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The Wilberforce pendulum is a mechanical oscillator often used to demonstrate the phenomenon of coupled
oscillations. It is a spring-mass system whose pendulum bob contains lateral rods to vary its moment of inertia,
being possible to verify the coupling of the rotational and longitudinal motions of the resonant system. In the
present work, we present a experimental study of the coupled oscillations on the Wilberforce pendulum using easily
accessible materials. With a Slinky spring toy, a wood rod containing masses at the extremities and getting images
of the movements using a mirror and the tracker software on a smartphone, we could analyze quantitatively
the properties associated with the coupled oscillations. The final result has indicated excellent agreement with
the theoretical modeling, and therefore it can be used in teaching of wave physics.
Keywords: Wilberforce pendulum, coupled oscillations, energy conservation, wave physics.

1. Introduction

In physics, we usually come across such a variety of
oscillating coupled systems. Actually, completely iso-
lated oscillators is rarely verified in nature. For instance,
a spring can be described as a ensemble of several
constituent particles coupled with each other. The wave
motion occurs due to neighbouring oscillating particles
being coupled one to another, resulting in an energy
transmission. Some examples of two coupled systems
are: two simple pendulum with their bobs coupled using
a spring, or two coupled LC circuits. These coupled
systems are said to have two degrees of freedom [1].
The Wilberforce pendulum is a mass-spring oscillator
proposed by Lionel R. Wilberforce in 1894 [2], consisting
of a mass suspended by a helical spring that is free
to oscillate in longitudinal and torsional modes [3]. In
this sense, the Wilberforce pendulum is an example
of a coupled mechanical oscillator that can be used
to demonstrate the phenomenon of coupled oscilla-
tion in most introductory physics courses. A sketch
of this mechanical oscillator is shown in Figure 1-
A. Using this oscillator, it can be noticed that the
pendulum has two motions: the translation and the
rotation, whose intensities are coupled. It means that
the vibrational energy in longitudinal direction is grad-
ually transferred to torsional oscillation energy, and
vice versa [4]. Thus, although being a relatively simple
mass-spring oscillator, it is an excellent pedagogical
apparatus to demonstrate some important wave physics
principles [4, 5].

* Correspondence email address: enesio.junior@ufabc.edu.br

The equation of motion for the Wilberforce pendulum
represents a linear combination of the longitudinal and
torsional modes of vibration [3]:

R(t) = z(t)ẑ + θ(t)θ̂. (1)

The results shown in Figure 1-B, taken from Ref. [3],
describe the oscillations in both coordinates z and θ as a
function of time. We can clearly observe the relationship
between the phases of the coordinates as a result of
the energy transfer. So that, the greater is amplitude
in the coordinate θ, the smaller is the amplitude in the
coordinate z, and vice versa.
Using digital techniques for the analysis of natural

phenomena such as coupled oscillation is a modern
method applied to design wave physics experiments [6].

Figure 1: The Wilberforce pendulum and the coupled oscil-
lation: (A) a sketch showing the coordinate system with the
longitudinal z(t) and torsional θ(t) directions. (B) Results for
z and θ as a function of time for the Wilberforce pendulum,
reproduced from Ref. [3], with the permission of the American
Association of Physics Teachers.
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In addition, the COVID-19 pandemic has suddenly and
abruptly forced educational institutions to adopt some
digital techniques to teach experiments and fundamental
physics phenomena [6, 7].

In the present work, we describe an experimental
implementation of the Wilberforce pendulum which was
accurate enough to give quantitative insight into the
fundamental oscillating properties. However, the exper-
imental apparatus was intended to be simple enough
to be reproduced by physics students only using easy
accessible materials and a smartphone. The results
have shown that we could quantitatively analyze the
Wilberforce pendulum composed of a Slinky toy acting
as a spring, a wooden rod with masses in its extremities.
The coordinates for the translation and rotation motions
were obtained using the tracker software installed in
a smartphone.

2. Methods

2.1. Theoretical model

Let us consider a massless helical spring with spring
constant k and torsional spring constant δ. As the
pendulum bob, we hang a rod with masses at it extrem-
ities resulting in a moment of inertia I and total mass
M . Assuming a linear coupling of oscillations being
described by a potential in the form

U = 1
2εzθ, (2)

where ε is the coupling constant, z and θ are the two
coordinates, z = θ = 0 is the equilibrium point. Thus,
the Lagrangian of the pendulum can be written as [3]

L = 1
2
(
Mż2 + Iθ̇2)− 1

2
(
kz2 + δθ2 + εzθ

)
,

(3)

where I is the moment of inertia of the system with
respect to the vertical axis, δ is the torsion constant
of the spring, and ε is the coupling constant between
vertical and rotational oscillations [3, 5].
Applying the Euler-Lagrange equation,

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0, (4)

for q = {z, θ}, we get from Eq. (3)

Mz̈ + kz + 1
2εθ = 0, (5)

Iθ̈ + δθ + 1
2εz = 0. (6)

The Eqs. (5) and (6) describe the dynamics of
the Wilberforce pendulum considering the coupled
oscillation.

Assuming the solutions equal to those obtained for the
simple harmonic oscillator,

z(t) = A1 cos(ωt+ ϕ)

= Re
{
A1e

i(ωt+ϕ)}, (7)

θ(t) = A2 cos(ωt+ ϕ)

= Re
{
A2e

i(ωt+ϕ)}, (8)

in Eqs. (5) and (6), respectively, we get(
k

M
− ω2

)
A1 + ε

2MA2 = 0, (9)

ε

2I A1 +
(
δ

I
− ω2

)
A2 = 0, (10)

and then defining

ωz ≡
√

k

M
, (11)

ωθ ≡
√
δ

I
, (12)

the expressions yield(
ω2
z − ω2)A1 + ε

2MA2 = 0, (13)
ε

2I A1 +
(
ω2
θ − ω2)A2 = 0. (14)

To obtain non-trivial solutions, we must impose that
the determinant∣∣∣∣ω2

z − ω2 ε
2M

ε
2I ω2

θ − ω2

∣∣∣∣ = 0, (15)

which results in

ω4 −
(
ω2
z − ω2

θ

)
ω2 +

(
ω2
zω

2θ − ε2

4MI

)
= 0.

(16)

Solving this equation for ω2, we obtain the two normal
modes of vibration

ω2
+ = 1

2

[
ω2
z + ω2

θ +
√

(ω2
z − ω2

θ)2 + ε2

MI

]
, (17)

ω2
− = 1

2

[
ω2
z + ω2

θ −
√

(ω2
z − ω2

θ)2 + ε2

MI

]
. (18)

When the natural frequencies ωz and ωθ are equal,
then for ωz = ωθ = ω we get

ω2
+ = ω2 + ε√

MI
, (19)

ω2
− = ω2 − ε√

MI
. (20)
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In Eq. (13), considering the normal mode ω1 replacing
ω, and for ωz = ω when the oscillator is in resonance,
therefore

ε√
MI

A1 + ε

2MA2 = 0, (21)

so that the ratio between the amplitudes reads

A2

A1
=
√
M

I
. (22)

Eqs. (19) and (20) can be rewritten more compactly
as [5]

ω2
± = ω2 ± ωb, (23)

where ωb is defined as

ωb ≡
ε√
kI

= ε√
δM

. (24)

If we consider the situation in which the Wilberforce
pendulum is released from equilibrium, with an initial
longitudinal displacement A1, without initial phase and
rotational amplitude. In this case, the solutions of the
equations of motion will be [5]

z(t) = A1 cos
(
ωbt

2

)
cos(ωt), (25)

θ(t) = A2 sin
(
ωbt

2

)
sin(ωt), (26)

in the weak coupling limit. Both of these equations take
the form of a rapid oscillation at the natural frequency
ω inside a slowly varying envelope [5, 8].

2.2. Prototypes

To study the coupled oscillations of the Wilberforce
pendulum. The pendulum bob was attached at one end
of the spring, and the other one was fixed on a stepladder
used as a support.
The first prototype of the Wilberforce oscillator was

made using a notebook metal spiral spring as a spring.
As the pendulum bob, we used a soda can with attached
screws that act as side rods and support the side hanging
masses. This model is shown in Figure 2-A.
In the second prototype we used the slinky plastic

spring, which was fixed by means of wires to a piece
built with the acrylic ruler and pen, which will serve
as a support for placing the lateral masses. This second
prototype is shown in Figure 2-B.
Once with the two previous prototype we could get

a reproducible coupled oscillation, we created a third
prototype, obtained using the same slinky spring used
in the second prototype. But in this final prototype, the
pendulum bob was a bamboo pole with playdough at the
ends of this pole. With this final prototype, depicted in
Figure 2-C, we were able to verify the expected coupled
oscillations.

Figure 2: Prototypes and the experimental setup: first assem-
bled Wilberforce pendulum prototypes using (A) a notebook
spiral and (B) a slinky spring with acrylic ruler and markers as
rods and weights. (C) Final prototype used for the quantitative
analyses, comprising of a wood rod with playdough as masses
at the extremities, resulting in a total pendulum bob of 14.0
± 0.5 g. (D) Setup used for measurements of the coordinates,
containing (1) a stepladder used as a support for the spring,
(2) the slinky spring, (3) the pendulum bob with wood rod and
weights, (4) a plane mirror to allow recording simultaneously
the translation and the rotation, and (5) tripod with cellphone
for video acquisition.

Figure 3: Experimental procedure carried out to record the coor-
dinates for the Wilberforce pendulum. (a) First, the pendulum
in equilibrium is recorded in order to set the referential point
in z-axis. (b) Afterwards, we raise the pendulum bob a little,
and (c) finally, we release the pendulum, starting the vertical
oscillation. The magenta lines represent the axes used.

2.3. Experimental setup and measurement
procedure

The experimental setup used to obtain the coupled
oscillations is shown in Figure 2-D. We hung the
slinky Wilberforce pendulum in a stepladder. To mea-
sure the masses of the pendulum bob, we have used
a digital balance (Globalmix SF-400). We also used
the tracker software [9] to record and analyze the
coordinates z and θ during the coupled oscillations. In
order to record simultaneously both the translation and
rotational motions, we placed a plane mirror properly
inclined (∼ 45◦) below the slinky Wilberforce pendulum,
analogous to a previously reported study [10]. We use
a smartphone on a tripod to acquire the images, thus
ensuring stability in the recording.

First, the spring was raised vertically above its equi-
librium point and then released to start the oscillations.
Initial rotation is null. The steps showing the initial
boundary conditions already being obtained by the
tracker software are presented in Figure 3.

To obtain the fits for the experimental data, we used
the scipy.optimize library from python. Specifically,
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we use the function curve_fit which implements the
nonlinear least squares method to fit a function and get
the optimized parameters.

3. Results and Discussion

3.1. Spring characterization

The elastic constant of the spring can be estimated from
the relationship between the added mass (in kilograms)
and the corresponding deformation of the spring (in
meters). In the equilibrium state of the spring-mass
system, we have that the magnitude of the resulting
force is the weight, which in this case will be equal to
the elastic force:

F = Mg = kz, (27)

where M is the mass supported by the spring, g is the
acceleration of gravity (we used g =9.8 m/s2), k the
elastic constant of the spring and z the deformation of
the spring. Rearranging the above expression, we get

M = k

g
z. (28)

Thus, from the adjustment of the experimental values
of mass and deformation of the spring, it is possible to
estimate the elastic constant of the spring by the angular
coefficient obtained. Let α be the slope of the linear fit
M(z) = αz, the elastic constant can be calculated by,

α = k

g
=⇒ k = αg. (29)

We use nickels and dimes as masses. The results
obtained from the deformation of the spring in relation
to the added masses are shown as the experimental data
in Figure 4. Based on these values, we obtained the linear
fit shown in Figure 4 (solid line).

However, the best curve fit obtained for the mass data
as a function of displacement was a parabolic fit in the
form

M = Az2 +Bz + C, (30)

where A = (0.018± 0.001) kgm−2, B = (0.054± 0.001)
kgm−1 and C = (0.0019 ± 0.0004) kg. This quadratic
fit is shown in Figure 4 (dashed line). We expected to
obtain a straight equation, but we ended up getting a
quadratic fit as a result, thus showing that the spring
has a load limit for which it has a linear behavior, cf.
described by Hooke’s law.
In this case, we estimated the linear behavior of the

spring using the equation

M = Bz + C, (31)

with the values of B and C obtained with the polynomial
fit of second order. With that, we were able to calculate

Figure 4: Characterization of the slinky spring. Mass data versus
the longitudinal displacement were obtained experimentally
(circles in blue). Linear and quadratic fits are represented by
solid and dashed lines, respectively.

the spring constant using Eq. (29). Thus, we obtained
as a result

k = (0.53± 0.01)Nm−1, (32)

with uncertainty calculated from the error propagation
in the elastic constant equation.
As shown in Figure 4, when we consider masses

between (8± 0.5) g and ∼ (80± 0.5) g we have a spring
with a reasonable linear behavior. The first experimental
data had a mass of (4.1 ± 0.5) g, which was quite
similar to the one of spring (∼ (3.0 ± 0.5) g), making
then the spring to have a non-linear behavior. That
similarity in masses is not verified already for the second
experimental data ((12.3± 0.5) g). From the 10th mass
((77.9± 0.5) g) and beyond, we can notice a non-linear
behavior of the spring similar to a hard spring [11].

3.2. Moment of inertia of support

To estimate the moment of inertia of the support, we
modeled the support with masses at the ends as shown
in Figure 5. Thus, the moment of inertia will be given by

Ipendulum bob = Irod + 2Imass, (33)

where Irod is the moment of inertia of the horizontal
rod and Imass is the moment of inertia of the masses
contained in the ends of the rod. Using moment of
inertia of a solid bar and assuming that the weights are
punctual, the moment of inertia reads

Ipendulum bob = 1
12ML2 + 2mL2

4 . (34)
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Figure 5: Schematic representation of the pendulum bob, with
lateral masses m, bar mass M and bar width L.

Figure 6: Vertical displacement curves z (in meters) as a
function of time (in seconds) obtained using (A) the first
pendulum prototype with a notebook spiral spring shown in
Figure 2-A, and (B) results for the second prototype with the
slinky spring with pens acting as masses depicted in Figure 2-B.

Substituting the measured values:M = (4.0±0.5)×10−3

kg,m = (5±0.5)×10−3 kg and L = (30.0±0.05)×10−2 m
(masses measured with a scale with a minimum measure
of 1g and distance with a ruler with a smaller measure
of 0.1 cm), and using the error propagation we were able
to estimate the moment of inertia of

Ipendulum bob = (2.2± 0.2)× 10−4kg m2, (35)

where the uncertainty was estimated from the error
propagation.

3.3. Results of the oscillators

Initially, we analyzed the oscillations for the the first
prototype, in which we used a notebook metal spiral
spring (Figure 2-A). By recording and analyzing the
dynamics of the translational motion, we verified a
curve with behaviors different from the expected ones,
recalling the solution of the equation of motion for a
damped oscillator (Figure 6-A).
This is confirmed by the form of the curve fitting,

z(t) = De−Et
2 cos(Ft), (36)

which is analogous to the solution of the damped
harmonic motion in one dimension,

z(t) = Ge− γt
2 cos(ωt+ φ), (37)

where ω is the angular frequency and γ is the damping
constant [8]. Even modifying the masses used in the
first prototype, we still obtained a damped behavior. In
other words, with the first prototype we were unable to
verify the coupling of vertical oscillation with rotational
oscillation, obtaining only a damped vertical mass-spring
system. In fact, the procedure of finding a system where
complete energy transfer occurs between the two types of
harmonic motions, in which the oscillations are coupled,
did not seem to be a trivial task.
As a preliminary result, we verified that the adjust-

ment of the pendulum to occur the coupled oscillation
depends on the moment of inertia of the support, the
magnitude of the lateral masses, and the elastic constant
of the spring, cf. discussed in Section 2.1.
We then analyze the second Wilberforce pendulum

prototype, using the slinky spring with elastic constant
of (0.53 ± 0.01) N/m (see Figure 2-B). The pendulum
bob was made using a 30 cm acrylic ruler, and three
markers as weights (Figure 2-B). Each pen has a width
of (13.5 ± 0.05) cm, and a mass of (33.0 ± 0.5) g. As
discussed in section 3.1, this total mass of (99.0 ± 0.5)
g for the pendulum bob is out of linear regime of the
Slinky spring. Using this prototype and the configuration
of the experimental apparatus presented in Section 2.3,
we obtained a result of the temporal evolution of the
translation which is shown in Figure 6-B. This was the
first result that suggested a coupled oscillation in z and
in θ, being verified the gradual decrease in the amplitude
of longitudinal motion up to the instant t ≈ 13 s, with
a subsequent increase in the amplitude.

Although the result obtained using the second pro-
totype indicated the coupling of longitudinal and rota-
tional motions, we could not verify with this prototype a
reproducible result with well-described varying envelope,
and we did not even obtain a periodic behavior with at
least two nodes. This occurs mostly due to the use of
masses above the linear spring regime, or a pendulum
bob with an inadequate moment of inertia and the fact
that the mass of the pendulum bob is out of the Slinky
linear regime.

Finally, we set up the final prototype for the Wilber-
force pendulum, which was used as the final apparatus
for carrying out all the measurements and analyses
presented below. The only difference between this pro-
totype and the second one was the pendulum bob (see
Figure 2-C).

Employing the final Wilberforce pendulum prototype,
we obtained the translation and rotational motions that
can be observed in Figures 7-A and 7-B, respectively.

For the translation motion, the curve fitting was
achieved with an expression in the form

z(t) = A cos(Bt) cos(Ct), (38)

with A = (0.10 ± 0.03) m, B = (0.512 ± 0.004) rad
and C = (4.802 ± 0.004) rad/s. Eq. (38) is similar to
Eq. (25), so that by comparison we have that B = ωb/2
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Figure 7: (A) Vertical z (in meters) and (B) angular θ (in
radians) oscillation curves versus time (in seconds) obtained
using the pendulum prototype shown in Fig. 2(C).

and C = ω. Then we get

ωb = 1.024± 0.008 rad/s, (39)

and

ω = 4.802± 0.004 rad/s, (40)

Regarding the result of the frequency ωb in Eq. (24),
we computed the value for the coupling constant

ε = (11.06± 0.09)× 10−3 N, (41)

where the uncertainty was calculated from the error
propagation, considering the uncertainties of the elastic
constant and the moment of inertia. For comparison
purposes, Berg and Marshall [3] obtained as a result ε =
(9,27±0,30)×10−3 N, using a spring of steel, indicating
that there is good agreement with our experimental
results regarding the order of magnitude of the coupling
constant.
Also using Eq. (24), we can evaluate the torsion

constant of the spring, given by

δ = ε2

ω2
bM

. (42)

For this expression, we get the spring torsion constant
for the slinky spring

δ = (83± 4)× 10−4 Nm. (43)

Considering now the results of ε and δ, we estimated
the standard frequencies of oscillation using the defini-
tions shown in Eqs. (11) and (12), which result in

ωz = 6.15± 0.11 rad/s, (44)

ωθ = 6.15± 0.28 rad/s. (45)

As a result, the standard frequencies ωz and ωθ are in
the same order of magnitude as ω (cf. Eq. (40)), with one
difference on the order of 1.3 rad/s. Now analyzing the
results for the rotational motion depicted in Figure 7-B,

Figure 8: Curves of both vertical shift z (in meters, solid
line) and angular displacement θ (in radians, dotted line) as
a function of time (in seconds). The curves represent the fits
obtained from the experimental data.

whose solution is described by Eq. (26)), we verified that
the fit obtained by the curve fit function was of the

θ(t) = A2 sin(Dt) sin(Et), (46)

where D = B, E = C. In fact, the result obtained
by the adjustment was D = (0.513 ± 0.003) m and
E = (4.802 ± 0.004) rad/s, confirming the prediction
of similarity between these parameters of the nonlinear
fits. According to Eq. (22), we have that

A2 = A

√
M

I
, (47)

from which we obtain an estimate for the amplitude of
rotational motion

A2 = (0.8± 0.2) radians, (48)

with uncertainty calculated by error propagation. The
result measured directly from the nonlinear fit was

A2 = (1.09± 0.03) radians, (49)

indicating that there is a good agreement between the
predicted amplitude and that obtained from the exper-
imental data. The implemented PYTHON notebook to
fit the experimental curves of the coupled oscillations,
as well as the "csv" files with the experimental data are
available at [12]. A video showing the translation and
rotational oscillation of the final setup of the Wilberforce
pendulum can be watched at [13].
For the purpose of qualitative analysis, the adjust-

ments of the longitudinal and rotational movements
were superposed and the result is shown in Figure 8.
Indeed, we can verify an energy transfer of longitudinal
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elastic potential energy into the rotational elastic energy
and vice versa. Moreover, we can note that the regions
of maximum longitudinal amplitude coincide with the
regions of minimum rotational amplitude, and that
the longitudinal amplitude decreases as the rotational
amplitude increases. Therefore, this result indicated
that energy transfer was occurring and therefore the
oscillations are coupled.
As a coarse estimation, we have computed the moment

of inertia of the pendulum bob used in the second
apparatus, and we got the value of (3.51 ± 0.05) ×
10−4 kg·m2. Applying the Eq. (22), we estimate the
A2/A1 ratio being equal to 16.8 ± 0.3. For comparison
purposes, this A2/A1 ratio for the final experimental
setup (the third one) was estimated in 8.0 ± 0.8. As
a result, the A2/A1 ratio in the coupled oscillator was
twice lower than the ratio for the uncoupled one. The
M/I ratio is a relevant feature to predict the ratio
of magnitudes of the coupled oscillations and verify if
the experimental apparatus is suitable to address the
coupling oscillation.

4. Conclusions

In summary, the Wilberforce pendulum has been imple-
mented experimentally using a slinky plastic spring
and a rod with weights at the ends. Although it
appears to be a simple system to set up, there is an
important experimental difficulty associated with the
characteristics of the spring and the pendulum bob.
Properties such as the elastic spring constant, as well
as the mass and the moment of inertia of the pendulum
bob were crucial to obtain resonant oscillators. Using
an inclined plane mirror, and making the acquisition of
images for both translation and rotational movements,
we could get experimental data on the longitudinal (in z)
and rotational (in θ) displacements. As a result, we
obtained that the resonant frequency of the system was
(4.802 ± 0.004) rad/s, showing a certain disparity with
the estimated value which was in the order of 6.15 rad /s,
although the results are in the same order of magnitude
and we must disregard experimental inaccuracies. The
amplitude of motion showed excellent agreement with
the values measured from the adjustments by the non-
linear least squares method, when compared to the
predicted estimates. Thus, we see that the Wilberforce
pendulum can be obtained using easily accessible mate-
rials, and the results can be used in quantitative studies
of coupled oscillations.
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