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Using the Biot-Savart law, we compute the magnetic field produced by steady currents that circulate in the
same direction through two parallel ellipse-shaped loops. The calculation was performed along the axis that passes
across the center of the ellipses. Then, we show that this arrangement produces a nearly uniform magnetic field
for particular values of the semi-axis of the ellipse and the separation distance between the loops. This outcome is
obtained as a consequence of numerically solving the second derivative condition. In addition, we show that, for
the values reached, the elliptical Helmholtz coil produces results that are compatible with those of the classical
circular Helmholtz coil. Finally, we show how the uniformity of the magnetic field varies for regions off the axis
of the ellipses. The target readers of the paper are students pursuing physics at the intermediate undergraduate
level.
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1. Introduction

A Helmholtz coil is a geometrical structure of two identi-
cal, parallel, circular, coaxial and same direction current-
carrying coils whose midplane separation is equal to
the radius of the coils. This device is designed to
produce a nearly uniform region of a magnetic field,
needed for many laboratory applications [1–4]. Usually,
the exercise to calculate the magnetic field generated
by a Helmholtz coil with a circular cross-section is a
typical assignment for an introductory-level course in
electricity and magnetism [5–8]. The computation of the
magnetic field for coils with geometries other than the
circular could be cumbersome because of the vectorial
nature of the Biot-Savart law [17]. Different designs
inspired by Helmholtz coils have been implemented since
their creation in an attempt to optimize their main
characteristics, such as their region of homogeneity and
the simplicity of their manufacture [9–16]. In this work,
we consider an extension of the classical Helmholtz coils
when the wires are shaped like an ellipse. To analyze this
situation, it is necessary to calculate the magnetic field
generated by the proposed arrangement, which requires
the use of the Biot-Savart law. The calculation of the
magnetic field for a current-carrying wire with an elliptic
shape was treated by Miranda [17] but only in the center
of the ellipse. The computation for the magnetic filed in
the axis of the ellipse is obtained by reference [18].

The setting for homogeneity is obtained by numeri-
cally solving the condition of the second derivative for
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the magnetic field on the axis. During the work, we have
been able to verify that, at least in the axis of the ellipse,
the magnetic field generates results that are compatible
with those of the classical Helmholtz coil.

One of the aspects of design that are apparently
not very covered when new variants of Helmholtz coils
are considered is the geometry of the area where the
magnetic field is to be generated. This is an important
aspect depending on the use that you want to give the
device. For example, in magnetic resonance imaging, it is
need particular points of view that can only be achieved
with elliptical loops [19].

The extension presented in this article appears to
be an interesting design that could be useful in an
undergraduate physics course because it employs one of
the fundamental laws of magnetism, such as the Biot-
Savart law, introduces a problem with new geometry,
uses special functions such as elliptical integrals, has
practical applications such as magnetic resonance imag-
ing and incorporates numerical calculus as the core point
in the solution of the problem.

2. Magnetic Field of a Helmholtz Coil
With Elliptic Loops

A Helmholtz coil is a device designed to produce a nearly
uniform magnetic field region. In its original version,
this scheme consists of two circular loops separated by
a distance of 2D. In this article, we generalize this
definition to also include the case of elliptic loops.

A single circular loop with radius a, carrying a
current I, extended over the xy-plane and whose center

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0001-5088-9301
emailto:davidromeroabad@gmail.com


e20220115-2 Elliptic Helmholtz coil

is at the origin, produces a magnetic field over any point
on the z-axis according to [6, p. 931],[7, p. 775], as

Bz = µ0I

4π

∫ 2π

0

a2dφ′

(z2 + a2)3/2 = µ0I

2
a2

(z2 + a2)3/2 (1)

We may construct a Helmoltz coil by considering the
superposition of N coils located on a plane parallel and
above the xy-plane, together with N coils located on a
plane parallel and below the xy-plane. The azimuthal
axis for both arrangements will be the z-axis, and the
centers will be at z = ±D. For this case, the magnetic
field over the z-axis would be [20]

Bz = µ0NIa
2

2

×
[

1
(a2 + (z +D)2)3/2 + 1

(a2 + (z −D)2)3/2

]
(2)

Proceeding by similarity, we make an analogous cal-
culation for an elliptic single coil having semi-axial
dimensions a and b relative to the x-axis and y-axis
respectively, extended over the xy-plane with geometric
center at the origin. This would produce a field over any
point on the z-axis according to

Bz = µ0Iab

4π

∫ 2π

0

dφ′

[a2 cos2 φ′ + b2 sin2 φ′ + z2]3/2
(3)

which may be expressed in terms of the complete elliptic
integral of the second kind, as

Bz = µ0 Ia b

π

E
(
a2−b2

a2+z2

)
(b2 + z2)

√
a2 + z2

(4)

where E is the complete elliptic integral of the second
kind, defined as [21, 22]

E(k) =
∫ π/2

0

√
1− k2 sin2 θ dθ (5)

The calculation of the magnetic field due to an elliptic
loop in the axis of the ellipse was performed in [18]. We
want to find the conditions that two identical elliptic
loops a distance 2D apart and with semiaxis distance
a and b must fulfill in order to produce an almost
constant magnetic field in the region midway between
them when steady currents I circulate in the same
direction. The setup of the elliptic Helmholtz coil is
shown in Figure 1. Using the results from the reference
[18] and the superposition principle, we can obtain the
magnetic field produced in the z-axis

Bz = µ0 Ia b

π

 E
(

a2−b2

a2+(D−z)2

)
(b2 + (D − z)2)

√
a2 + (D − z)2

+
E
(

a2−b2

a2+(D+z)2

)
(b2 + (D + z)2)

√
a2 + (D + z)2

 (6)

Figure 1: Helmholtz coil arrangement with elliptic loops.

Notice that the limit a, b → R imply limk→0E(k) → 1
and we recover the magnetic field of the Helmholtz coil
with circular loops,

Bz = µ0 I R
2

2

{
1

(R2 + (D − z)2)3/2

+ 1
(R2 + (D + z)2)3/2

}
. (7)

3. Homogeneity Conditions for the
Hemlholtz Coil With Elliptic Loops

We can expand the expression of Bz obtained in equa-
tion (6) in a Taylor series around z = 0

B(z) = B(0) + z
∂B

∂z

∣∣∣∣
z=0

+ z2 ∂
2B

∂z2

∣∣∣∣
z=0

+ . . . (8)

From equation (8) it can be seen that the magnetic field
on the axis is very close to a homogeneous magnetic field
if the conditions ∂Bz/∂z |z=0 = 0 and ∂2Bz/∂z

2 |z=0 = 0
are satisfied [23]. In that sense, we calculate the terms of
the series starting with the constant term given by the
magnetic field in z = 0

B0 = B(0) = 2 µ0 Ia b

π

 E
(
a2−b2

a2+D2

)
(b2 +D2)

√
a2 +D2

 (9)

Then, we determine the first derivative from equation (6)

∂Bz

∂z
=

8C
(

a2 + b2 + 2(D − z)2
)

(D − z) E

(
a2−b2

a2+(D−z)2

)
(a2 + (D − z)2)3/2 (b2 + (D − z)2)2

−
8C
(

a2 + b2 + 2(D + z)2
)

(D + z) E

(
a2−b2

a2+(D+z)2

)
(a2 + (D + z)2)3/2 (b2 + (D + z)2)2

+
4CK

(
a2−b2

a2+(D−z)2

)
(z − D)

(a2 + (D − z)2)3/2 (b2 + (D − z)2)

+
4CK

(
a2−b2

a2+(D+z)2

)
(z + D)

(a2 + (D + z)2)3/2 (b2 + (D + z)2)
(10)
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where C = µ0 I ab/4 π and K is the complete elliptic
integral of the first kind, defined as [21, 22]

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

(11)

In (10) we have used the following relation

dE

dk
= E(k)−K(k)

k
(12)

From this result, it is straightforward to verify that the
first derivative is canceled when z = 0. In addition, the
second derivative evaluated in z = 0, give the following
expression:

∂2Bz
∂z2

∣∣∣∣
z=0

= C2 × F (a, b,D) (13)

where

C2 ≡ −
2C

(a2 +D2)5/2 (b2 +D2)3 (14)

F (a, b,D) ≡
[
2a4 (b2 − 3D2)+ a2 (b2D2 + 2b4 − 17D4)
− d2 (17b2D2 + 6b4 + 19D4)]
× E

(
a2 − b2

a2 +D2

)
+
(
b2 +D2)

×
[
−a2 (b2 − 3D2)+ 3b2D2 + 7D4]

×K
(
a2 − b2

a2 +D2

)
(15)

4. Finding the Loci Where the Second
Derivative is Zero

Equating the equation (15) to zero defines an equiva-
lent condition by which the same requirement for the
Helmoltz coil would be fulfilled. That is, the first three
derivatives would have to be null at the origin. To
investigate whether the three-variable function in (15)
is useful to achieve this condition, we fix the distance D
and make a plot of F mapping the variables a and b. If
we set the distance D to a unit value, we do not lose any
generality, since in D the scale factor of the elliptical
coil would be bound. Thus, with D = 1, a reasonable
domain for a and b is set to be the interval [1, 2.5].
According to this scheme, a and b will be examined in a
neighborhood of the circular coil for which the condition
of the Helmholtz coil stands, namely a = b = 2D.

This plot can be seen in Figure 2. As it is evident, the
two-variable function F (a, b,D = 1) maps the variables
a and b to both a positive and negative range. This
allows us to find the locus for which F equals zero. The
method we follow consists of iteratively fixing the value
of D and finding numerically the curve corresponding to
this value. The numerical method is necessary since F is
expressed in terms of the elliptic integrals of the first and

Figure 2: Plot of F (a, b) for D = 1.
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Figure 3: Loci for which the second derivative of the magnetic
field is zero in the center of each coil. D ranges from 0.6 (lowest
curve) to 1.2 (highest curve).

second kind, and there is no way to obtain an analytic
solving for a or b. If for each D a curve is obtained as a
sequence of points, we can proceed to vary D and obtain
a family of curves. This would verify that for each D, the
corresponding curve is referred to a specific scale, and all
the curves represent equivalent situations.

Once the domain for a and b has been established, we
can construct a mesh of points in rectangular coordinates
and for each point ai a bracketing interval can be
established over which we find the solution bi that
satisfies the condition F (ai, bi, Dn) = 0 for the value
of Dn considered in the i-th iteration. The results after
continuing with this process can be seen in Figure 3, and
the numeric values can be found in the Appendix.

From this family of equivalent curves, we select the
one with the highest number of points obtained for the
proposed domain. In this case, such curve corresponds
to D = 0.6. This curve represents a continuous bundle of
elliptical coils whose semi-axis a and b have values in the
interval [1, 2.5] and for which the first three derivatives
vanish at the central point of symmetry, for each one of
them (i.e. the center of each coil). This curve is shown
in the Figure 4. Similarly, the ellipses corresponding to
this curve are drawn in the Figure 5.
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Figure 4: Curve a vs b when D = 0.6 for which the second
derivative of the Magnetic field is zero at the center of the coil.
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Figure 5: Set of ellipses corresponding to D = 0.6.

An immediate result of obtaining this family of ellipti-
cal coils is the evaluation of the magnetic field produced
by them on the z-axis. The z component of this field can
be calculated using the expression (6) and this result is
compared with that produced by a Helmoltz coil with
equal distance between symmetrical coils. Prior to the
calculation we can infer that it is necessary that there
be a continuity in the magnetic field produced by the
family of elliptical coils corresponding to D = 0.6 as a
function of a and b over the curve in which the second
derivative vanishes, and the field produced by the coil of
Helmholtz corresponding to the same distance D. This
is a consequence of the simple fact that Helmholtz’s
circular coil is just a special case of elliptical coils.
However, the equation (6) is unable to evaluate the
circular case because the elliptic integrals of the first
and second kind exclude the zero value in their domains
by default, this being precisely the case in which a = b.
By making the graph of Bz explicit for all elliptical coils
corresponding to the curve where D = 0.6, together
with the same component of the magnetic field for
the Helmholtz coil corresponding to the same distance
D, this continuity is clear. This plot is shown in the
Figure 6. The field produced by the Helmholtz coil is
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Figure 6: Set of curves representing the magnetic field on the
z−axis for all the ellipses with D = 0.6.
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Figure 7: Detailed close region showing the curves with the
magnetic field on the z−axis for all the ellipses with D = 0.6.
The black dashed curve corresponds to the Helmholtz coil for
D = 0.6.

calculated separately by the standard formula. In the
Figure 7 a very fine zoom of the graph is shown and
it can be seen how the Helmholtz coil corresponds to a
situation of a minimal condition for the value of the Bz
component within this spectrum of elliptical coils. Of
course, to show this continuity, the magnetic field has
been normalized by its magnitude at the origin. It is clear
that in an actual situation, to maintain this condition, a
greater energy would be necessary, via a greater current,
to conserve such magnitude in the center of symmetry
while at the same time using coils with greater area.

5. Off-axis Magnetic Field for an Elliptic
Helmholtz Coil

We use the Biot-Savart law and the configuration shown
in Figure 8 to calculate the off-axis magnetic field due to
an elliptical loop. The infinitesimal element of length is:

d~̀= −a sin θ′dθ′ êx + b cos θ′dθ′ êy (16)

where a and b are the semi-axis of the ellipse [18]. To
obtain the magnetic field at a position ~r = x êx +
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Figure 8: Eliptic coil arrangement to compute the off-axis
magnetic field.

y êy + z êz, produced by the element d~̀ located at
~r′ = a cos θ′ êx + b sin θ′ êy + z′ êz, we calculate:

~r − ~r′ = (x− a cos θ′) êx + (y − b sin θ′) êy + (z − z′) êz
(17)

|~r − ~r′| =
[
(x− a cos θ′)2 + (y − b sin θ′)2 + (z − z′)2

]1/2
(18)

d~̀× (~r − ~r′) = b (z′ − z) cos θ′ dθ′ êx
+ a (z′ − z) sin θ′ dθ′ êy
+ (−ay sin θ′ − bx cos θ′ + ab) dθ′ êz

(19)

Replacing in the Biot-Sarvat law and setting z′ = D,
we obtain:

Bx(x, y, z,D) = µ0 I

4 π∫
b (D − z) cos θ′dθ′[

(x− a cos θ′)2 + (y − b sin θ′)2 + (z −D)2
]3/2

(20)

By(x, y, z,D) = µ0 I

4 π∫
a (D − z) sin θ′dθ′[

(x− a cos θ′)2 + (y − b sin θ′)2 + (z −D)2
]3/2

(21)

Bz(x, y, z,D) = µ0 I

4 π∫ (−ay sin θ′ − bx cos θ′ + ab) dθ′[
(x− a cos θ′)2 + (y − b sin θ′)2 + (z −D)2

]3/2
(22)

To obtain the magnetic field in a point of space
(x, y, z) due to an elliptic Helmholtz coil as shown in
Figure 1, we have to use the superposition principle and

the expressions (20), (21) and (22) for one loop located
in z′ = D and for other loop located in z′ = −D, then

BTx
= Bx(x, y, z,D) +Bx(x, y, z,−D) (23)

BTy
= By(x, y, z,D) +By(x, y, z,−D) (24)

BTz
= Bz(x, y, z,D) +Bz(x, y, z,−D) (25)

The Figure 9 shows the magnetic field BTz of the
elliptical coil in the XY midplane (z = 0) perpendicular
to the z axis with D = 0.6. It can be seen that the
magnetic field produced by the coil presents a flat and
elongated region following the contour of the elliptical
coil. However, unlike the circular Helmholtz coil, in this
case the magnetic field has a slight deviation towards
the ends.

The Figure 10 shows the variation of the magnetic field
according to the transverse direction xz. As expected,
the homogeneity of the magnetic field is very similar to
that of the circular Helmholtz coil. The figure compares
the homogeneity of the Helmholtz coil with some cases of
elliptical coils in the z-axis. As can be seen, the behavior
in this axis is almost identical.

Figures 11 and 12 show the behavior of the magnetic
field BTz

in the directions of the y axis and the x axis.
In these graphs the homogeneity of the elliptical coils

Figure 9: Magnetic field for an elliptic coil at the XY -midplane
for a = 2.5, b = 1.228, and D = 0.6.
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Figure 10: Magnetic field for some optimized elliptic coils and
the Helmholtz coil (in dashed curve) for D = 0.6.
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Figure 11: Magnetic Field comparison in the y direction.
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Figure 12: Magnetic Field comparison in the x direction.

Figure 13: Vectorial plot of the magnetic field for the elliptic
coil in three dimensions.

can be observed, for some values of the eccentricities.
It is clear that, given the normalization adopted for the
magnetic field of each array, the plateau region lengthens
in the direction of the major axis of each ellipse and
shortens in the direction of the minor axis of each ellipse.

In the Figure 13 we can see a vectorial description
of the magnetic field produced by the elliptical coil.
The purpose of this pictorial description corresponds
more to a check of the correctness of the numerical

calculation established for the elliptical coil. However,
the fundamental characteristic of this calculation corre-
sponds eminently to the determination of the locus for
which the elliptical coil has a behavior homologous to
that of the Helmholtz coil.

6. Conclusions

The most important conclusion of the present investiga-
tion corresponds to the fundamental fact that an ellip-
tical coil formed by two symmetrical windings similar
to the Helmhotz coil will have an optimized behavior
similar to said coil for a locus in which the first three
derivatives cancel in the center of symmetry.

Unlike the case of the Helmholtz coil for which this
condition represents a fixed relationship between the
radius and the distance between the windings, in the
case of the elliptical coil there is a continuous locus that
depends on the eccentricity of the coil.

It is notable that this locus represents a continuous
family of symmetric coils for which the Helmhotz coil
is a special case. It is even more remarkable that
the homogeneity in the azimuthal axis of symmetry is
practically not altered when the eccentricity of the coils
varies. This fact is surprising and leads us to think about
the possibility of expanding the magnetic field towards
elongated shapes, maintaining the original advantages
of homogeneity of the Helmholtz coil but optimizing the
homogeneity of the magnetic field in the areas far from
said axis.

We conclude that it is feasible to have a function
that determines the relationship between the axes of
an elliptical coil, that is, the eccentricity, in such a
way that it is always possible to build an elliptical coil
that sustains said optimization. A question that remains
to be investigated based on the current conclusions
corresponds to the fact of whether it is possible to
increase the homogeneity in the cross-sectional region.

Supplementary material

The following online material is available for this article:
Appendix – Data for different a and b.
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