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Neste artigo, apresenta-se a evolução das ideias sobre a quarta dimensão espacial, partindo daquelas que
surgem da geometria euclidiana clássica e abordando, em seguida, as que resultam do âmbito das geometrias não
euclidianas, como as de Riemann e Minkowski. Particular atenção é dada ao momento no qual o tempo real passa
efetivamente a ser considerado como uma quarta dimensão, conforme introduzido por Einstein.
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In this article, the evolution of the ideas about the fourth spatial dimension is presented, starting from those
which come out within classical Euclidean geometry and going through those arose in the framework of non-
Euclidean geometries, like those of Riemann and Minkowski. Particular attention is given to the moment when
real time is effectively considered as a fourth dimension, as introduced by Einstein.
Keywords: Fourth Dimension, Space, non-Euclidian Geometry, History of Geometry, History of Physics.

1. The Beginning of the History: Not
More Than Three

The first step in the history of the fourth dimension was
actually an attempt to deny its existence. Indeed, the im-
possibility of a fourth dimension was actually sustained
by Aristotle of Stagira (384–322 b.C.). In effect, in his
De Caelo, which consists of Four Books, he treated this
impossibility just right in the first paragraph of Book 1,
saying, in summary, that:

“A magnitude if divisible one way is a line,
if two ways a surface, and if three a body.
Beyond these there is no other magnitude,
because the three dimensions are all that
there are, and that which is divisible in three
directions is divisible in all” [1, p. 447].

In this same paragraph, the Stagirite continues giving
a cosmological justification of this number three by appe-
aling to its divinization, sustained by the Pythagoreans.
Quoting him,

* Endereço de correspondência: francisco.caruso@gmail.com

“For, as the Pythagoreans say, the universe
and all that is in it is determined by the
number three, since beginning and middle
and end give the number of the universe,
and the number they give is a triad. And
so, having taken these three from nature as
(so to speak) laws of it, we make further use
of the number three in the worship of the
Gods”.

Such kind of identification between the tri-
dimensionality of space and God’s will be recurrent in
the history of science. Johannes Kepler (1571–1630), for
example, asseverated that three is exactly the number
of dimensions due to the Holly Trinity [2, 3, p. 307].

The second necessary (but not sufficient) step toward
the conception of the fourth dimension has to do with the
systematization of the geometric knowledge in Ancient
Greece.

The Greek mathematician Euclid of Alexandria
(c. 323–285 b.C.) wrote his famous treatise on Geometry,
The Elements, which has influenced the development of
Western Mathematics for more than 2000 years. This
classical work contains Thirteen Books. From Book 1 to
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10 just Plane Geometry is considered. In Book 1, Euclid
presents 23 definitions including those of point, line and
surface, as following: (1) “A point is that which has no
part”; (2) “A line is breadthless length”; (. . .); (5) “A
surface is that which has length and breadth only” [4,
p. 153].

The third dimension is treated only in the last three
Books, when a solid is defined in the following way:
“A solid is that which has length, breadth and depth”
[5, p. 260].

Throughout the entire compendium, Euclid limits
himself to treat Linear, Plane and Spatial Geometry,
and he did not even consider the possibility of a fourth
dimension.

Some centuries later, the Greek astronomer Claudius
Ptolemy (85–165), in his (lost) book On Distance,
published in 150 a.C., gave a “proof” about the impos-
sibility of the fourth dimension, based on the very fact
that it is impossible to draw a fourth line perpendicular
to three mutually perpendicular lines. This is indeed not
a proof, but rather reinforce that we are not able to
visualize the fourth dimension from which one cannot
conclude about its non existence.

To the best of our knowledge, speculations and new
ideas about the existence of a fourth dimension had
to wait for the middle of the 16th century on to
be strengthened, when a more propitious intellectual
atmosphere is to be found, as we will see all over this
paper.

For the moment, it is important to stress that the two
biggest syntheses of the Classical Greek Philosophy –
that of Aristotle and that of Euclid – considered impos-
sible the existence of more than three spatial dimensions.
This very fact is not meaningless, so far the enormous
influence of these two thinkers is considered. The long
period in which there was no discussion why space could
not have a different dimensionality may be, in part,
attributed to Aristotle’s authority and, on the other side,
to the fact that the study of Euclid’s Elements in the
Middle Ages, including different educational levels, was
languished or quite neglected [6, p. 365–369].

The overcoming of the domination of the Aristotelian
influence and the abandonment of its Cosmos must
still await the Renaissance [7, 8]. As Koyré emphasizes,
this implies and imposes the reformulation of the basic
principles of philosophical and scientific reason [9]. In
contrast, the revival of interest in Euclid’s Elements
should wait the invention of printing press by Johannes
Gutenberg (c. 1400–1468) [10].

It is not out of place to remember that, since the
first prehistoric cave painting until the medieval period,
the World was pictured without any perspective in two
dimensional spaces, probably translating the difficulty
to represent the third dimension on a bi-dimensional
canvas, wall or any other surface. To go further required
a good understanding and domain of Geometry.

The geometrization of space and the desire to re-
present it in painting had an enormous impact on the

Italian Art in the end of the Trecento and during the
following centuries. Actually, the first to introduce the
tridimensionality in Medieval Art [11] was the Italian
painter Giotto di Bondone (1266–1337). Giotto painted
almost all the walls of St. Francis’ Lower Church, in
Assisi. “The Legend of St. Francis”, whose authorship is
traditionally attributed to him, is the theme of a cycle
of 28 frescoes that are found in the Upper Basilica in
Assisi, probably painted between 1297 and 1300. The
frescoes painted by him in the Arena Chapel at Padua,
about the year 1305, mark an entirely new stage in
the development of empirical perspective [12, p. 57]. He
was also the first artist in that period to paint the Sky
in blue, diverting up from the traditional golden Sky
characteristic of the Byzantine Art [13, 14]. Clearly, he
was inspired by St. Francis’ world view, who pointed out
emphatically that there was a second book (not only the
Sacred Scripture) able to bring someone to God: it is the
Book of Nature. One should look at Nature as it is. This
attitude suggests and anticipates a transition to the new
relation between Man and Nature, which is a prelude to a
new man that is still to be forged in the Renascence [15].

The formal discovery of perspective is attributed to
the Italian architect Filippo Brunelleschi (1377–1446),
who suggested a system that explained how objects
shrink in size according to their position and distance
from the eye. In 1435, in a book named On Painting,
Leon Battista Alberti (1404–1472) provided the first
theory of what we now call linear perspective. The tri-
dimensional representations of painting conquered then
a scientific aspect when painters and architects of the
Quattrocento started to study the relationship between
Geometric Optics [16] and Perspective in the Euclidean
space, as did, for instance, Piero della Francesca [17].

2. The First Ideas of a New Dimension
in Space

Back to the fourth dimension, the idea of a new spa-
tial dimension was revived by the studies of several
mathematicians in the 16th and 17th centuries. Indeed,
the Italian physicist, philosopher, mathematician and
physician Ge(i)rolamo Cardano (1501–1576) and the
French mathematician François Viète (1540–1603) consi-
dered such “additional” dimension in their researches on
quadratic and cubic equations. The same did the French
mathematician and physicist Blaise Pascal (1623–1662)
in his study named Traité des trilignes rectangles et le
leurs onglets [18, p. 260–298], when, generalizing his
“trilignes” from the plane to the space and beyond, he
wrote: “La quatrième dimension n’est point contre la
pure géométrie.” [18, p. 269].

Meanwhile, the French philosopher and mathemati-
cian René du Perron Descartes (1596–1650), as is well
known – and following the same pragmatic view of
Aristotle, Euclid, and others concerning space –, holds
that “the nature of matter, or body consists (. . .) simply
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in its being something which is extended in length,
breadth, and depth” [19, p. 44].

However, in his Treatise on Algebra, published in 1685,
the English mathematician John Wallis (1616–1703)
condemned again the existence of a higher-dimensional
space [20, 21, p. 1028, 22] saying that it is a “monster in
nature, less possible than a chimera or a centaur” [23,
p. 126]. And continues: “Length, Breadth and Thickness
take up the whole of space. Nor can Fansie imagine how
there should be a Fourth Local Dimension beyond these
Three” [23, p. 126].

The young Immanuel Kant (1724–1804), in his doc-
toral thesis (1747), tried to explain why is space three
dimensional [24]. Actually, he did not succeed [25], but
this work has two important merits: Kant pointed out
that space dimensionality should be understood in the
framework of Physics, which proved to be a fruitful
idea in the 20th century [26], and he concluded his
speculations by imagining various types of spaces –
which came true later in the 19th century – and alluding
to them with these words of hope: “A science of all these
possible kinds of space would undoubtedly be the highest
enterprise which a finite understanding could undertake
in the field of geometry.” [27, p. 31].

During the 18th century, the theme of the fourth
dimension was treated again from a different perspec-
tive, i.e., by associating it to time no more to space.
We are talking about the contribution of the French
mathematician Jean le Rond d’Alembert (1717–1783)
and his proposal in the entry “Dimension” wrote for the
Encyclopédie ou Dictionnaire Raisonné des Sciences,
des Arts, et de Métiers, published between 1751 and
1772, by Denis Diderot (1713–1784) and himself.

Time was considered also as a fourth dimension by the
Italian-French mathematician and astronomer Joseph-
Louis Lagrange (1736–1813), in his books Mécanique
Analytique, de 1788, and Théorie des Fonctions Analy-
tiques, de 1797. Later, Lagrange says something like:
One can consider the Mechanics as a Geometry in four
dimensions and the Analytical Mechanics as an exten-
sion of the Analytical Geometry, developed by Descartes
in his book La Géométrie, published in 1637 [22].

In the beginning of the 19th century, more specifically
in 1827, in the book Der Barycentrische Calcul, the Ger-
man mathematician Augustus Ferdinand Möbius (1790–
1868) rejected the existence of the fourth dimension
when he observed that geometrical figures cannot be
superimposed in three dimensions since they are the
mirror images of themselves [28]. Such a superposition,
however, could happen just in a four dimensional space
but, “since, however, such a space cannot be thought
about, the superposition is impossible” [28, p. 185].

The fourth dimension was also proposed by the
German physicist and mathematician Julius Plücker
(1801–1868) in his book entitled System der Geometrie
des Raumes, published in 1846, in which he affirm
that planes are nothing but collections of lines, as the
intersection of them results in points. Following this

idea, Plücker said that if lines are fundamental elements
of space, then space is four-dimensional, because it is
necessary four parameters to cover all the space with
lines. However, this proposal was rejected because it was
saw as metaphysics. But, in any case, it was quite clear
for many mathematicians that the three-dimensional
Geometry had to be generalized [29].

It is important to stress that before, in 1748, and
later, in 1826, the Swiss physicist and mathematician
Leonhard Euler (1707–1783) and the French mathemati-
cian Augustine Louis Cauchy (1789–1857), respectively,
had tried to represent lines in space. In 1843, the English
mathematician Arthur Cayley (1821–1895) had develo-
ped the Analytical Geometry in a n-dimensional space,
taking the theory of determinants (name due to Cauchy)
as a tool. Soon, in 1844, the German mathematician
Hermann Günter Grassmann (1809–1877) published the
book Die Lineale Ausdehnungslehre, ein neuer Zweig der
Mathematik, in which he thought on a n-dimensional
Geometry, stimulated by the discovery of the quaternion,
announced by the Irish mathematician and physicist
Sir William Rowan Hamilton (1805–1865), in 1843
[20, 22].

Actually, the conjectures about the fourth dimension
acquire more soundness from the development of the
so-called non-Euclidean Geometries in the 19th cen-
tury [30]. Let us now summarize how it happened.

3. The New Background
of Non-Euclidean Geometries

It is attributed to the Greek philosopher and geometer
Thales of Miletus (c. 624–c. 546) the demonstration of
the following theorems: In isosceles triangles, the angles
at the base are equal to one another, and, if the equal
straight lines be produced further, the angles under the
base will be equal to one another [4, p. 251]; If two
straight lines cut one another, they make the vertical
angles equal to one another [4, p. 277]; Those theorems
allow one to prove the so-called Thales Theorem: (. . .),
and the three interior angles of the triangle are equal to
two right angles [4, p. 316]. This theorem was considered
as a divine truth by the influent Italian philosopher
and theologian Thomas Aquinas (1225–1274), when,
in his famous Summa Theologica, issued around 1265,
sustained to have proved that God could not construct
a triangle for which the internal angles summed up more
than 180◦. It is opportune to remember that Thales
Theorem is also a consequence of the famous Postulate
5 of Euclid Book 1: That, if a straight line falling on
two straight lines make the interior angles on the same
side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are
the angles less than the two right angles [4, p. 202].

In 1795, this Postulate number 5 was enounced by
the English mathematician John Playfair (1748–1819)
as follow: Through a given point only one parallel can
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be drawn to a given straight line. This is known as the
Parallel Postulate [4, p. 220].

The Parallel Postulate started to be criticized by
the German mathematician and physicist Johann Carl
Friedrich Gauss (1777–1855) – who invented the concept
of curvature –, in the last decade of the 18th century,
when he tried to demonstrate it by using Euclidean
Geometry. In effect, in 1792, when he was fifteen years
old, he wrote a letter to his friend the German astro-
nomer Heinrich Christian Schumacher (1780–1850), in
which he discussed the possibility of having a Logical
Geometry where the Parallel Postulate did not hold.
In 1794, he conceived a new Geometry for which the
area of a quadrangular figure should be proportional to
the difference between 360◦ and the sum of its internal
angles. Later, in 1799, Gauss wrote a letter to his friend
and Hungarian mathematician Wolfgang Farkas Bolyai
(1775–1856) saying that he had tried, without success,
to deduce the Parallel Postulate from other postulates
of Euclidean Geometry [31].

During the 19th century, Gauss continued the discus-
sion with friends on the plausibility of the existence of a
Non-Euclidean Geometry. So, around 1813, he developed
what he initially called Anti-Euclidean Geometry, then
Astral Geometry and, finally, Non-Euclidean Geome-
try. He was so convinced about the existence of this
new Geometry that he wrote a letter, in 1817, to his
friend and German astronomer and physician Heinrich
Wilhelm Matthäus Olbers (1758–1840), stressing the
physical necessity of such a Geometry as follow [22,
p. 871]:

“I am becoming more and more convinced
that the [physical] necessity of our [Eucli-
dean] geometry cannot be proved, at least
not by human reason nor for human reason.
Perhaps in another life we will be able to
obtain insight into the nature of space, which
is now unattainable. Until then we must
place geometry not in the same class with
arithmetic, which is purely a priori, but with
mechanics.”

Seven years later, in 1824, answering a letter from
the German mathematician Franz Adolf Taurinus
(1794–1874) talking about a demonstration he did that
the sum of the internal angles of a triangle cannot be
neither greater nor smaller than 180◦, Gauss told him
that there was not geometrical rigor in that demonstra-
tion because, in spite of the fact that the “metaphysi-
cists” consider the Euclidean Geometry as the truth, this
Geometry is incomplete. The “metaphysicists” quoted
by Gauss were the followers of Kant, who wrote, in 1781,
in his Kritik der reinen Vernunft [32], more precisely
in its first chapter entitled Transcendental Doctrine of
Elements what follows: (a) Space is not a conception
which has been derived from outward experiences; (b)
Space then is a necessary representation a priori, which
serves for the foundation of all external intuitions;

(c) Space is represented as an infinite given quantity;
(d) Space has only three dimensions; (d) (. . .) possibility
of geometry, as a synthetic science a priori, becomes
comprehensible [27, p. 24–25].

Although we owe to Gauss the discovery of Non-
Euclidean Geometry, he did not have the courage to
publish his discoveries. Indeed, in a letter sent to a
German friend and astronomer Friedrich Wilhelm Bessel
(1784–1846), in 1829, Gauss affirm that he probably
would never publish his findings in this subject because
he feared ridicule, or, as he put it, he feared the clamor
of the Boetians, a figurative reference to a dull-witted
Greek tribe [22, p. 871].

In his research on the existence of a Non-Euclidean
Geometry, Gauss figured out hypothetical “worms” that
could live exclusively in a bi-dimensional surface, as
other “beings” could be able to live in spaces of four
or more dimensions [33]. It is interesting to mention
that, trying to verify his theory, Gauss and his assistants
measured the angles of a triangle formed by the peaks
of three mountains, Brocken, Hohehagen and Inselsberg,
which belong to the Harz Mountais, in Germany. The
distance between two of them were 69,85 and 197 km,
respectively. The sum of the internal angles of this
triangle was 180◦ and 14”,85. This result frustrated
Gauss since the error were within the errors associated to
the instruments he used to measure the angles [22, 31].

Independently of Gauss, the mathematicians, the Rus-
sian Nikolay Ivanovich Lobachevski (1793–1856) and the
Hungarian János Bolyai (1802–1860) (son of Wolfgang),
in 1832, demonstrated the existence of triangles which
sum of the internal angles are less than 180◦ [34, 35].

The German mathematician Georg Friedrich Ber-
nhard Riemann (1826–1866), after the presentation of
his Doktoratsschrift, in December 1851, in Göttingen
University, about the Fourier series and what is now
know as Riemannian surfaces, started to prepare himself
to become Privatdozent of this same University. So, at
the end of 1853, he presented his Habilitationsschrift
together with three topics for the Habilitationsvortrag.
For his surprise, Gauss choose the third topic entitled
“Über die Hypothesen, welche der Geometrie zu Grun-
den liegen” (“On the Hypothesis that are on the Base
of Geometry”), where he demonstrated the existence
of triangles of which the sum of its internal angles
could be greater than 180◦. This topic was timidly
presented by Riemann in June of 1854, but it provoked
a deep impact on Gauss, because it was a concrete
expression of his previous ideas about a Non-Euclidean
Geometry (today, Riemannian Geometry) that he was
afraid to publish, as previously mentioned. Riemann’s
metrical approach to Geometry and his interest in the
problem of congruence also gave rise to another type of
non-Euclidean Geometry. We are talking about a new
geometry that cames out not by the rejection of parallel
axioms, but rather by its irregular curvature.

It is important to remember that those geometries,
today generically know as Non-Euclidean Geometries
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[36, 37] influenced physical thought in 19th century [38].
They are consequences of the observation that the
relaxation of the Parallel Postulate could give rise to two
new interpretations. One, in the Hyperbolic Geometry of
Bolyai-Lobachevsky [39], for which, from a point outside
a line, an infinite number of parallels can be drawn,
and the second, in the Spherical Geometry of Riemann,
where from a point outside a line, no parallel can be
drawn to it [22, 40].

4. The Popular Interest in the New
Geometries

Two specific areas of philosophical debate were the
initial source of a sui generis public interest in the non-
Euclidean Geometries and in the geometry in higher
dimensions: the nature of the geometric axioms and
the structure of our space [41]. As time went on, a
expressive interest of the general public fell on the
nature of the space and the number of its dimensions. A
historical record of this fact can be found in the accurate
bibliography prepared by Duncan Sommerville (1879–
1934), a Scottish mathematician and astronomer [42].
This history is well documented in the interesting book
of Linda Henderson (b. 1948), historian of art [41].
According to her, everything started with a movement
to popularize n-dimensional spaces and non-Euclidean
Geometries in the second half of the 19th century.
A whole literature was developed [42] around philo-
sophical and mystical implications in relation to spaces
of larger dimensions, easily accessible to a public of
non-specialists; in particular, about the imagination
of a fourth dimension, long before Minkowski’s work
and Einstein’s Special Relativity and the Cubism. The
popularization of these ideas contributed, as carefully
analyzed in Ref. [41], to a revolution in Modern Art
and, in particular, was fundamental to the Cubism, an
artistic movement contemporary to Einstein’s Special
Relativity, where also use was made of non-Euclidean
Geometry, namely Minkowski’s space-time.

5. The Fourth Dimension as Time-Like
Component of the New Space-Time
Concept in Physics

It was Riemann who generalized the concept of Geome-
tries, by introducing the definition of metric, that defines
how one can calculate the distance between two points,
given by (in nowadays notation)

ds2 =
∑
i,j

= gijdxidxj ; (i, j = 1, 2, 3)

where gij is the metric tensor of Riemann. In the case of
flat spaces and rectilinear coordinates (x, y, z),

gij = (ei, ej) = δij

where δij is the Kronecker delta, ei (i = 1, 2, 3) are the
vector-basis of a particular coordinate system and the
notation (ei, ej) means the scalar product between the
two vectors.

Thus, the distance can be written as

ds2 =
∑
i,j

= δijdxidxj = dx2 + dy2 + dz2

known as the Euclidean metric. This definition is
straightforwardly extended to higher n-dimensional spa-
ces just doing i, j → µ, ν = 1, 2, 3, · · ·n.

The Riemann work about Non-Euclidean Geometry
(which easily allows the existence of more dimensions
than the usual three), was soon recognized and flourish
in all Europe, with eminent scientists propagating his
ideas to the general public. For example, the German
physicist and physiologist Hermann Ludwig Ferdinand
von Helmholtz (1821–1894) considered Gauss’ worms
leaving now in a Riemannian surface (on a sphere).
However, in his book entitled Popular Lectures of Sci-
entific Subjects, published in 1881, he warned that
it is impossible to represent (to visualize) the fourth
dimension, because (. . .) such a representation is so
impossible how it should be a color representation for
someone born blind [37, p. 29].

From now on, let us summarize the route of the
assimilation of such ideas in Physics.

The success of Newtonian mechanicism will be put
to the test, at first, by the study of heat made by
the French mathematician and physicist Jean-Baptiste
Joseph Fourier (1768–1830). In the Preliminary Speech
of his Analytical Theory of Heat, he states [43, p. xvi]
that

“Whatever the scope of mechanical theories,
they do not apply to the effects of heat.
These are a special type of phenomenon,
and cannot be explained by the principles of
movement and balance”.

The propagation of heat will be described by a partial
differential equation and no longer by an ordinary diffe-
rential equation, as in the case of Newtonian mechanics.
It is the beginning of valuing the causa formalis over
the causa efficiens as the basis of the causal explanatory
system in Physics, intrinsic to Newton’s system [44].
It is the beginning of the description of Physics by Field
Theories [45]. Later, in the second half of 19th cen-
tury, also electromagnetism will reaffirm this trend [46].
The discovery of electromagnetic waves by the German
physicist Heinrich Rudolf Hertz (1857–1894) will give
Maxwell’s theory a new status. However, Maxwell theory
is still a phenomenological theory not able to predict, for
example, the interaction of light with matter. One of the
first attempts to develop a classical interpretive theory
capable of explaining the interactions of electromagnetic
fields with matter dates from 1895 and is due to the
Dutch physicist Hendrik Antoon Lorentz (1853–1928),
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who combines the Electromagnetism and Classical Me-
chanics with an atomistic model of matter, the so-
called Drude-Lorentz model,1 and initially develops a
Newtonian Classical Electrodynamics, known as Lorentz
Electrodynamics.

Soon after the electron discovery, it gains a prominent
place in theoretical physics [47]. In fact, as we have alre-
ady mentioned, Lorentz will dedicate himself to include
the interaction of this particle with the electromagne-
tic fields. As is well known, Lorentz Electrodynamics,
inspite some initial success, failed in correctly describe
such kind of interaction. This problem will be solved
just with the advent of Quantum Electrodynamics [48].
From a conceptual point of view, Einstein attributed the
weakness of Lorentz theory to the fact that it tried to
determine the interaction phenomena by a combination
of partial differential equations and total differential
equations, a procedure that, in his opinion, is obviously
not natural.

In 1888, the English Mathematician Oliver Heaviside
(1850–1925) showed that the electric field ( ~E) of a
moving electric charge (with velocity v) differ from that
( ~E◦) of a stationary charge as indicated below [49]:

~E◦ = kq

r2 r̂ ⇒ ~E = kq

r2 γ

[
1− β2

1− β2 sin2 θ

]3/2

r̂

where β = v/c and γ = (1 − β2)−1/2. So, we can see
that, in the direction of motion (θ = 0), the electric field
behaves like

~E‖ = 1
γ2
kq

r2 r̂

Therefore, this result was interpreted by Heaviside as a
contraction of the electrostatic field.

This result was published in 1889 and it was discussed
by Heaviside, the British physicist Oliver Lodge (1851–
1940) and the Irish physicist George FitzGerald (1851–
1901) [50]. Inspired on this result, FitzGerald proposed
that the objects contract along their line of flight.
Independently, Lorentz came to the same idea in 1892
(see footnote in Ref. [51]). This is the origin of Lorentz-
FitzGerald contraction, involving the γ factor.

Pre-Minkowskian applications of non-Euclidean Geo-
metry in Physics weren’t many and they were reviewed
in Ref. [52].

Now, we would like to stress that, although Lorentz
demonstrated, in 1904, that time is related to tri-
dimensional space through the relations known as
Lorentz Transformations (LT) [53], it was only the
Russian-German mathematician Hermann Minkowski
(1864–1909) who understood [54] that the LT represent
a kind of rotation in a 4-dimensional flat space having

1 The model according to which the physical world would be com-
posed of ponderable matter, electrically charged mobile particles
and ether, such that electromagnetic and optical phenomena would
be based on the position and movement of these particles.

coordinates (x1, x2, x3, x4), with a metric (measurement
of the distance between two points in this space) defined
by:

ds2 =
4∑
µ,ν

gµνdxµdxν = dx2
1 + dx2

2 + dx2
3 + dx2

4

where gµν = δµν is the four-dimensional Kronecker
delta, x1 = x, x2 = y, x3 = z, x4 = ict, and i =

√
−1.

This expression is known as the Minkowskian metric,
or pseudo-Euclidean metric, due to the fact that it can
be negative. Note that, to avoid the use of

√
−1, the

mathematicians defined a signature for gµν , such that
the indices µ and ν can assume the values 1, 2, 3, 4
(+,+,+,−) with x4 = ct, or 0, 1, 2, 3 (+,−,−,−) with
x0 = ct, where ± means ±1 only on the main diagonal
of the metric tensor [30].

In his seminal paper of 1905 about the Electrodyna-
mics of Moving Bodies, Einstein were able to derive
LT without having to resort to ether by postulating
the constancy of light velocity in the vacuum, i.e.,
assuming it does not depend on the velocity of the
moving body [55, 56].

For Lorentz, the local time (t′) introduced in the
coordinate transformations between inertial references,
would be just an auxiliary parameter necessary to
maintain the invariance of the laws of Electromagnetism,
as stated at the end of the second edition of his Theory
of Electrons [57, p. 321]:

“If I had to write the last chapter now, I
should certainly have given a more promi-
nent place to Einstein’s theory of relativity
(. . .) by which the theory of electromagnetic
phenomena in moving systems gains a sim-
plicity that I had not been able to attain.
The chief cause of my failure was my clinging
to the idea that the variable t alone can
be considered as the true time and that my
local time t′ must be regarded as no more
than an auxiliary mathematical quantity. In
Einstein’s theory, on the contrary, t′ plays
the same part as t; if we want to describe
phenomena in terms of x′, y′, z′, t′ we must
work with these variables exactly as we could
do with x, y, z, t.”

On the other hand, the conception and interpretation
of Lorentz’s transformations as a geometric transfor-
mation in a pseudo-Euclidean space of dimension 4,
for Minkowskii, was only possible thanks to Einstein’s
assertion, as quoted in a meeting of scientists in 1908, in
Cologne [58, p. 82]:

“But the credit of first recognizing clearly
that the time of the one electron is just as
good as the time of the other, that t and t′

are to be treated identically, belongs to A.
Einstein.”

Revista Brasileira de Ensino de F́ısica, vol. 43, e20210034, 2021 DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0034



Bassalo et al. e20210034-7

However, another point made clear by Einstein is that
for him the introduction of time as a fourth explicit
coordinate in the transformations of inertial reference
systems derives from the principle of relativity. In his
words [59, p. 365]:

“It is a widespread error that special theory
of relativity is supposed to have, to a cer-
tain extent, first discovered, or at any rate,
newly introduced, the four-dimensionality of
the physical continuum. This, of course, is
not the case. Classical mechanics, too, is
based on the four-dimensional continuum of
space and time. But in the four-dimensional
continuum of classical physics the subspaces
with constant time value have an absolute
reality, independent of the choice of the refe-
rence system. Because of this [fact], the four-
dimensional continuum falls naturally into
a three-dimensional and a one-dimensional
(time), so that the four-dimensional point
of view does not force itself upon one as
necessary. The special theory of relativity, on
the other hand, creates a formal dependence
between the way in which the spatial coordi-
nates, on the other hand, and the temporal
coordinates, on the other, have to enter into
natural laws.”

6. Concluding Remarks

In this paper we have reviewed how mathematicians,
physicists and philosophers have positioned themselves
on whether or not a fourth dimension does exist. It was
shown that the development of non-Euclidean Geome-
tries opened a new possibility to describe Physics. In
addition to the classical example of Special Relativity,
the possibility that extra spatial dimensions can play an
important role in Physics is not new. It can be traced
back to the pioneer works of Kaluza [60] and Klein [61],
in which a fifth dimension was considered, trying to
unificate Electromagnetism and Gravitation. Following
the general unification idea of Kaluza-Klein [62], several
higher-dimensional theories were developed, like String
Theory and Supersymmetry [63, 64], based on theoreti-
cal ideas that go beyond the Standard Model of Particle
Physics and show promise for unifying all forces. In all
these examples, the extra dimension is always space-like.

Indeed, the introduction of extra dimensions in Fun-
damental Interactions Physics has been enabling a re-
markable progress in two major contemporary programs:
the quantization of gravity and the unification of the
force fields of Nature, for which the mechanisms of
reduction and dimensional compacting are of utmost
importance [65].

It is interesting to point out that difficulties concer-
ning the search for a Unified Theory of Elementary
Physical Interactions (electromagnetic, strong, weak and

gravitational) bring physicists to develop the M Theory,
which is a unifying theory in an eleven dimensional
space (with just one temporal). Seven of those spatial
dimensions are curled out and compactified in a Calabi-
Yau space having dimensions equivalents to Planck’s
length (≈10−33 cm) and to them are attributed other
properties, like mass and electric charge [31].

As a last remark, we can refer to the possibility of
developing field theories with more than one coordinate
time, in the course of 20th century, as reviewed in
Ref. [30].
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