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The motion of a particle evaluated from the noninertial frame of the rotating Earth with constant angular
velocity ω is solved analytically without carrying out a priori approximations, that is, considering both the
Coriolis and the centrifugal terms. Position vector solutions written in terms of generic initial conditions were
obtained from a decoupled sixth-order equation of motion, obtained using a fully vectorial approach, without
specifically resorting to coordinates. By comparing the exact solutions for the complete and approximate (ignoring
the centrifugal term from the beginning) problems, great differences can be seen in the order of the decoupled
differential equation as well as in the temporal dependencies of the noninertial terms of the solutions. Noninertial
effects for the solution were classified according to the order of magnitude in ω, where first-order effects are
oriented east-west and the second-order ones are oriented north-south.
Keywords: Noninertial frames, Noninertial effects, Second-order effects, Motion in rotating Earth.

1. Introduction

The motion of particles in noninertial frames is often
studied in undergraduate Classical Mechanics courses.
A special part of this topic deals with motion evaluated
from a fixed frame on Earth, whose equation of motion
is given by [1]

r̈ = g0 +ω×(R×ω)+2ṙ×ω+ω×(r×ω)+r× ω̇ (1)

where r is the position vector, g0 is the Earth’s con-
stant gravitational field, ω is the vector that gives the
orientation of the Earth’s rotation, and R is the vector
radius that connects the planet’s center (origin of the
inertial frame) and the noninertial frame located on its
surface. In the equation of motion (1), the noninertial
terms couple the Cartesian coordinates and come in
the form of vector products being a correction to the
gravitational field due to the centrifugal effect, Coriolis,
centrifugal and azimuthal or Euler accelerations [2]. A
common consideration is to neglect the variation of
the Earth’s rotation, ω̇ = 0, and then define the field
g = g0 + ω × (R × ω) as a constant gravity field [1, 3].
The equation of motion (1) is then

r̈ = g + 2ṙ × ω + ω × (r × ω) (2)

Among the noninertial forces, the Coriolis force is
certainly the most investigated because of its effects such
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as the deviation to the right (left) of objects moving in
the Northern (Southern) Hemisphere. Coriolis force also
contributes to the counterclockwise cyclonal movement
of air masses in the Northern Hemisphere and clockwise
in the Southern Hemisphere among others [1–3].

The justification for the emphasis given to the Cori-
olis force is that it is proportional to ω, or first-
order in ω, which is symbolically represented by O(ω),
being more relevant than the centrifugal term, which is
O(ω2), because of the slow terrestrial rotation of ω =
2π
24
( 366.5

365.5
)

rad/h ≈ 7.3 · 10−5 rad/s, where the term in
parentheses is a correction factor evaluated as the ratio
between the number of sidereal days and the number
of solar days so that ω is determined from the fixed
stars [3]. However, when the approximation of small ω
is applied directly to the equation of motion (2), despite
being correct in determining the noninertial effects, it
leads to equations of motion for the phenomenon that
are completely different from those that are found by
considering all the terms of equation (2), as I will
show later. Furthermore, the neglecting of O(ω2) terms
directly from the equation of motion (2) prevents the
correct analysis of effects that depend on this order of
magnitude. Thus, even if one recognizes the relevant
role, albeit a supporting one, of the O(ω2) terms, their
consequences are generally treated in a qualitative or
semi-quantitative way [2].

In the next section vector solutions of equation (2)
are obtained with and without the centrifugal term. The
third section is devoted to show the second-order effects
obtained from the complete problem.
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2. Decoupling and Solution of Equations
of Motion

2.1. Coriolis and centrifugal

Equation (2) is coupled in their Cartesian coordinates,
once ẍ depends on y and z as well as their time
derivatives due to the vector products originated from
non-inertial terms. The same happens for ÿ and z̈. To
decouple the equation of motion (2) I will develop a
fully vector approach. To do this, two expressions will
be useful:

r̈ × ω = g × ω − 2ω × (ṙ × ω) + ω2r × ω

ω × (r̈ × ω) = ω × (g × ω) + 2ω2ṙ × ω

+ω2ω × (r × ω),
(3)

both obtained from equation (2) and calculated using
the vector identity a × (b × c) = (a · c)b − (a · b)c
when convenient. Successively differentiating equation
(2) with respect to time, one obtains expressions from...
r to r(6), as written in the system of equations (4)

...
r = 2g × ω − 3ω × (ṙ × ω) + 2ω2r × ω

r(4) = −3ω × (g × ω)− 4ω2ṙ × ω − 3ω2ω × (r × ω)
r(5) = −4ω2g × ω + 5ω2ω × (ṙ × ω)− 4ω4r × ω

r(6) = 5ω2ω × (g × ω) + 6ω4ṙ × ω + 5ω4ω × (r × ω)
(4)

where for each calculated derivative I used the expres-
sions for the vector products r̈ × ω and ω × (r̈ × ω)
written in (3) in order to make the right side of the
system of equations (4) dependent on vector products of
r and ṙ with ω. This is interesting for expressing the
general solution in terms of initial conditions.

The last equation of (4) is ready to be decoupled.
To do this, the products ṙ × ω and ω × (r × ω) must
be written in terms of the derivatives r̈ and r(4) using
the equation of motion (2) and the second equation
of the system (4), respectively. By substituting such
expressions in the equation for r(6) in the system (4), it
results in a decoupled sixth-order differential equation,
i.e. a differential equation that does not exhibit any
vector product of r or ṙ:

r(6) + 2ω2r(4) + ω4r̈ = ω4g − ω2ω × (g × ω) (5)

where its general solution can be obtained from standard
methods for solving ordinary differential equations: it
is a sum of a complementary general solution of the
homogeneous form of (5), obtained from the roots of
its characteristic polynomial, and a particular solution
of the inhomogeneous problem. Therefore, the general
solution of (5) can be written as

r(t) = c0 + c1t+ 1
2gt

2 − ω × (g × ω)t2
2ω2

+ (c2 + c3t) cos (ωt) + (c4 + c5t) sin (ωt) (6)

where cj are arbitrary vector constants. To find the
general solution in terms of generic initial conditions
r(0) = r0 and ṙ(0) = v0 it is necessary to use the
coupled equation of motion (2) in addition to the first
three equations of system (4). By doing so, one finds a
set of six vector equations from r(0) to r(5)(0) that can
be solved exactly by producing the following expressions
for the cj :

c0 = r0 −
ω × (r0 × ω)

ω2 − ω × (g × ω)
ω4

c1 = v0 −
ω × (v0 × ω)

ω2

c2 = ω × (r0 × ω)
ω2 + ω × (g × ω)

ω4

c3 = −r0 × ω − g × ω

ω2 + ω × (v0 × ω)
ω2

c4 = r0 × ω

ω
+ g × ω

ω3

c5 = ω × (r0 × ω)
ω

+ v0 × ω

ω
+ ω × (g × ω)

ω3

(7)

that when replaced in the general solution (6) result in

r(t) = r0 + v0t+ 1
2gt

2

+ sin (ωt)− ωt cos (ωt)
ω

r0 × ω

+ t sin (ωt)
ω

v0 × ω

+ sin (ωt)− ωt cos (ωt)
ω3 g × ω

+ ωt sin (ωt)− 1 + cos (ωt)
ω2 ω × (r0 × ω)

− t(1− cos (ωt))
ω2 ω × (v0 × ω)

+ ωt sin (ωt)− 1− ω2t2/2 + cos (ωt)
ω4 ω × (g × ω)

(8)
The solution presented in equation (8) is the most gen-
eral possible for the motion in the Earth’s gravitational
field with Earth in constant rotation. This result is
quite different from what is obtained when omitting the
contribution of the centrifugal terms in the equation of
motion (2), as I will show.

2.2. Coriolis only

Considering only the noninertial contributions due to the
Coriolis term, equation (1) becomes [4]

s̈ = g0 + 2ṡ× ω (9)

where the position vector was called s to avoid confusion
with the previous notation where centrifugal terms were
used. Equation (9) is commonly solved in problems pre-
sented in Classical Mechanics lectures for Earth motion,

Revista Brasileira de Ensino de F́ısica, vol. 44, e20210369, 2022 DOI: https://doi.org/10.1590/1806-9126-RBEF-2021-0369



Diniz e20210369-3

but using a scalar approach, working with Cartesian
coordinates separately [4]. By following analogous steps
to those shown in the previous subsection, one has the
equation of motion

s(4) + 4ω2s̈ = 4ω2g0 − 4ω × (g0 × ω) (10)

which is quite different from the higher-order equation
of motion given in (5).

The solution of the differential equation (10) can also
be obtained in an analogous way to that developed in
the previous subsection, reaching the following result:

s(t) = r0 + v0t+ g0t
2

2

+ 1− cos (2ωt)
2ω2 v0 × ω

+ 2ωt− sin (2ωt)
4ω3 g0 × ω

− 2ωt− sin (2ωt)
2ω3 ω × (v0 × ω)

+ 1− 2ω2t2 − cos (2ωt)
4ω4 ω × (g0 × ω)

(11)

which is in agreement with the solution in terms of
components found in the literature [4]. The result
obtained in (11) exhibits significant differences regarding
the time dependence when compared to the solution
given in (8). The comparison between the solutions
given in (8) for the complete problem and (11) taking
into account only the Coriolis force shows clearly that
centrifugal terms cannot be discarded a priori. As an
example of this difference in the temporal evolutions of
the noninertial terms, Figure 1 shows the behavior of
the temporal factors that multiply the vector product
v0 × ω of the accelerations of (8) and (11), given by
[2 cos (ωt)− ωt sin (ωt)] and 2 cos (2ωt), respectively.

Figure 1: Comparison between the factors [2 cos (ωt)−
ωt sin (ωt)] and 2 cos (2ωt) that multiply the vector product
v0 ×ω for the accelerations of (8) and (11) obtained from the
solution of the complete problem (solid line) and the problem
with only Coriolis (dashed line).

It is known that the vector product v0 ×ω is respon-
sible for several noninertial effects and, as Figure 1
clearly shows, to study these effects considering solely
the Coriolis force, disregarding centrifugal contributions,
can lead to misleading results in a matter of a few hours.

In the next section, I will show the noninertial effects
according to the solution of the complete problem.
Such effects will be classified according to the order of
magnitude in ω.

3. Noninertial Effects

To find the noninertial effects, it is necessary to evaluate
the acceleration of the complete problem, given in
equation (8). By differentiating it twice, it results

r̈(t) = g

+ ω(sin (ωt) + ωt cos (ωt))r0 × ω

+ (2 cos (ωt)− ωt sin (ωt))v0 × ω

+ sin (ωt) + ωt cos (ωt)
ω

g × ω (12)

+ (cos (ωt)− ωt sin (ωt))ω × (r0 × ω)

− 2 sin (ωt) + ωt cos (ωt)
ω

ω × (v0 × ω)

− ωt sin (ωt) + 1− cos (ωt)
ω2 ω × (g × ω)

Table 1 summarizes the order of magnitude of each term,
taking into account its temporal factor.

To find the consequences of the noninertial effects,
it is necessary to define the vectors g0, R, and ω
from the reference frame located on Earth to find
the final orientation of those vector products given in
equation (12). The arrangement adopted for the axes of
the noninertial coordinate system is given according to
Figure 2.

Table 1: Noninertial terms present in the acceleration of motion
in the Earth’s gravitational field with the Earth in constant
rotation. Each noninertial term is given by the product of the
temporal factor (first column) and the vector product (second
column). The last column shows the order of magnitude in ω
for each noninertial term present in the acceleration.

Temporal factor Vector product O(ω)
2 cos (ωt) v0 × ω 1
(sin (ωt) + ωt cos (ωt))/ω g × ω 1
cos (ωt) ω × (r0 × ω) 2
−(2 sin (ωt) + ωt cos (ωt))/ω ω × (v0 × ω) 2
−(ωt sin (ωt) + 1− cos (ωt))/ω2 ω × (g × ω) 2
−ωt sin (ωt) v0 × ω 3
ω(sin (ωt) + ωt cos (ωt)) r0 × ω 3
−ωt sin (ωt) ω × (r0 × ω) 4
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Figure 2: Scheme of the assumed coordinate system. In part (a)
there is a perspective view while in part (b) there is a planned
view. Latitude is determined by the angle λ.

Thus, according to the arrangement shown in Figure 2,
the vectors g0, R, and ω are written as

g0 = −gez, R = Rez, ω = ω (cosλey + sinλez)
(13)

where ei is the unit vector in the i direction and λ is
the latitude, positive in the Northern Hemisphere. With
the definitions given in (13), a Taylor expansion in ω
to the second-order of (12) can be performed to specify
noninertial effects for motion in the Earth’s gravitational
field with a constant rotating Earth. The results of such
procedure are listed below:

• v0 × ω – first-order.
– Deflection to the right (left) in the

Northern (Southern) Hemisphere: 2 sin(λ)ω
(ẏ0ex − ẋ0ey).

– Eötvös effect – the apparent weight of an
object increases (decreases) as it travels to
the west (east): 2ẋ0 cos(λ)ωez.

– Ascending (falling) objects deviate to the
west (east): −2 cos(λ)ż0ωex.

• g × ω – first-order.
– Acceleration to the east. The closer to the

Equator, the greater the force. This effect is
null at the Poles: 2gt cos(λ)ωex.

• ω × (v0 × ω) – second-order.
– Ascending (falling) objects deflect to

the nearest Pole (Equator): 3ż0t cos(λ)
sin(λ)ω2ey.

– Second-order Eötvös effect – the apparent
weight of an object increases (decreases) as
it travels towards the Equator (nearest Pole):
3ẏ0t cos(λ) sin(λ)ω2ez.

– The apparent weight of an object increases
(decreases) in ascending (descending)
motion. This effect is maximum at the
Equator, null at the Poles and independent
on the hemisphere: −3ż0t cos2(λ)ω2ez.

• ω × (g × ω) – second-order.
– Acceleration oriented to the Equator:
−(3/2)gt2 cos(λ) sin(λ)ω2ey.

– Reduction in apparent weight. This effect
is maximum in the Equator, null at the
Poles and independent on the hemisphere:
(3/2)gt2 cos2(λ)ω2ez.

where v0 = (ẋ0, ẏ0, ż0).
None of the listed effects depend on the radius of the

planet. With the exception of the corrective term ω ×
(R × ω) for the gravity field g, only O(ω3) effects and
superior depend on R.

The ratio between the contributions of third-order
to the first-order and of fourth-order to the second-
order that appear in the same acceleration components
has a modulus Rω2/g, which in the case of Earth
corresponds to about 0.35%. Thus, O(ω3) and O(ω4)
effects were omitted from the description due to their
low contribution compared to the first and second-
order effects, respectively. This result coincides with
the semiquantitative comparison between the centrifugal
term ω × (R × ω) (second-order) and the module of
the terrestrial gravitational field g0 (zeroth-order) [1, 3].
Furthermore, the O(ω3) and O(ω4) effects have the same
orientation, given by the vector term, as the O(ω) and
O(ω2) effects, respectively, as seen in Table 1, meaning
that they compete with each other and hence the low-
order effects (first and second) tend to suppress high-
order effects (third and fourth).

It is possible to notice that, in general, the first-order
effects manifest in the east-west direction, while the
second-order ones manifest in the north-south direction.
Therefore, these two classes of effects do not compete
with each other.

The theoretical explanation of higher-order effects in
Physics is very important once new phenomena can arise
from them. Here several second-order effects for the
motion in rotating Earth were shown and such findings
can certainly contribute to the deepening of Physics
classes as well as a theoretical background for basic
research concerning the observation of such phenomena.

4. Conclusions

The motion in the gravitational field evaluated by a
noninertial frame fixed to the Earth in constant rotation
was studied analytically without carrying out a priori
approximations, that is, taking into account both the
Coriolis and centrifugal terms for the composition of
the motion. The decoupling of the equation of motion
was performed, producing a linear sixth-order differen-
tial equation. The analytical solution of the decoupled
equation was obtained for generic initial conditions,
showing all noninertial terms. The same procedure was
performed for the motion considering only the Coriolis
term and ignoring the centrifugal one from the start.
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As a result of the comparison of the two procedures, it
was found that the decoupled differential equations are
very different from each other, leading to very different
solutions, although there is a certain coincidence in the
description of the consequences of the noninertial effects.
However, this coincidence only occurs because the two
solutions are very close to each other when a short time
elapses, but differ significantly for longer periods.

The consequences of noninertial terms for the motion
were also presented, ranked according to the order of
magnitude in ω, the (angular) frequency of Earth rota-
tion. In addition to the commonly known consequences
such as lateral deviation and the Eötvös effect, which
are first-order, several second-order effects have been
described, being oriented in a north-south direction.
Therefore there is no direct competition with the first-
order effects, oriented in an east-west direction.
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