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The theme of indistinguishability in the context of Quantum Mechanics as opposed to a distinguishability
in the context of Classical Mechanics has been treated for almost a century in terms of an essential difference
between the way of counting in Quantum and Classical Mechanics. Such differences are based on the adoption of
the principles of Heisenberg, Duality and Complementarity. In this work, we show that it is possible to avoid such
considerations and derive the same results considering only the Correspondence Principle. This is done considering
that, in the classic context, the quantum discrete energy levels become continuous or almost continuous. From
these results, we indicate how to develop a discussion within the scope of teaching Quantum Mechanics that
involves such principles and concepts and possible comparisons, working on ideas related to the interpretation of
Quantum Mechanics with regard to this phenomenon, rarely developed in traditional courses.
Keywords: Indistinguishability, Counting principles, Quantum Mechanics, Physics teaching.

1. Introduction

In usual courses of Quantum Mechanics, one is gen-
erally taught the three different probability weight
functions, known as Boltzmann’s, Bose-Einstein’s and
Fermi-Dirac’s. It is then argued that they come from
three different counting strategies, each one with its own
properties and characteristics.

From Boltzmann’s and Gibbs’ seminal works [1],
the investigations of Ehrenfest [2] and the present
approaches on the subject [3], it is generally assumed
that the major difference between classical and quantum
counting was due to the ability to distinguish among
classical particles, even if they are identical.

There are two arguments in favor of this classical
distinguishability: (a) one always has trajectories in the
classical domain and (b) they suffice to “follow” particles
and, thus, keep track of their identities.

This framework is contrasted to the quantum one
which assumes, in the context of most interpretations,
some slightly different perspectives regarding the issue
of trajectories within Quantum Mechanics:

1. one may have trajectories in Quantum Mechanics,
but Heisenberg’s Principle impedes one to follow
these trajectories without error to keep track of
particles – the errors grow in such a way that
the particles trajectories become mixed up in an
irreducible way;

2. there are no trajectories in Quantum Mechan-
ics because, without being measured, quantum
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objects present a dual aspect, as sustained by
the Duality Principle and the Complementary
Principle;

Both these perspectives come from the way interpre-
tations of Quantum Mechanics (mainly those coming
from the Copenhagen Interpretation) interrelate these
three fundamental principles. They are slightly different
because the first can be called “epistemological”, since it
resides in the ability of knowing (measuring) something
that do exist; while the second should be called “ontolog-
ical”, since it affirms that it is the physical object itself
(the trajectories) that has no being [4].

At the end, these interpretations relate distinguisha-
bility with tracking capability. The fact is that it is gener-
ally assumed that classical entities, otherwise identical,
can always be distinguished from each other because
they can be tracked, while quantum ones should be
assumed indistinguishable because we lack the hability
to do so.

As is amply known, Boltzmann’s weight is assumed
to represent the inadequacy of Classical counting, since
its use in actual calculations gives rise to Gibbs Para-
dox in Classical Statistical Mechanics, when it fur-
nishes a non-extensive entropy [5]. Quantum counting,
on the contrary, gives the correct extensive entropy
results.

Since these results lay on quite specific perspectives
related to the interpretation of the quantum formalism
for this context, it would be interesting if one could
present a different approach to counting that make no
recourse to trajectories and the like. Such an approach
would be a source for teaching some aspects regarding
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the role of interpretation within Quantum Mechanics,
something not usual in courses within this theme.

In this paper, we present such an approach: we show
that one can obtain the correct results for Boltzmann’s
weight (giving extensive entropy) assuming only that
there exists a classical indistinguishability and a con-
tinuous spectrum of energy. This would serve as an
example, within the subject of this paper, of the impact
of assuming different interpretations for the quantum
formalism.

We will show that this alternative approach not only
unifies the classical and quantum ways of counting, but it
also gives the correct Boltzmann’s weight, removing the
issue of Gibb’s paradox. This latter fact can then be used
to compare both approaches, revealing other possible
epistemological discussions related to the interpretation
of physical theory, but considered in approaches such as
that of Greca & Freire [6], which propose, in addition
to the relativity of the importance of mathematical
formalism, teaching in the area based on a philosophical
sensitivity mediated by the following didactic binomial:
balanced introduction of fundamental concepts – and
strictly quantum – and consideration of interpretive
issues. This perspective is timely linked to the idea
that we bring about the use of Johnson-Laird’s mental
models as a potentially qualifying cognitive strategy of
interpretation in the teaching of Quantum Mechanics.

2. Some Trivial Results on Counting

Let’s take, as example, the following trivial situation
where everyone (presumably) will agree on the way one
should be counting [7].

One has nine geometric objects as in Figure 1. Three
of them are red (R), two are yellow (Y) and four are
blue (B), while the shapes are as indicated in the figure.
We then ask:

• [Q1]: in how many different ways can we arrange
the geometrical figures in Figure 1 with respect
to color?

The terms in bold are extremely important for our
interests: “arrange” tells us that we are assuming that

Figure 1: Nine geometrical figures with colors. Three red (R),
two yellow (Y) and four blue (B).

the order of the presentation of the colored geometrical
figures matters; (b) “with respect to color” tells us the
counting principle – that is, what is to be counted.

This is a trivial problem that can be found in any
textbook on probability and statistics. The answer is,
obviously, the weight related to a permutation with
repetition:

WQ1 = 9!
3!2!4! , (1)

since, with respect to color, the first three geometrical
objects are considered indistinguishable, as with the
fourth and fifth yellow objects and also the last four
blue objects. This is why one has a 3!, a 2! and a 4! in
the denominator of (1).

Of course, in the case of n objects that can be consid-
ered indistinguishable with respect to some property, we
would get simply:

Wn = n!
n1!n2! · · ·nK ! , (2)

where K is the number of different values for the
property, n is the number of objects and ni is the number
of indistinguishable objects within some class defined
by the property used to count (e.g. color, color plus
constitution, etc).

To make our point as clearly as possible, let us now
change our question to:

• [Q2]: in how many different ways can we arrange
the geometrical figures of Figure 1 with respect
to color and shape?

The answer is again trivial and is given by:

WQ2 = 9!
1!2!1!1!1!2!1! , (3)

since, now, the categories of indistinguishable objects
changed when we changed our property used to count.
Note that the denominators also changed.

We then learn that each ni! in the denominator
of (2) reflects exactly one class of indistinguishable
objects, given the property used to count (the property,
of course, can be complex and referring to more than
one characteristic of the objects, like color and shape).

The obvious conclusion is that the concept of distin-
guishability is always used in an operational perspective,
not an ontological one. It means nothing if, in Q1,
one can “see” (or track) that some colored geometrical
objects have different shapes; the property used to count
being color, their distinguishability can be phrased only
with respect to their color – irrespective of what “they
really are”.

The previous argument remains unchanged if we apply
our counting skills to classical or quantum worlds. Given
the properties of the objects, counting proceeds without
reference to such worlds.
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In the usual argument, classical particles, when having
exactly the same physical properties (as mass, charge,
etc), must be considered identical. However, they also
should be considered distinguishable because we can put
on them some mark or simply track them from their
trajectories.

However, in the usual physical situation we count how
energy cells can be filled by these particles. The property
used to count is energy. It is not energy & trajectory.
It is, thus, irrelevant if we can or cannot track the
particles. If these particles are considered identical, the
only thing that can differentiate them is the energy they
assume, and this is precisely what is inscribed into the
ni! in the denominator of (2) – there are ni particles
assuming energy in the cell [εi, εi + ∆εi], nj particles
assuming energy in cell [εj , εj + ∆εj ], etc.

In fact, if tracking capabilities were to be assumed
within the counting principle, then there should be no
ni! in the denominator, since we would have to consider
all particles “distinguishable”, since all particles have
different trajectories (or are associated to different num-
bers, or colors, or can be seen by us as being different),
and the [sole complex] property used to count should
be “particles with different trajectories and energies” –
this is completely analogous to the “shape and color
geometrical objects” already mentioned. Thus, there
would be no nj in the denominator. The number of ways
to arrange them would then be equal to the number of
ways to permute them, and counting would fail to give
Boltzmann’s probability density function.

3. A Different Approach

In agreement with the above arguments, which disre-
gards some possible “tracking capability”, we may now
ask in how many different ways we can fill our energy
boxes (or colored boxes) [8]. This means that, in all
situations in which we have only one set of quantum
objects (e.g. only photons or only electrons) presenting
energies filling different energy cells, we would have to
combine (not arrange) these objects into the energy
cells with possible repetitions. Lets consider, again, the
problem in the language of geometrical figures:

Consider three colored boxes with sub boxes, one Red
(sub boxes light red and dark red, that is, degenerate
by gR = 2 with respect to red color), one Yellow (sub
boxes light yellow and dark yellow, gY = 2), and one
Blue (sub boxes light blue, medium blue and dark blue,
gB = 3) and let us ask:

• [Q3]: in how many ways we can fill these colored
boxes with N geometrical figures such that we put
nR into the Red box, nY into the Yellow box and
nB into the Blue box?

Note that, by uttering the counting principle as related
to “geometrical figures”, all geometrical figures become
identical (no matter if they have different colors or
shapes).

Figure 2: Ways to combine nine geometrical objects into three
degenerate stages with degenerate degree numbers equal to 2,
2 and 3.

It is easy to see that we get simply (see Figure 2):

WQ3 = (nR + gR − 1)!
nR! (gR − 1)! ·

(nY + gY − 1)!
nY ! (gY − 1)! ·

(nB + gB − 1)!
nB ! (gB − 1)! ,

(4)
such that N = nR + nY + nB , since, fixing this
last expression as a constraint, the three factors above
represent independent probabilities. The result we get of
the previous counting furnishes the ways we can get nR
Red, nY Yellow and nB Blue geometric figures (where
we are counting each shade of color as “degenerate” with
respect to the underlying color).

The differences are obvious if we take a look at
Figure 10-2 and compare it with Figure 10-1. In Figure
10-2 the geometrical figures lost their identification
labels (colors), which were now passed to the boxes,
meaning that the geometrical figures are all identical (as
geometrical objects [as quantum objects]) no matter how
different they may be in shape [in trajectories, labels,
etc.] That is, all figures [objects] are entitled to occupy
any one of the degenerate shade-states [degenerate
energy states] of the color-boxes [energy boxes].

This colorful example is completely analogous to the
usual Quantum Mechanical counting of bosons. Again,
we must stress that the fact that the geometrical figures
may be “visually distinguishably” meant nothing to the
outcome of our counting—they are being counted as
geometrical figures [identical objects], not as geometrical
figures of some shape or another [identical objects with
some trajectory or another].

4. The Usual Way of Counting

Boltzmann’s weight function is generally presented com-
pared to the quantum weight functions. Table 1 shows
the usual approach of textbooks in giving an example of
the three ways of counting for two particles occupying
two degenerate states.

The first counting assumes that the particles are
distinguishable; thus, there are two possibilities for
state (1, 1); the other two counting strategies assume
indistinguishability, the last one assuming also Pauli’s
Exclusion Principle.
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Table 1: Usual counting process for Boltzmann’s, Bose-
Einstein’s and Fermi-Dirac’s distributions.

Distributions
Boltzmann Bose-Einstein Fermi-Dirac

(2,0) ab ∅ aa ∅ ∅ ∅
(0,2) ∅ ab ∅ aa ∅ ∅

(1,1) a b a a a ab a

We note that the way of counting for Bose-Einstein
and Fermi-Dirac are equivalent, but Fermi-Dirac’s
counting principle includes half-integral spin particles,
which are governed by Pauli’s Principle. Thus the first
two lines of Fermi-Dirac’s distribution cannot be filled,
since they will assume two quantum objects in the same
energy cell. These ways of counting (combinations) are
qualitatively different from the way of counting that
gives rise to Boltzmann’s weight (arrange).

If one generalizes the results of Table 1 for gi states
with ni particles, one gets the following weight functions:

W ∗
B ({ni}) =N !

K∏
j=1

g
nj

j

nj !

WBE ({ni}) =
K∏
j=1

(gj − 1 + nj)!
(gj − 1)!nj !

WFD ({ni}) =
K∏
j=1

gj !
(gj − nj)!nj !

, (5)

for Boltzmann’s, Bose-Einstein’s and Dirac’s weight
functions. In this case, W ∗

B gives an incorrect answer
because of the N ! factor, which makes, for instance, the
entropy non-extensive in calculations for ideal gases [9].
However, we may take another path to Boltzmann’s
distribution, which clarifies what we have previously
said.

5. Deducing the Correct Boltzmann’s
Weight

Our first assumption was to assume the same counting
principle to all three situations (Fermi-Dirac’s assuming
also Pauli’s principle), we can find WBE or WFD as
our weights (Cf. with [10]). How then can we get
Boltzmann’s weight from one of these (or even both)?

We thus present our second assumption: our energy
states are continuous (or semi-continuous). Thus, we
may take the limit gj →∞, ∀j in both WBE and WFD.
In this case, Stirling’s approximation allows us to write
n! = nne−n and thus:

WBE({nj}) =
K∏
j=1

(gj + nj)gj+nj

n
nj

j g
gj

j

=
K∏
j=1

g
nj

j (1 + nj/gj)gj

n
nj

j

; (6)

using the fact that (1 + x/s)s → ex if s → ∞, we end
with:

WBE({nj})→
K∏
j=1

g
nj

j

n
nj

j e
−nj

→
K∏
j=1

g
nj

j

nj !
= WB({nj})

, (7)

where WB already lacks the N ! term, which W ∗
B shows,

and is devoid of problems regarding the extensive char-
acter of the entropy.

The same approach can be used for WFD. We thus
have:

WFD({nj}) =
K∏
j=1

g
nj

j

(1− nj/gj)gjenjnj !

→
K∏
j=1

g
nj

j

n! = WB({nj})

(8)

Figure 3 shows the asymptotic behavior of WB/WFD

and WB/WBE as g grows with a fixed n = 200.
Now we must ask for the interpretation of the limit

gj/nj → ∞. For the example regarding colors, this
would mean that each coloured box has an infinity of
possible shades, as shown in Figure 4.

Clearly, this means, when it comes to quantum objects
and energy boxes, that for any number of objects nj ,
the amount of quantum states to be filled by them

Figure 3: Asymptotic behavior of Bose-Einstein’s an Fermi-
Dirac’s weights as the density of states goes to infinity.

Figure 4: The same example of combination of colors, but with
a continuous range of shades for each color.
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goes to a continuous or semi-continuous. This is in
every sense equivalent to our combination of colors
when our colored-boxes are chosen to be ranges of the
electromagnetic spectrum, as in Figure 4.

The conclusion is obvious enough: the only difference
between Boltzmann’s and Bose-Einstein’s distributions
(and also Fermi-Dirac’s) comes from the assumption,
in the derivation of the former, that energy forms a
continuum. This has nothing to do with trajectories,
Heisenberg’s uncertainty principle, Duality principle or
the Complementary principle.

In fact, making gj → ∞ is related to the Corre-
spondence Principle. This shows that this principle is
independent of the other three mentioned above, and
can be used in alternative interpretations of Quantum
Mechanics that do not take recourse to the them.

6. Comparison Between the Two
Approaches

Now, if we count as in the first column of Table 1 for
Boltzmann’s weight (that is, assuming distinguishability
of particles with respect to the energy), we get the
physically wrong expression (because of the term N !),
while if we count as in the second or third columns
of Table 1 for Bose-Einstein’s or Fermi-Dirac’s weight
(that is, assuming indistinguishability with respect to the
energy) and take the limit of continuous energy states
we get the physically correct expression for Boltzmann’s
weight function.

It seems obvious that one should take the second
approach, not the first. In such a case, all three weight
functions come not from the assumption of some ontolog-
ical indistinguishability of particles, but the assumption
of a continuity of accessible states. In this framework, in
a way analogous to situation Q3 already mentioned, we
learn that our ability to track particles is irrelevant to
the statistical result, given the counting property, which
is the filling of quantum mechanical energy states.

This approach can give comprehensive grounds to
the usual “large temperature limit” usually mentioned
in the context of these statistical probability density.
Thus, the fact that the two quantum mechanical dis-
tributions (µ is the chemical potential):

ni,BE = gi
e(εi−µ)/kbT − 1

ni,FD = gi
e(εi−µ)/kbT + 1

, (9)

tend to Boltzmann’s statistical distribution

ni,B = e−εi/kbT , (10)

can be interpreted as showing that the increase in
temperature and low density will increase the number
of accessible states, making them to tend to a quasicon-
tinuous spectrum.

It remains for us to show how the above presented
features can be approached in an actual class. We present
one possibility in the next section.

7. The Role of Mental Models in
Learning: Johnson-Laird

Johnson-Laird’s mental models integrate the set of cog-
nitive theories in which the human mind corresponds to
a complex and hierarchical system: a cognitive structure
capable of receiving, understanding, storing and using
information. To this end, it admits that the mental
models of individuals are structural analogs of the
world [11], that is, internal representations of a cognitive
structure which have a direct relationship with elements
of the outside world.

The central role of mental models is to mediate the
individual’s comprehension, explanation and inference
capacities about their non-cognitive analog [12]. They
present themselves at different levels of complexity,
ranging from those which represent simple objects, of
the broad domain and acquaintance, to those that serve
as scientific theories, and are characterized by nine
principles [11, 12]:

1. Computability: they must be described in the form
of non-dubious procedures, perfectly executable by
a process or machine.

2. Finitude: deriving from the human cognition, they
are associated with a vast, but limited set of
possibilities for realization.

3. Constructivism: they are derivatives of essential
elements that are or represent a state (or a set
of states) of the outside world.

4. Economy: each configuration of the outside world
is represented by only one mental model, however
incipient or incomplete it may be.

5. Definiteness: they can only represent indetermina-
tion if they are circumvented by mental processing
and without the exponential growth of their com-
plexity.

6. Predictability: they must be constructed by char-
acteristics that intersect at a point; a predicate
which can apply to any element to which another
predicate also applies, as long as not commuta-
tively, to provide the distinction between natural
and artificial concepts.

7. Innatism: all the conceptual primitives necessary
for the construction of mental models are natural
to individuals and make up their perceptual expe-
riences.

8. A finite number of conceptual primitives: the
conceptual primitives of a given semantic field are
not infinite.

9. Structural identity: the structures of mental mod-
els must be identical to those of the states of the
world they refer to – each element has a symbolic
function and meaning.
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Being individual representations of the world state of
affairs, the mental models are not necessarily accurate
and consistent. Also, for this reason, they are not
stationary and can be revised, complemented or even
abandoned at any time [12]. Thus, whenever a given
mental model encounters a situation that it is unable
to explain, the individual will be driven to update or, if
this is not possible, to discard that model. On the other
hand, competing models may be evaluated with respect
to the elements just mentioned, economy being one of
the most prominent and one that particularly connects
to the present approach.

In the teaching field, mental models can be used to
facilitate the understanding of conceptual structures,
which are human constructions developed to facilitate
the understanding of physical systems. Unlike mental
models, conceptual models are accurate, consistent and
complete representations of physical system [13].

From the teaching perspective, the teacher’s role is
to recover, curate, create, present and evaluate the
conceptual models for their students. This set of actions
should help the students to build, in their cognitive
structures, mental models that are consistent with the
physical systems they represent. In order to identify how
these students construct such models, the teacher must
seek to understand them, bearing in mind that, by their
own individual nature, mental models are confusing,
incomplete and unstable and that these characteristics
are not indicators of an inadequate mental model [12].

The previous sections of this article, when describ-
ing the counting principles applied to the Boltzmann,
Bose-Einstein and Fermi-Dirac distributions, provide
the reader with competing conceptual models of the
described physical systems. At the same time, when
making an analogy of such systems with objects occu-
pying spaces in colored boxes, they also try to describe
a mental model under which it is possible to understand
the distributions mentioned before.

In this mental model, the objects represent quantum
objects, and each colored box and sub-box an energy
quantum state and its degenerate states, respectively.
The different combinations in which the objects can
occupy the colored sub-boxes represent the different
energetic degenerate states that the quantum objects
could occupy.

It is essential to highlight that the mental model
described, unlike the conceptual model related to the
counting principles described in the previous sections,
is incomplete, inconsistent and inaccurate. This idea is
emphasized if it is considered that each reader forms
her own mental model related to the one described to
her. Again, this does not mean that they are inadequate,
as they have a mutable nature and potential to evolve
into models closer to physical reality. Anywise, it is
possible to perceive and demonstrate that its structure
is analogous to that of the described phenomena.

It is also worth noting that the article contrasts two
mental models within the same theory and the same

subject, thus showing how physical phenomena, not
rarely, can be seen from different mental structures. This
type of conflict is particularly interesting in the present
case since the presented model (involving only the Prin-
ciple of Correspondence, of an epistemological character)
confronts an almost universally accepted model (involv-
ing the ontological character of the indistinguishability
of quantum objects).

This is shown in the results obtained, which show
that, whenever the number of boxes tends to infinity,
the energy states can be represented as being continuous
or almost continuous, which would eliminate, in the
Boltzmann distribution, the error related to the entropy.
The proposed mental model also allows a continuity (of
an ontological nature) between the characteristics of the
objects in the quantum and classical worlds (identifying
them in terms of an statistical indistinguishability –
not ontological – hence being organized in the epis-
temological dimension). We believe it is unnecessary
to say how much such contrast enhances the critical
dimension of apprehension of the theme, in particular,
and of Quantum Theory itself, in general.

Finally, it is worth noting that, in his theory, Johnson-
Laird had no epistemological commitment and did not
propose methods capable of guiding an instructional
process through mental models. What his theory did,
it should be noted, was to describe how the process
of assimilation of knowledge by the cognitive structure
using mental models would occur. Thereby, as we have
already highlighted in another moment [14], a well-
founded and structured didactic on the theme dealt
in this study should combine a descriptive theoretical
perspective (cognitivist, in essence, like Laird’s) with
other theories or educational methodologies – therefore,
of an eminently normative nature – having in mind the
dual nature of such intent.

8. Conclusion

The obvious interpretation of the previous arguments
should be that there is no inherent problem with Classi-
cal Physics (in what respects to counting). The problem
resides (as it always did) in the (wrong) way many of us
decided to count. In fact, the inadequacy of W ∗

B should
have been considered from the start as an indication of
problems with the chosen process of counting, not as an
indication of problems with some particular domain of
physics (classical or quantum). It seems that we became
so eager to blame Classical Physics for each failure of
some approach to a particular problem in Physics that
we lost our ability to scrutinize (and, thus, understand)
our own mistakes.

These arguments, together with those of previous
sections, should suffice to show how classical and quan-
tum counting can be understood as equal with respect
to the notion of distinguishability, although different
with respect to the number of possible degenerate
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states (where quantization reveals its importance), as
expressed in the Correspondence Principle.

We believe that this would be an important con-
tribution to explanations of the topic in our classes
on Quantum Mechanics, and can give a very nice
(and simple) example of the role of interpretations in
Quantum Mechanics.
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tAedi, Belém, 2018).
[8] O.L.S. Filho, Quantum Mechanics: principles, new per-

spectives, extensions and interpretation (Nova Science,
New York, 2016).

[9] https://link.springer.com/chapter/10.1007/978-94-017
-2219-3 1.

[10] A. Bach, Indistinguishable Classical Particles (Springer,
Berlin, 1997).

[11] P. Johnson-Laird, Mental models (Harvard University
Press, Cambridge, 1983).

[12] M.A. Moreira, Investigações em Ensino de Ciências 1,
193 (1996).

[13] D.A. Norman, in: Mental models, edited by D. Gentner
and A.L. Stevens (Lawrence Erlbaum Associates, Hills-
dale, 1983).

[14] O.L.S. Filho and M. Ferreira, Revista do Professor de
F́ısica 2, 104 (2018).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0508 Revista Brasileira de Ensino de F́ısica, vol. 43, e20200508, 2021

https://link.springer.com/chapter/10.1007/978-94-017-2219-3_1
https://link.springer.com/chapter/10.1007/978-94-017-2219-3_1
https://link.springer.com/chapter/10.1007/978-94-017-2219-3_1
https://link.springer.com/chapter/10.1007/978-94-017-2219-3_1

	Introduction
	Some Trivial Results on Counting
	A Different Approach
	The Usual Way of Counting
	Deducing the Correct Boltzmann's Weight
	Comparison Between the Two Approaches
	The Role of Mental Models in Learning: Johnson-Laird
	Conclusion

