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The wave beating produced by circular plane pistons
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The physics textbooks presents the fundamental concepts of wave beating from an interference process of
two plane waves at the time domain. In this work, we propose a teaching practice, based on computational
simulation, at undergraduate level, combining the beating caused by waves transmitted from two plane circular
pistons vibrating on thickness mode with the resulting acoustic field. The proposal leads to the perception of
the beating at the spatial domain. The results show that the pressure amplitude generated from the beating has
periodic variations along the central axis from a boundary location. This boundary is determined by the number
of extreme values and the ratio between source radius and wavelength.
Keywords: Rayleigh integral, acoustic wave, interference.

1. Introduction

The study of the acoustic field generated by the surface
of a vibrating body is carried out from the model
based on the distribution of point sources. From a
practical point of view, a plane circular piston is a
vibrating body with geometry of large interest. For
example, many piezoelectric transducers used for the
ultrasonic generation in applications of industry and
medical equipments has this usual shape.

The vibration of plane circular piston is considerated
uniform and normal to the surface and the acoustic field
generated is determined by the phasorial sum of the wave
transmitted by each one of the point sources distributed
on its plane surface [1, 2].

The acoustic field is divided in two parts: the nearfield
and the farfield. In the nearfield, localized in the
neighborhood of the vibrating surface, the pressure
presents many minima and maxima values resulting of
a complex interference process. On the other hand, in
the farfield, localized beyond the nearfield, the pressure
decays smoothly. Conventionally, the position of the
last maximum is considered the location of boundary
between these regions.

The determination of the acoustic field is performed
by computers running a numerical algorithm that cal-
culates Rayleigh integral [3]. There are many methods
to calculate the fields [4], further comprising methods
with didactic purpose [5]. However, the pressure on
the central axis perpendicular to the surface of the plane
circular source is a particular case whose field can be
determined by an analytical expression.

The interference of two waves with sligthly different
frequencies is named beating. The beating results in a
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wave whose amplitude varies along the time at a fre-
quency defined by the difference between the frequencies
of the original waves.

The beating with sound waves is useful technique for
the tuning of the musical instruments. When two devices
emits tones at slightly different frequencies the beating
can be perceived, accusing untuning. Also the beating is
used to determine poisoned gases in mines. By draining
out two identical pipes, one filled with pure air and other
with gas from a mine, the beating generation indicates a
divergence of composition, therefore a possible contam-
ination of the gas. Systems that work based on Doppler
effect such as the radar used to measure the speed of
vehicles in a highway (in this case the beating is caused
by electromagnetic waves) and ultrasonic probes that
detects the blood move are important examples of the
beating detection. Electronic circuits of both systems
compare waves transmitted and received with differents
frequencies and generated an electric signal proportional
to the speed of the movement (vehicles or blood).

The textbooks of basic physics introduce the beating
straightforwardly from the interference of two plane
waves in the time domain [6, 7]. In addition, in the
practice of physics teaching laboratories, we find several
experimental proposals for the beating detection in the
time domain. Commonly, ilustrative experiments with
diapasons give us a good qualitative evaluation of the
beating [8], but the introduction of technology in the
experiments increases the understanding and also adds
a positive motivation for the studies [9–12]. However, we
have not found explanations about the beating produced
by extended vibrating bodies.

In this work, we investigate the beating and its
acoustic field caused by waves generated by discs vibrat-
ing on thickness mode. We consider two superimposed
discs vibrating at somewhat different frequencies and
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determine the field along the central axis normal to the
disc surface. We propose an alternative approach for
enhancing and attaching concepts of acoustic field to
beating caused by a more complex interference process
and not only by a simple plane wave as dealt in the
introductory physics textbooks. Further, we also show
the beating in the spatial domain. The study was carried
out by computational simulations, since the experimen-
tal set to detect the acoustic field is very expensive and
not accessible to the most teaching laboratories.

2. Theory

Figure 1 shows a sketch of the geometry we have used
to determine the acoustic field. We consider an acoustic
source as a plane circular piston of radius a disposed in
the infinite, flat and rigid baffle on the plane z = 0. This
extended source is composed of a distribution of point
sources on the area S in sinusoidal vibration, in phase,
at angular frequency ω and amplitude U 0 perpendicular
to the surface. The propagation media is homogeneous,
isotropic, lossless, density ρ, speed of waves propagation
c, and each point P has coordinates r, θ and z.

The pressure in the point P of the propagation media
is determined by Eq. (1) (Rayleigh integral), where dS
is an element of area, j is the complex number, λ is
the wavelength, k = 2π/λ is the number of wave, t is
the time, and r ′ is the distance from an area element
dS to P.

p(r, θ, t) = jρc

λ

∫∫
S

U0(σ, ϕ)
r′

ej(ωt−kr′)dS (1)

The surface integral is defined in polar coordinates,
where the area element is dS = σdσdϕ. All point sources
vibrate at same amplitude and phase, therefore U0(σ, ϕ)
is a constant U0 and Eq. (1) is rewritten as

p(r, θ, t) = jρc

λ
U0

∫∫
S

1
r′
ej(ωt−kr′)σdσdϕ (2)

Rayleigh integral is calculated by numerical integra-
tion [3]. However, an analytical solution can be obtained

Figure 1: Coordinate system used in calculating the acoustic
field.

when the the pressure is evaluated along the axis z,
θ = 0, and thus r = z. In this case, the integrand is not
dependent on ϕ and the integral relative to this variable
is 2π. Therefore, Equation (2) can be simplified [1]
resulting in the integral of Eq. (3)

p(r, 0, t) = jρc
U0

λ

∫ a

0

exp(−jk
√
r2 + a2)√

r2 + a2
2πσdσ (3)

whose solution is shown in (4)

p(r, 0, t) = ρcU0e
j(ωt−kr)[1− exp(−jk(

√
r2 + a2 − r))]

(4)
We can point out that when r � a, (4) is approxi-
mated as (5)

p(r, 0, t) = ρcU0e
j(ωt−kr) (5)

The beating is obtained from the wave interference
produced by two sources vibrating at sligthly different
angular frequencies ω1 and ω2 = ω1 + ∆ω, where ∆ω is
an increment of the angular frequency [6]. The resulting
wave oscillates at angular frequency ω (Eq. (6)). The
evolution of this wave along the time presents periodic
amplitude variation defined by a beating frequency
(Eq. (7)).

ω = 1
2(ω2 + ω1) (6)

ωbeat = ω2 − ω1 (7)

The field produced as result of the beating is calcu-
lated by phasorial adding of the pressures generated by
each single circular plane piston.

3. Methodology

We have used a simple computer code written in Matlab
to calculate the complex pressures of the transmitted
waves (Eq. (4)). Firstly, we determined the fields for
each source at ω1 and ω2. The amplitude of both
vibrations are the same. The radius of the plane circular
piston we choose is a = 0.01 m. We choose to take a
medium with similar characteristics to the water (speed
wave propagation and density of c = 1500 m/s and
ρ = 1000 kg/m3, respectively). The simulations were
performed for a ratio a/λ = 4.0, considering the lower
angular frequency ω1 which results in 3.7699×106 rad/s
(or frequency f1 = 600.0 kHz). The second angular
frequency ω2 had increments of 2.5% (f2 = 15.0 kHz),
5.0% (f2 = 30.0 kHz) and 10.0% (f2 = 60.0 kHz) in
relation to f1.

The results were presented as relative magnitude of
pressure (p/pmax) as function of relative distance, where
pmax is the largest pressure amplitude. In all cases the
relative distance, normalized by a2/λ, was considered in
the range comprising 0 and 10.

After that, the field produced by the beating was
obtained by adding of complex pressure obtained for
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each frequency. Further, the positions of the relative
minima and maxima of the relative pressures were
identified.

To determine the acoustic field in any point of
the propagation mediu, we perform a numerical two-
dimensional integration of Eq. (1). However, there are
simpler methods that transform Eq. (1) in a one-
dimensional integral [13] saving computational work. We
have implemented an algorithm based on geometrical
considerations to determine the acoustic field generated
by the sources with circular shapes. A fine description
of the algorithm is found in [5].

According to Fig. 1, the circular source is placed
in xy-plane where all point sources are vibrating with
same amplitude and phase. The pressure in any point
P (xP , yP , zP ) belonging to the propagation medium is
determined by adding the individual vibration gener-
ated by the point sources. Point sources equidistant
from P generate parcels of the pressure proportional
to the velocity phasor, ui = U0ejωr′/c. These sources
are disposed in arcs, lenght L, which are determined
considering the intersection between the inner area of
surface of the circular source and an imaginary sphere
whose radius grows centered in P. Therefore, each phasor
is multiplied by the respective arc lenght. Further, each
parcel of the adding is divided by the distance (r ′)
from the arc to P. Equation (8) gives the summation
to determine the pressure in P

p(xP , yP , zP ) = A
∑

i

ui
Li

r′i
(8)

where A is a constant dependent on physical properties
of the propagation medium;
i is the index of the each arc.

We may wonder a sphere centered in P with radial
growing. The intersection of this sphere with xy-plane is
a circunference with center in the P ′ and radius ρ. There
are three cases to be considered:

(a) the circunference does not intersect the circle
where the source is defined, therefore the arc is
not drawn and none point source adds pressure in
P (Fig. 2a);

(b) the circunference is fully contained in the source,
so the arc lenght is determined by Equation (9)
(Fig. 2b);

(c) Equation (10) is used to determine the arc when
the circunference is partially inner to the source
(Fig. 2c).

L = 2πρ (9)

L = 2ρ cos−1
(
ρ2 + x2

P + y2
P − a2

2ρ(x2
P + y2

P )

)
(10)

A code written in Matlab has been used to deter-
mine the field. The basic instructions for running the
algorithm are:

Figure 2: a) Both circunference with radius signed as ρ do not
intersect the circular source, thus the velocity phasor is zero. b)
The circunference with radius ρ is fully inside the circular source,
thus L = 2πρ. c) The circunference with radius ρ intersect 2
points of the circular source, thus the arc inside the source (full
line) is L, defined by Eq. 10.

(a) take a point P,
(b) project P on the xy-plane to obtain P ′,
(c) P ′ is a center of a circunference whose radius ρ is

incremented;
(d) for each radius ρ, L is determined and the parcels

of the pressure are calculed using Eqs. (8), (9) and
(10) according to the case pictured;

(e) the final pressure in P is obtained when a full
sweeping on the circular source is concluded;

(f) return to a).

After running this algorithm at ω1 and ω2, the
acoustic field generated by the beating is determined by
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the phasorial adding of the pressures in each point of the
propagation medium as shown in Eq. (11).

p(xP , yP , zP ) = p1(xP , yP , zP ) + p2(xP , yP , zP ) (11)

where
p is the pressure phasor in (xP , yP , zP ) into the beating
field;
p1 is the pressure phasor in (xP , yP , zP ) calculated at ω1;
p2 is the pressure phasor in (xP , yP , zP ) calculated at ω2.

The resulting field was determinated on a plane
perpendicular to the x-axis (x = 0) (Figure 1) in the
ranges z/a2/λ (between 0 and 10) and y/a2/λ (between
0 and 2). Both coordinates were discretized in 200
points. The results of these calculations were represented
in color maps which also allow us “see” the field in
lateral regions to the central axis and, therefore, get
a qualitative evaluation of the directional factor [1, 3].
From a simplyfied physical point of view, the directional
factor expresses how much the pressure beam is narrow
and therefore how the acoustic energy is distributed in
the field.

4. Results and Discussion

The results are presented as function of normalized
coordinates. Therefore, although the calculations have
been performed with ultrasonic frequencies, the results
can be interpreted for lower frequencies, at audible range
for example, taking in account the ratio a/λ. Further, the
spacial coordinates (axis z and y) are also normalized
agregating generalization to the interpretation of the
results. Thus, the choice of dimensions and vibration fre-
quencies of the sources does not limit the interpretation
of the results to a specific case, but allows us evaluate
the results comprehensively.

Figure 3 shows an example of relative magnitude of
pressure at ω1 and ω2 when ∆ω means a increment of
5.0% in relation to ω1. The nearfield is identified as the
region between the source (z = 0) and the last maximum
(around z/a2/λ = 1.0). The number of minima and
maxima in this region depends on a/λ, so that the
simulations considering larger values of a/λ will set a
nearfield with more complexity, as seen in [3].

Figure 4 shows the relative pressure resulting of the
beating at the time t = 0 s considering ∆ω of 5.0%
too. We can see that from z/a2/λ ≈ 1.2 the pressure
waves assume a spatial periodic shape. This position
stands just above the last maximum produced by the
single sources shown in Fig. 3. In fact, hereafter, this
position will be dealt as a reference that establishes the
boundary where the beating begins to ocurr according
to the usual definition found in the textbooks, but with
gradual amplitude decrease.

Figures 5a to 5c show the relative magnitude of
pressure for the three frequency deviations. The distance
between consecutive maximum tends to a constant value

Figure 3: Axial relative pressure amplitude as function of
z/a2/λ for ω1 (red line) and ω2 (blue line).

Figure 4: Axial relative pressure as function of z/a2/λ at t = 0s
of the wave beating obtained from the percentual variation of
frequency of 5.0%.

as far as the distance from the source grows. The
same feature is also observed for the minimum pressure
values. We calculated the difference among consecutive
minima (∆zmin) and maxima (∆zmax). This distance
between consecutive extreme values is the wavelength
referent to the beating frequencies calculed by c/∆zmin

and c/∆zmax. Figure 6 shows that the relative beating
frequency normalized by f1 are 2.5% – blue line, 5.0% –
red line, 10.0% – green line, as expected.

The distance between the extreme values is con-
stant after the fifth maximum/minimum. Therefore,
the beating effectivelly begins after a reference defined
by the number of extreme values, being unperturbed
by the percentual frequency variation. The number of
extreme values in the anterior region to the reference
remains unchanged. This number is defined for the
a/λ ratio, similar to that verified in fields produced
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Figure 5: a) Axial relative pressure amplitude as function of
z/a2/λ for the wave beating obtained from the percentual
variation of frequency of 2.5%. b) Axial relative pressure
amplitude as function of z/a2/λ for the wave beating obtained
from the percentual variation of frequency of 5.0%. c) Axial
relative pressure amplitude as function of z/a2/λ for the wave
beating obtained from the percentual variation of frequency of
10.0%.

by circular plane pistons [2]. Therefore, in the case of
a comparison with a commercial device, the number
of pressure maximums and minimums can be changed
without any loss of generality.

Figure 6: Relative beating frequencies as function of the
number of minima and maxima for each percentual difference
of frequency (2.5% – blue line, 5.0% – red line, 10.0% – green
line) for z/a2/λ in the range from 0 to 10.

The spatial periodicity of the field in positions above
the reference is a typical and peculiar characteristic of
the wave beating. In the same range of relative distance
(z/a2/λ), when the difference of the beating frequencies
grows the variations along the farfield become less
spaced, indicating that the wave groups are smaller.

In circular plane piston vibrating at a single fre-
quency, when z becomes much higher than a, the term
(
√
r2 + a2−r) ), in Eq. (3), tends to 0, therefore reaching

the plane wave condition which leads to the behavior
of the farfield. According to the theoretical approach
denoted in the physics textbooks, the beating is achived
by the interference between plane waves. Thus, this is
the reason of the beating arises when this condition is
observed.

Figures 7a to 7c show the color maps of the acoustic
field on the plane x = 0. The normalized radius of the
circular source is 0.25. The darker colors identify regions
with low pressures. Considering the pressures as a
function of the coordinate θ (see Fig. 1), a visual analysis
of the color maps did not reveal substantial changes in
the directional factor. However, the lateral lobes present
the same spatial frequency found in the region located in
front of the vibration source. As expected, in the region
near to the source, we also find the complex interference
process peculiar to the nearfield.

We have developed this work based on acoustic
waves emitted by circular sources. This shape is very
popular in ultrasonic probes, loudspeakers and musical
instruments. Therefore, this shape is present in practical
situations which may stimulate the students in the study
of the beating. It is worthy point out that other shapes
(line, rectangular, for example) [1] can be used to study
the behavior of the acoustic fields generated by beating
and also link to the sound sources met in practical
applications.
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Figure 7: a) Color map of pressure on the yz-plane for the wave
beating obtained from the percentual variation of frequency of
2.5%. b) Color map of pressure on the yz-plane for the wave
beating obtained from the percentual variation of frequency of
5.0%. c) Color map of pressure on the yz-plane for the wave
beating obtained from the percentual variation of frequency of
10.0%.

5. Conclusion

The pressure amplitudes of the acoustic fields generated
by the plane circular pistons present abrupt variations at
the nearfield, but decay smoothlly at the farfield. On the

other hand, when the field produced by these sources
results from the beating process, it is distinguished by
a regular spatial sequence of minimum and maximum
pressure values. Both distances between minima as
maxima tend to the wavelength of the beating frequency.
In fact, the effective beating arises in distances greater
than a boundary found when the waves produced by the
sources becomes approximately planes. This boundary
depends on the number of the extreme values, which in
turn depends on a/λ.

This work shows a study with simulation of acoustic
fields generated by two superimposed plane circular pis-
tons causing beating. We have approached the beating
caused by extended sources and introduced its spatial
dependence. Thus, our purpose goes beyond the conven-
tional textbooks used em introductory physics courses
where the beating is dealt in the regular activities of
physics teaching as plane waves only in the time domain.

We also introduce the fundamentals for understanding
the acoustic fields, topic not always adressed in the
preliminar studies of physics, which may be used as com-
plement in the study of the phasors and elementar con-
cepts of computational programming language. Thus,
our propose combines two important topics covered in
the acoustics studies aiming support new activities for
the physics teaching at undergraduate level.
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