and consequently
HG is traversed in the same time as BG. Therefore, the
time it takes to travel along ABG is the same as that
of OF. But the time to travel AF is larger than that
of OF and thus larger than that of ABG. In addition,
the time to travel FC is larger than that of GC, which
completes the demonstration. A similar demonstration
can be carried out if the point F is chosen to be at the
left of the point B.
Huygens discusses also the refraction of light in the

atmospheric air. He argues that as the air is not
homogeneous the light ray does not travel in straight
lines. A light ray may be understood as traversing a
sequence of layers with distinct refractions yielding a non
rectilinear path to the light ray. He gives the examples
of the sun as it sets in the horizon. The refraction near
the horizon makes the sun appear higher than the actual
position.
A large part of the treatise is devoted to the discussion

of the double refraction of Iceland spar, the transparent
form of calcite. To explain this phenomena, Huygens
considered that the front wave impinging on the surface
of calcite is split into two waves generating the ordinary
and extraordinary rays. The ordinary ray is transmitted
by spherical waves. The extraordinary ray is transmitted
by ellipsoidal waves having different velocities in distinct
directions.

14. Newton

Isaac Newton was born in 25 December 1642 (Julian
calendar) at Woolsthorpe, England. He attended the
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Figure 36: AB and BC are the incident and refracted rays at
the point B of an interface BF. AFC is another arbitrary path
connecting the points A and C. The time to reach point C from
A is smaller for the path ABC, which obey the sine law, than it
is for the path AFC.

Grantham grammar school from 1653 until 1660. He
was admitted at the Trinity College, University of
Cambridge, in 1661. In 1665, he left to Woolsthorpe
because of the great plague but returned to Cambridge
two years later, in 1667. He was awarded the degree of
Master of Arts soon after his return, and in 1669 was
appointed professor of mathematics at Cambridge. In
1696 he accepted the post of warden of the Royal Mint
and departed from Cambridge to London. He lived in
London for 30 years and died there in 1727 [83].
He wrote on mathematics, optics, mechanics, astro-

nomy, and heat. His theory of light is contained in
his books on Optics [84] published in 1704 but in
part written much earlier. The distinguishing feature
of his theory of light lies in the treatment of color.
According to his theory the sun light consists of light
rays of different colors having distinct refrangibility. This
feature explains the prism experiment that he carried
out in 1666 [83] and described in his treatise. A small
circular hole is made on the window of a dark chamber
through which a sun light beam enters the chamber.
The beam passes through a triangular glass prism and is
projected on the opposite wall revealing the dispersion
of the light in several colors.

His major work Mathematical Principles of Natural
Philosophy was published in 1687, in Latin [85]. A
translation of the third Latin edition appeared in 1729
[86, 87]. He gives a systematic and logical exposition of
his theory of motion and of his theory of gravitational
attraction. His theory of motion is meant to describe not
only terrestrial bodies but also celestial bodies, and his
theory of gravitational attraction does not distinguish
whether the body is terrestrial or celestial. The treatise
comprises two initial sections followed by three books.
The first initial section contains the definitions of some
quantities, and the second, the statements of the three
fundamental laws.

14.1. Laws of motion

The definition 1 is that of quantity of matter, or mass,
which is defined as arising from its density and bulk
conjointly. This is clearly a circular definition which
we break by interpreting this statement as the presen-
tation of mass as a primitive concept of the theory.
The definition 2 is that of quantity of motion which
is defined as arising from the velocity and quantity
of matter conjointly, that is, the product of velocity
and mass.
The definition 4 is that of impressed force, or force,

which is an action exerted upon a body, in order to
change its state, either of rest, or uniform in a right line.
Again, if we take into account the laws of motion, this is
a circular definition. We thus interpret this statement as
the presentation of force as a primitive concept. Newton
remarks that a force can always be decomposed into two
oblique forces according to a parallelogram. In modern
terms a force is understood as a vector quantity.
Newton does not give definitions of time and space

because, he says, they are well known to all. However,
he distinguishes abolute time from relative time and
absolute space from relative space. Absolute time flows
equably and is synonymous of duration whereas relative
time is the sensible measure of duration such as an hour,
a day, a month, a year. The absolute space remains
similar and immovable whereas relative space is some
movable measure of absolute space. The motion on the
absolute space is termed absolute motion. A body at rest
on a ship on sail is in relative rest but if it moves it will
be in relative motion with respect to the ship.
The three postulates or the three fundamental laws of

the Principles are:

1. Every body continues in its state of rest, or of
uniform motion in a straight line, unless it is
compelled to change that state by forces impressed
upon it.

2. The change of motion is proportional to motive
force impressed; and is made in the direction of
the straight line in which that force is impressed.
More clearly, the change of the quantity of motion
per unit time.

3. To every action there is always opposed an equal
reaction: or, the mutual actions of two bodies
upon each other are always equal, and directed to
contrary parts.

It should be pointed out that velocity and quantity of
motion are conceived as comprising direction. In modern
terms they are vector quantities. Thus a change in
velocity means a change in the speed, or a change in
the direction of the motion, or both. Thus the second
postulate says that a force is necessary not only to
change the speed but also to change the direction of
motion, even if the speed remains constant.
The underlying mathematics of the Principles is ge-

ometry but Newton combined geometry with calculus,
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Figure 37: When the point B approaches the point A along the
curve ABC, the ultimate ratios of the lengths of the arc AB,
the cord AB and the tangent AD are equal to unity. When the
widths of the rectangles decrease and their number increase in
infinitum, the sum of the areas of the rectangles approaches the
area under the curve GH.

that he invented. This geometric calculus he calls the
method of first and last ratios, and is presented in the
section 1 of book 1. The basic rules of his calculus are
represented in Figure 37. Consider the point B on the
curve ABC and the tangent AD, the chord AB, and
the arc AB. When the point B approaches the point
A, the ultimate ratios of their lengths are equal to
unity. Consider now the area under the curve GH and
the areas of the inscribed and circumscribed rectangles
When the widths of the rectangles decrease and their
number increase in infinitum, their ultimate ratios are
equal to unity. In other terms, the sum of the areas of
the rectangles approaches the area under the curve.

14.2. Central forces

The law of area is presented in section 2 of book 1. If a
body is under the action of a central force then the line
joining the body to the center of force sweeps equal areas
in equal times. Let us consider the trajectory of a body
under the action of a force directed toward the center
S, as shown in Figure 38. At equal intervals of time τ ,
one draws the points A, B, C, D, and E on the curve.
The continuous trajectory is replaced by the sequence
of straight line segments. Along each line segment the
velocity of the body is constant and its length is τ
multiplied by the velocity. The change in velocity at
the point B is obtained by drawing the parallelogram
ABCK. The line segment BK gives the change in velocity
multiplied by τ , and by the second postulate, it must
have the direction BS of the impressed force. We thus
conclude that K is on the line BS.
The triangles SBA and SBC have the same area

because they have a common base SB and their heights
are equal because, as ABCK is a parallelogram, the
triangles KBA and KBC have equal heights. By similar
reasonings, the triangles SAB, SBC, SCD, and SDE have
equal areas. To complete the demonstration it suffices
to decrease the lengths of the segments and increase
their number in infinitum so as to approach the original
trajectory.

Figure 38: The trajectory of a body under the action of a central
force toward the center S is approximated by a polygonal path.
The points A, B, C, D, and E are chosen so that the intervals
of time for traveling each line segment are the same. ABCK is
a parallelogram and K is on the line SB.

The demonstration that centripetal force is proporti-
onal to the square of the velocity divided by the radius
of the circular path is carried out by considering that
the curve of Figure 38 is a circumference. In this case,
the triangles SBC and KBE become similar isosceles
triangles from which follows that SB/BC=BC/KB. De-
noting by τ the interval of time, by r the radius of
the circumference, by v the velocity, then SB equals r,
BC equals τv, and KB= τ2v2/r. As KB equals τ times
the change in velocity, this quantity is τv2/r. From the
second postulate, the force F is the mass m times the
change in velocity per unit time, or

F = m
v2

r
. (34)

Let us suppose that the force acting on the body in
circular motion is inversely proportional to the square of
the radius. Then, using the formula (34), we see that v
will be proportional to r−1/2 and as v is the perimeter
of the circumference divided by the period T it follows
that T is proportional to r3/2.

The law of areas allows us to formulate the second
fundamental law in geometric terms alone. Let P and
Q two points of a trajectory separated in time by an
interval of time τ . Let RP be a tangent to P and QV
a parallel to the tangent at the point Q, as shown in
Figure 39. The line PC connects the point P to the center
of force C, and QR and QT are, respectively, parallel and
perpendicular to PC. The line segment RP is the velocity
of the body multiplied by τ and QR is the change in
velocity multiplied by τ . As, by the second postulate, the
force is proportional to the change in velocity divided
by τ , then it is proportional QR/τ2. Using the law of
areas, we see that the area of the triangle CQP, which
is CP·QT, is proportional to τ . This result allows us to
replace τ by the area and reach the result that the force
is proportional to

QR
CP2 ·QT2 . (35)

If a body revolves in an ellipse, the law of force
attracting the body to its center is proportional to
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Figure 39: A body P describes the ellipse ABGK and is under an
attractive central force directed towards center C of the ellipse.
The line RP is tangent to the ellipse at P and QV and the
diameter DCK are parallel to RP, and PF is perpendicular to
RP. The line QR is parallel to the line CP joining P to the
center C of the ellipse and QT is perpendicular to CP.

distance to its center. This proposition is demonstrated
by using the result (35) and two geometric properties of
an ellipse. If V is a point on CP, and DC is parallel to
the tangent at P, then the first property is

GV · PV
QV2 = CP2

CD2 . (36)

If we let PF be perpendicular to DC, then the second
property of the ellipse is

BC · CA = CD · PF. (37)

Considering that the rectangular triangles PFC and
QTV are similar then QV/QT=CP/PF or, using the
two properties of the ellipse, PV/QT2 = PC4/a2b2·GV
where a and b are the semi-major and semi-manor axis
of the ellipse, CA and CB. When the point Q approaches
P, GV approaches 2PC and PV/PC2·QT2 = PC/2a2b2.
Recalling that PV equals QR we see that the force is
proportional to PC, the distance of the body to the
center of the ellipse.

14.3. Motion in eccentric conic section

In section 3 of book 1, Newton poses the problem of
finding the law of force concerning the motion of a
body on trajectory which is a conic section, an ellipse, a
parabola, or a hyperbola. Newton shows that the force is
inversely proportional to the square of the distance of the
body to center of force located at the focus of the conic
section. For the elliptical trajectory the demonstration
is as follows [88]. Let RP be a tangent to a point P
of an ellipse, QV a parallel to the tangent that crosses
the ellipse at the point Q, and DC another parallel to
the tangent at the center C of the ellipse, as shown in

Figure 40: A body P describes the ellipse ABGK and is under
an attractive central force directed towards the focus S of the
ellipse. The line RP is tangent to the ellipse at P and QV and
the diameter DCK are parallel to RP. The line QR is parallel to
the line CS joining P to the focus S of the ellipse and QT is
perpendicular to CS.

Figure 40. The line SP connects the focus S to the point
P, QR is a parallel to SP, and QT is perpendicular to
SP. The line CP connects the center of the ellipse to the
point P.
The demonstration uses the result (35) but in the

present case the center of force is the focus S and the
force acting on the body at P is proportional to

QR
SP2 ·QT2 . (38)

Considering that XV and EC are parallel, then
XP/PV=PE/PC or QR/PV=AC/CP, where we used a
third property of an ellipse PE=AC, and that XP=QR.
Using the first property of an ellipse mentioned above,
we find QR·GV/QV=CP·AC/CD2. When Q and P
coincide, we may replace GV=GP=2AC to find

QR
QV2 = AC

2CD2 . (39)

Taking into account that QT is perpendicular to PE
and PF is perpendicular to EP, then QX/QT=PE/PF
or QX/QT=CA/PF. Using the second property of an
ellipse mentioned above, we find

QX
QT = CD

CB
. (40)

Multiplying equation (39) by the square of (40), and
taking into account that QX approaches QV when the
point Q approaches P, we reach the result

QR
QT2 = a

2b2 . (41)

Replacing this result in equation (38) and recalling that
SP is the distance of the body to the focus S of the
ellipse, we reach the desired result, namely that the force
is inversely proportional to the square of the distance.
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14.4. Attractive forces of spherical bodies

Up to section 11 of book 1, Newton treated the motion
and forces between corpuscles understood as bodies with
sizes small when compared with the distances between
them. In the following section, he starts by considering
bodies that are not small compared to their distance,
particularly spherically symmetric bodies. In section 12
of book 1, he analyzes the force acted on a corpuscle
by a spherical surface assuming that the force between
the corpuscle and any element of the spherical surface is
inversely proportional to the square of the distance. The
mass is uniformly distributed on the spherical surface so
that the mass of a portion of the surface is proportional
to its area.
If the corpuscle is located inside the spherical surface,

the total force on the corpuscle vanishes. This result is
shown by considering two opposite elements of the sur-
face in relation to the corpuscle. The ratio of the areas
and thus ratio of their masses will be equal to the ratio
of the square of their distances to the corpuscle. As the
force on the corpuscle is proportional to the mass of
the element and inversely proportional to the square of
the distance, it follows that the forces are equal and
opposite.
If the corpuscle is located outside the spherical surface,

the total force on the corpuscle will be inversely propor-
tional to the square of the distance of the corpuscle to
the center of the sphere. That is, the force of attraction is
the one that results if all the mass were concentrated at
the center. This crucial theorem is stated as proposition
71 and its geometric demonstration presented in the
Principles has been considered to be difficult and “must
have left its readers in helpless wonder” [89]. We will not
try to reproduce the demonstration given by Newton and
instead present another geometric demonstration.
The corpuscle is located at P and PE and PF are

straight lines that cut the spherical surface as shown
is Figure 41. The force at P due to the element EF
is proportional to 1/PE2. The projection of force along
the direction PS will be proportional (PC/PE)(1/PE2).
If we take into account the ring generated by the segment
EF as the semicircle AEFB revolves around the diameter
AB, the force along PS will be proportional to the area
of the ring and thus proportional to

EF · EC · PC
PE3 . (42)

Now let us consider the difference

FS3 − FS ·DS · PS
PS2 · PF

− ES3 − ES · CS · PS
PS2 · PE

. (43)

If EF is small enough the expressions (42) and (43)
becomes equal or in the language used by Newton, the
ratio between them becomes equal to one when F appro-
aches E. This is carried out by taking into account that
PF2=PE2+2(ES+FS)·CD, and that the ratio CD/EF
equals EC/ES when the point F approaches E.

Figure 41: AEFB is a cross section of a spherical surface with
center at S. The mass is distributed uniformly on the surface.
Each element of the surface attracts a corpuscle placed at the
point P with a force inversely proportional to the square of the
distance. The lines PE and PF join the ends of the element EF
to the point P, and EC and FD are perpendicular to PS.

To find the total force acting on the point P, we have
to sum all terms of the type (42), or equivalently, of the
type (43), along the semicircle AEFB. The result is

R3 −Rr2

r2(r +R) −
R3 −Rr2

r2(r −R) = 2R2

r2 , (44)

where R is the radius of the spherical surface and r is the
distance PS of the corpuscle to the center of the sphere.
Newton generalizes the above results to a spherical

body by considering it as made up by concentric sphe-
rical surfaces. If the corpuscle outside the sphere it will
be attracted with a force inversely proportional of the
distance to the center of the sphere. If the corpuscle is
inside the sphere and if the sphere is homogeneous, then
the force towards the center will be proportional to the
distance to the center.

14.5. Gravitation

In the book 3 of the Principles, Newton presents the
law of gravitation in the form of a statement concerning
spherical bodies with a distribution of mass which
depends only on the distance from its center. The force
of gravitational attraction between two such bodies are
inversely proportional to the square of the distance from
their center and proportional to their masses.
Instead of spherical bodies, the gravitational law could

be stated more generically in terms of particles. But in
this case, we face the problem of deriving the inverse
square laws for spherical bodies. The derivation was
given by Newton in book 1, as we have seen above. This
solution of this problem appears to be the cause of the
delay in the announcing the law of gravitation and the
publication of the Principles as he already had conceived
the law in 1666 [87].
As the acceleration is the force divided by the mass,

the acceleration of a body due to the gravitational
attraction is independent of its mass. In accordance with
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Figure 42: Orbit of the great comet of 1680 taken from an illustration of the Principles [87]. ABC represents the orbit of the
comet, D the sun, GH the intersection with the sphere of the orbit of the earth. The points I, K, L, M, N, O, P, Q, R, S, T, and
V represent the place of the comet at November 4, 11, 19, December 12, 21, 29, 1680, January 5, 25, February 5, 25, March 5, 9,
1681, respectively.

the law of gravitation the acceleration at a certain point
due to a spherical body is inversely proportional to the
distance to the center of the sphere. This result allowed
Newton to determine the acceleration at the surface of
the earth from that of the moon. Newton assumed the
distance of the moon from the earth to be 60 semi-
diameters of the earth and the orbital period to be 27
days, 7 hours, and 43 minutes and the circumference of
the earth to be 123249600 Paris feet. From these results,
he determined the acceleration of the moon, and dividing
it by 60×60 he obtained the acceleration at the surface
of the earth. He presented the results in terms of the
space traveled by a body in one second, which is half
the acceleration. The value he found was 15 feet, 1 inch,
and 1 line 4/9, which he compared with the value 15
feet, 1 inch, and 1 line 7/9, obtained by Huygens from
the oscillations of a pendulum. Newton concluded that
the force by which the moon is retained in its orbit is
that very same force which we commonly call gravity.

Assuming the inverse square laws for spherical bodies,
and taking into account the results of book 1 derived
from this fundamental law, Newton could announce
several laws concerning the motion of celestial bodies.
The planets move in ellipses which have their common
focus in the center of the sun. By radii drawn to that
center, they describe areas proportional to the time of
description. The principal diameter of the ellipses is
proportional to the power 2/3 of the periodic time.
Newton also considers the motion of the comets

remarking that their orbits are a conic section usually
an elongated ellipse or a parabola. As an example
he examines the orbit of the great comet of 1680,
observed by Kirch on November 4 of that year. From
the observations of Flamsteed and from his own, Newton
could fit a parabola to the positions of the comet. The
result is shown in the illustration of Figure 42.

Newton observes that comets with great bulk and
splendor tails may have obscure and small heads. He
then mentions the comet seen in Brazil, March 5, 1668,

7 pm, by Valentin Estancel. The comet appeared “near
the horizon, and toward the southwest, with a head
so small as scarcely to be discerned, but with a tail
above measure splendid, so that the reflection thereof
from the sea was easily seen by those who stood on the
shore; it looked like a fiery beam extended 23 degrees
in length from the west to south, almost parallel to the
horizon.” Estancel was the Czech jesuit astronomer who
was sent to Brazil where he made the comet observation
in Salvador. His original name was Stansel [90].
As a final section of the second and third Latin edition

of the Principles, Newton added an essay where he
discusses the causes of gravity. In the very beginning
of the essay, Newton counters the hypothesis of vortices
stating that it could not explain the very eccentric orbits
of comets. He then explains that his theory of action at
distance through the empty space is not unreal arguing
that falling bodies with distinct weights descent in the
void with the same velocity by the action of gravity. Thus
the celestial bodies remains in their orbits in empty space
also by the action of gravity.
He says that he was not able to find the causes

of gravity from the phenomena and for that reason
he framed no hypotheses. Indeed, the whole book 3
of the Principles, containing the theory of gravitation,
the inverse square law is not presented as a general
hypothesis or as an axiom but as derived from the
phenomena. For instance, the theorem 2, stating that
the planets are attracted to the sun according to the
inverse square law, is derived from the areal law and the
three-half law, presented by Newton as phenomena.
It seems that Newton distinguishes fundamental laws

that are causes from those that are not. Thus the three
fundamental laws of motion are understood as the causes
of motion, particularly the second law. But, for Newton,
the inverse square law is not the cause of gravitation
and for this reason, the law must be derived or more
properly, it should be inferred from the phenomena and
rendered general by induction, as he puts it.
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Table 1: The author of a scientific theory is listed together with the abbreviated name of the main work where it is found and the
year of its publication, or the century (in Roman numeral) of its conception. The last column gives the main elementary concepts
of the theory.

Author Work Year Scientific theory Elementary concepts
Euclid Elements III bc geometry space
Aristarchus Distances of the Sun and Moon III bc astronomy space
Archimedes Equilibrium of Planes III bc statics space, weight
Archimedes Floating Bodies III bc hydrostatics space, weight
Ptolemy Almagest II astronomy space, time
Ibn al-Haytham Book of Optics XI optics light ray
Copernicus Revolutions of the Heavenly Bodies 1543 astronomy space, time
Kepler New Astronomy 1609 astronomy space, time
Galileo Two New Sciences 1638 mechanics space, time, weight
Descartes Discourse on the Method 1637 optics light ray
Pascal Equilibrium of Liquids 1663 fluid statics pressure
Huygens Pendulum Clock 1673 mechanics space, time, force
Huygens Treatise on Light 1690 optics light wave
Newton Mathematical Principles 1687 mechanics space, time, mass, force

15. Conclusion

The structure of a scientific theory was shown to consist
of an hierarchy of three levels. The highest level is
composed by rational thinking understood as an innate
ability that emerges around the end of childhood and
beginning of adolescence. Rational thinking organizes
the second level which is that of the symbolic framework
or the abstract part of the scientific theory. The rules
imposed by rational thinking demands that the scientific
theory should be composed of primitive concepts and
postulates or fundamental laws from which other con-
cepts and laws are derived by deductive reasoning. The
symbolic framework is a representation of the real world
or the phenomena, which constitutes the third level of
the structure.
We point out that rational thinking which is innate

should not be confused with the formal logic, or symbolic
logic, which was systematized by Boole [91], and was
based on the logic of Aristotle, which is a theory.
Nonetheless, the rules of symbolic logic parallels those
of rational thinking and those that follows from it.
Based on the structure of scientific theory, we have

analyzed several physical theories that emerged along
the course of time since the Hellenistic period up
to the seventeen century. They are listed in Table 1
together with their authors, the time of their conception
or publication, and the main primitive or elementary
concepts. We recall that these concepts are the ones
that are undefined. Most of the physical theories have
space and time as their primitive concepts. It is a
common feature of these theories that the underlying
mathematics is geometry. From the beginning of the
eighteenth century, the differential and integral calculus
became the new mathematical tool in physical sciences
allowing a great development of the theories, which is

also worth of a detailed analysis in the light of the point
of view regarding scientific theories presented here.

Acknowledgements

I wish to acknowledge Tânia Tomé for her critical
reading of the manuscript, Vera B. Henriques for con-
versations on the cognitive development of children,
Francisco A. de Oliveira for calling my attention to
Pascal’s thoughts, and Luís G. de Oliveira for discussions
about the ideas of the ancient Greeks.

References

[1] E. Nagel, The Structure of Science (Harcourt Brace and
World, New York, 1961).

[2] C.G. Hempel, Aspects of Scientifc Explanations (Free
Press, New York, 1965).

[3] W.C. Salmon, The Foundations of Scientific Inference
(University of Pittsburgh Press, Pittsburgh, 1966).

[4] R. Carnap, An Introduction to the Philosophy of Science
(Basic Books, New York, 1966).

[5] L.C. Menezes, A Matéria, Uma Aventura do Espírito
(Editora Livraria da Física, São Paulo, 2005).

[6] R. Dugas, A History of Mechanics (Routledge and
Kegan Paul, Lodon, 1955).

[7] T.S. Kuhn, The Structure of Scientific Revolutions (Uni-
versity of Chicago Press, Chicago, 1962).

[8] E. Segrè, From Fallling Bodies to Radio Waves (Free-
man, New York, 1984).

[9] L. Russo, The Forgotten Revolution (Springer, Berlin,
2004).

[10] A.S.T. Pires, Evolução das Idéias da Fisica (Editora
Livraria da Física, São Paulo, 2011), 2 ed.

[11] L.R. Evangelista, Perspectivas em História da Física,
Dos Babilônios à Sintese Newtoniana (Editora Ciência
Moderna, São Paulo, 2011).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0506 Revista Brasileira de Ensino de Física, vol. 43, e20200506, 2021



e20200506-32 Structure of the Scientific Theories

[12] L.R. Evangelista, Perspectivas em História da Física,
Da Física dos Gases à Mecânica Estatística (Editora
Livraria da Física, São Paulo, 2014).

[13] L.Q. Amaral, Revista de História da Ciência 5, 89
(2018).

[14] B. Pascal, Pensées (Desprez, Paris, 1669).
[15] R. Descartes, Discours de la Methode, la Dioptrique, les

Meteores et la Geometrie (Maire, Leyde, 1637).
[16] D. Johanson and B. Edgar, From Lucy to Language

(Simon and Schuster, New York, 1996).
[17] J. Piaget, Genetic Epistemology (Norton, New York,

1971).
[18] B.J. Wadsworth, Piaget’s Theory of Cognitive and Af-

fective Development (Longman, London, 1989), 4 ed.
[19] K.S. Berger, The Developing Person through the Life

Span (Worth, New York, 2008), 7 ed.
[20] L.C. Gomes and L.M. Bellini, Rev. Bras. Ens. Fis. 31,

2301 (2009).
[21] K. Craik, The Nature of Explanation (Cambridge Uni-

versity Press, Cambridge, 1943).
[22] G.H. Luquet, Le Dessin Enfantin (Alcan, Paris, 1927).
[23] M.L.B. Duarte, in Anais do XVI Encontro Nacional da

ANPAP (Florianópolis, 2007).
[24] P. Duhem, La Théorie Physique, Son Objet et da Struc-

ture (Chevalier et Rivière, Paris, 1906).
[25] J.R.N. Chiappin, Transversal International Journal for

the Historiography of Science 2, 36 (2017).
[26] C.C. Laranjeiras, J.L. da Silva and J.R.N. Chiappin,

Rev. Bras. Ens. de Fis. 39, e4602 (2017).
[27] N.M.M. Kiouranis, A.R. de Souza and O. Santin Filho,

Rev. Bras. Ens. Fis. 32, 1507 (2010).
[28] S. Drake, Galileo at Work (University of Chicago Press,

Chicago, 1978).
[29] N.J. Nersessian, in Proceedings of the 1992 Biennial

Meeting of the Philosophy of Science Association (Mi-
chigan, 1992).

[30] J.E. Ruby, J. Hist. Ideas 47, 341 (1986).
[31] G. Sarton, A history of Science, Hellenistic Science

and Culture in the Last Three Century B. C. (Harvard
University Press, Cambridge, 1959).

[32] Euclid, The Thirteen Books of Euclid’s Elements (Cam-
bridge University Press, Cambridge, 1908).

[33] H. Eves, An Introduction to the History of Mathematics
(Holt, Rinehart and Winston, New York, 1969).

[34] T.L. Heath, Aristarchus of Samos (Clarendon Press,
Oxford, 1913).

[35] T.B. de Oliveira, V.T. Lima and A.C. Bertuola, Rev.
Bras. Ens. Fis. 38, e2304 (2016).

[36] T.L. Heat (ed), The Works of Archimedes (Cambridge
University Press, Cambridge, 1897).

[37] E.J. Dijksterhuis, Archimedes (Ejnar Munksgaard, Co-
penhagen, 1956).

[38] M.J. Crowe, Theories of the World from Antiquity to the
Copernican Revolution (Dover, New York, 1990).

[39] G.J. Toomer, Ptolemy’s Almagest (Duckworth, London,
1984).

[40] R. Rashed, Geometry and Dioptrics in Classical Islam
(Al-Furkān, London, 2005).

[41] A. Mark Smith, Transaction of the American Philosophi-
cal Society 91, 1 (2001).

[42] A. Mark Smith, Transaction of the American Philosophi-
cal Society 96, 1 (2006).

[43] A. Mark Smith, Transaction of the American Philosophi-
cal Society 98, 1 (2008).

[44] A. Mark Smith, Transaction of the American Philosophi-
cal Society 100, 1 (2010).

[45] A. Mark Smith, Transaction of the American Philosophi-
cal Society 86, 1 (1996).

[46] R. Goulding, Arch. Hist. Exact. Sci. 72, 497 (2018).
[47] A. Kwan, J. Dudley and E. Lantz, Phys. World 15, 64

(2002).
[48] R. Rashed, ISIS 81, 464 (1990).
[49] J.L.E. Dreyer, A History of Astronomy from Thales to

Kepler (Dover, New York, 1953).
[50] N.M. Swerdlow and O. Neugebauer, Mathematical As-

tronomy in Copernicus’s De Revolutionibus (Springer,
New York, 1984).

[51] E. Rosen, Copernicus On the Revolutions (Polish Scien-
tific Publishers, Poland, 1978).

[52] E. Rosen, Three Copernican Treatises (Dover, New York,
1959), 2 ed.

[53] M. Caspar, Kepler (Dover, New York, 1993).
[54] J. Kepler, Astronomia Nova, (1609).
[55] W.H. Donaue, Johannes Kepler New Astronomy (Cam-

bridge University Press, Cambridge, 1992).
[56] J. Kepler, Harmonices Mundi (Plancus, Lincii, 1619).
[57] C. Wilson, Isis 59, 4 (1968).
[58] M. Sharratt, Galileo Decisive Innovator (Cambridge

University Press, Cambridge, 1994).
[59] G. Galilei, Sidereus Nuncius (Baglionum, Venetiis,

1610).
[60] E.S. Carlos, The Sidereal Messenger of Galileo Galilei

(Rivingtons, London, 1880).
[61] J.M. Pasachoff, J. Hist. Astr. 46, 218 (2015).
[62] G. Galilei, Il Saggiatore (Mascardi, Roma, 1623).
[63] G. Galilei, Dialogo sopra i Due Massimi Sistemi del

Mondo (Landini, Fiorenza, 1632).
[64] G. Galilei, Discorsi e Dimostrazioni Matematiche in-

torno à Due Nuove Scienze (Elsevirii, Leida, 1638).
[65] G. Gallilei, Dialogues Concerning Two New Sciences

(MacMillan, New York, 1914).
[66] C. Huygens, Horologium Oscillatorium (Muguet, Paris,

1673).
[67] C. Huygens, Oeuvres Complètes (Nijhoff, La Haye,

1935), tome 18.
[68] J.F. Scott, The Scientific Work of René Descartes (Tay-

lor and Francis, London, 1952).
[69] D.M. Clarke, Descartes: a Biography (Cambridge Uni-

versity Press, Cambridge, 2006).
[70] R. Descartes, Discourse on Method, Optics, Geometry,

and Meteorology (Bobbs-Merrill, Indianopolis, 1965).
[71] J. Mesnard, Pascal: His Life and Works (Philosophical

Library, New York, 1952).
[72] F. Strowski, Pascal, Oeuvres Complètes (Ollendorff,

Paris, 1923), v. 1.
[73] B. Pascal, Expériences Nouvelles Touchant le Vide (Mar-

gat, Paris, 1647).
[74] E. Torricelli, Lezioni Accademiche (Guiducci e Franchi,

Firenze, 1715).

Revista Brasileira de Ensino de Física, vol. 43, e20200506, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0506



de Oliveira e20200506-33

[75] M. Pascal, Récit de la Grande Expérience de l’Équilibre
des Liqueurs (Saureux, Paris, 1648).

[76] B. Pascal, Traités de l’Équilibre de Liqueurs et de la
Pesanteur de la Masse de l’Air (Desprez, Paris, 1663).

[77] A.E. Bell, Christian Huygens (Arnold, London, 1947).
[78] A.I. Sabra, Theories of Light, From Descartes to Newton

(Cambridge University Press, Cambridge, 1981).
[79] C. Huygens, Traité de la Lumière (Pieter van der Aa,

Leide, 1690).
[80] C. Huygens, Treatise on Light (Macmillan, London,

1912).
[81] P.M.C. Dias, Rev. Bras. Ens. Fis. 35, 1602 (2013).
[82] M. Burrowes and C. Farina, Rev. Bras. Ens. Fis. 27, 175

(2005).
[83] A.R. Hall, Isaac Newton Adventurer in Thought

(Blackwell, Oxford, 1992).
[84] I. Newton, Opticks (Smith and Walford, London, 1704).
[85] I. Newton, Philosophiae Naturalis Principia Mathema-

tica (Streater, Londini, 1687).
[86] I. Newton, Mathematical Principles of Natural Philo-

sophy (Motte, London, 1729).
[87] F. Cajori, Sir Isaac Newton’s Mathematical Principles

(University of California Press, Berkeley, 1974), 2 v.
[88] C.M. Porto, Rev. Bras. Ens. Fis. 37, 1602 (2015).
[89] J.E. Littlewood, The Mathematical Gazette 32, 179

(1948).
[90] V. Estancel, Il Giornale de Letterati per tutto l’anno

1673 (Nicolò Angelo Tinassi, Roma, 1673).
[91] G. Boole, An Investigation of the Laws of Thought

(Walton and Maberly, London, 1854).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0506 Revista Brasileira de Ensino de Física, vol. 43, e20200506, 2021


	Introduction
	Structure of Knowledge
	Rational thinking
	Symbolic framework
	Scientific theory
	Laws of nature

	Euclid
	Aristarchus
	Archimedes
	Equilibrium of bodies
	Hydrostatics

	Ptolemy
	Ibn al-Haytham
	Copernicus
	Kepler
	Galileo
	Motion of bodies
	Motion in inclined planes

	Descartes
	Optics and rainbow

	Pascal
	Huygens
	Centrifugal force
	Cycloidal pendulum
	Wave theory of light

	Newton
	Laws of motion
	Central forces
	Motion in eccentric conic section
	Attractive forces of spherical bodies
	Gravitation

	Conclusion

