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The Planck’s radiation law for the black body radiation spectrum was capable to explain the experimentally-
measured black body spectrum. In order to get this result, Planck proposed his radiation law in a two-fold way:
1) by an ad hoc modification of the assumed connection between energy and entropy for thermal radiation; 2) by
assuming that the calculation of the entropy of an oscillator in thermal equilibrium with radiation is carried out
by discrete units of energy. As a consequence, the energy quantization, linear in frequency, was thus introduced
into physics. However, the energy quantization of the simple harmonic oscillator was originally postulated by
Planck in an incomplete way, i.e., the ground state energy was assumed to be null. Of course, this issue has
been solved in different ways over time, even by him. Despite this, we propose an alternative way to restore the
non-null ground state energy of the harmonic oscillators at noncommutative(NC) framework, where, how will be
shown, the non-null ground state energy naturally arises as a NC contribution. With this approach, the Planck’s
quantum theory is updated and, consequently, becomes compatible with the Quantum Mechanics inaugurated in
1925.
Keywords: Blackbody radiation, Planck’s radiation law, Planck’s postulate, ⋆-product, Noncommutative theory.

1. Introduction

In the second half of the 19th century, the electromag-
netic theory, founded on the Maxwell’s equations [1],
had consolidated the idea of the nature of light as
a wave. This idea had been established previously by
the results of the double slit experiment carried on in
1803 by T. Young [2–6]. These results corroborated
the Huyngen’s principle in detriment to the corpus-
cular theory presented almost two centuries before by
I. Newton [7]. By combining the electromagnetic theory
with the also recently developed kinetic theory of gases,
by Boltzmann, Rayleigh and Jeans tried to elucidate
the interaction of radiation with matter, to deduce an
expression for the spectral radiation of the black body
in order to, satisfactorily, adjust the experimental data
obtained more recently [2–6]. This attempt conducted
to the so called ultraviolet catastrophe, i.e., a dis-
agreement between theory and experiment in the range
of high frequencies of the electromagnetic radiation.
Then Planck, in a heuristic way, proposed that, in the
Boltzmann distribution, the energy should not behaves
like a continuous variable but as a discreet function
linearly proportional to the frequency [2–6]. As it turns
out, this redounded in an excellent adjustment to the
experimental data for an specific value of the proportion-
ality constant, which was afterwards called the Planck’s
constant. Subsequently, Einstein and Compton [2–6]
used the concept of Planck’s energy quantum, or photon,
to obtain good agreements to the experimental data
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of the photoelectric and Compton effects, respectively.
These agreements could not be achieved by a purely
classical approach, in which the energy is a continuous
variable. An effort to reach a conciliation between so
antagonistic interpretations for the nature of light, an
apparent paradox, lead to the formulation of the wave-
particle duality hypothesis. This proposal is central in
the Copenhagen interpretation, school leaded by Niels
Bohr. According to this interpretation, light propa-
gates as a probability wave, preserving the effects of
interference and diffraction of the double slit Young’s
experiment. On the other hand, when detected, this wave
function collapses in a particle – the energy quantum
or photon –, preserving the results observed in the
photoelectric and Compton effects.

Later developments arising from this interpretation
like de Broglie’s matter waves, Heisenberg’s uncertainty
principle and Schrödinger’s equation redounded on the
foundations of the modern Quantum Mechanics in the
mid 1920’s.

The quantum concept – energy quanta linear in
frequency – usually appears in modern physics text-
books [2–6] through a theoretical derivation of the black
body energy spectrum for thermal radiation, demon-
strating the failure of Classical theory and in proposing
the formulation of a new mechanics, i.e., Quantum
Mechanics. Of course, Quantum Mechanics has been
developed far beyond the original modifications of Clas-
sical theory demanded for the derivation of the Planck’s
radiation law. Nevertheless, we revisit the black body
radiation problem and present an alternative approach
to Planck’s quantum theory.
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A few years after the publication of Planck’s original
paper, he extended his quantum theory [8], starting
from entropy, and introduced the non-zero ground state
energy of the harmonic oscillator. Despite this, some
interesting papers [9–12] present derivations of the
experimentally-measured black body energy spectrum
and the non-null ground state energy without quantum
assumptions (discrete energy), but requiring in addition
to the usual ideas of Classical physics some classical
additional, for example: Lorentz-invariant electromag-
netic radiation at the absolute zero of temperature, or
exploring some connections between Classical and Quan-
tum theories for the harmonic oscillator or applying
purely thermodynamic theory to the classical simple
harmonic oscillator.

On the other hand, the desire to describe Quantum
Mechanics on phase space instead of Hilbert space is
as old as Quantum Mechanics itself [13–17] and others
have contributed to the subject [18–21]. In this scenario,
we propose to obtain the Planck’s radiation law for the
full black body energy spectrum. This is accomplished
by using the ⋆-product instead of the scalar product
among phase space variables. Due to this, the ground
state energy ℏω/2 arises as a NC contribution and, as a
consequence, the Planck’s postulate for simple harmonic
oscillators and the Planck’s radiation law are updated to
also embrace this ground state energy.

2. A Brief Review of Canonical
Quantization

As it is well known from analytical mechanics [22], an
unconstrained system has its dynamics described by
a Hamiltonian function, H(Qi, Pi), written in terms
of the phase space of generalized coordinates Qi and
their respective momenta Pi (i = 1, . . . , n, where n is
the number of the degrees of freedom). On the other
words, the state of the system is specified as a point in
the 2n-dimensional phase space M, which is a smooth
manifold. In canonical coordinates, a point ξ in M is
written as ξ = (Q,P) = (Q1, . . . , Qn, P1, . . . , Pn) and
the observables of the system, such as the Hamiltonian
function, are smooth real-valued functions on this phase
space M. Further, a new function on M can be obtained
by the scalar product – point wise way – of two smooth
real-valued functions on the phase space M, f(ξ) and
g(ξ), read as

(f · g)(ξ) = f(ξ) g(ξ), (1)

which is also a smooth real-valued function on the phase
space M and the scalar product presents a commutative
algebra – (f · g)(ξ) = (g · f)(ξ). In the context of
Classical Mechanics, we have a commutative classical
algebra of observables. In the Hamiltonian formalism, a
new smooth real-valued function on the phase space M
can be obtained by the Poisson brackets between two

functions f(ξ) and g(ξ) on M, read as

{ f, g }(ξ) = ∂f(ξ)
∂ξα

ωαβ ∂g(ξ)
∂ξβ

, α, β = 1, . . . , 2n (2)

with the Poisson tensor ω being

ω =
(

0 1
−1 0

)
. (3)

where the non-null Poisson brackets, among the phase
space (Qi, Pi) coordinates, are

{Qi , Pj } = δij . (4)

The dynamics of the system is given by the Hamilton’s
equations of motion – ξ̇α = {ξα, H} –, read as

Q̇i = {Qi, H}
Ṗi = {Pi, H}. (5)

Given this, all the physical quantities A are supposed
to be expressible as a function dependent on generalized
phase space coordinates, i.e., A ≡ A(Qi, Pi).

The word quantization means the construction of
the quantum theory of a certain system according
to a corresponding classical theory. However, Classical
and Quantum Mechanics are essentially distinct due
to the Heisenberg’s uncertainty relation, because states
of quantum system can no longer be represented as
points in phase space, indeed, the state of quantum
system is specified by the vectors ψ of an abstract
Hilbert space ℜ. Further, the Heisenberg’s uncertainty is
a consequence of the noncommutativity of the quantum
mechanical observables. Therefore, the commutative
classical algebra of observables must be replaced by a
noncommutative quantum algebra of observables. In the
canonical quantization approach, which maps Classi-
cal to Quantum Mechanics, this noncommutativity is
implemented by representing the quantum mechanical
observables by linear operators in ℜ. That is, each
physical quantity A, written as A(Qi, Pi) in the classical
theory, must be assigned, in quantum theory, to a certain
operator Â that acts in a space ℜ as Â ≡ A(Q̂i, P̂i),
where the operators of the generalized coordinates Q̂i

and momenta P̂i are postulated to obey the following
non-null canonical commutation relation:

{Qi, Pj} = δij →
[
Q̂i, P̂j

]
= i ℏ δij (6)

where ℏ is the Planck’s constant divided by 2π, [ , ] is
the quantum commutator and Q̂i and P̂j = −ıℏ∂/∂Qj

are quantum operators in the Hilbert space. Then, the
time evolution of the state ψ(Q, t) is described by the
Schrödinger equation is

ıℏ
∂ψ

∂t
= Ĥ(Q̂i, P̂i)ψ, (7)

where

Ĥ(Q̂, P̂) = P̂
2

2m + V (Q̂, t). (8)
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3. A Brief Review of Moyal ⋆-product

In a classical point of view, a state of a system is specified
as a point ξ in a 2n-dimensional phase space M , any
measurable quantities f – observables – are function
of ξ and possibly of the time, so f ≡ f(ξ, t), and the
equations of motion can be expressed in terms of Poisson
brackets, given in Eq. (2). In order to quantize this same
system, the real quantities f are replaced by Hermitian
operators f̂ , which now represent the observables, while
the Poisson brackets, in the equations of motion, are
replaced by commutators, see Eq. (6). The problem is to
find the correspondence f → f̂ . The noncommutativity
of Eq. (6) imposes that the classical quantities f(ξ)
cannot unambiguously be replaced by f̂(ξ̂), where the
ambiguity is of the order of ℏ. The classical quantities
f(ξ) can be assumed as approximation to the quantum
operators f̂(ξ̂) for lim ℏ → 0, in a way that the former
gives us the guidelines to get on path of the latter. Due
to the noncommutativity in Eq. (6), it is not possible to
measure simultaneously Qi and Pi without errors, then
it is meaningless to represent states of a system as point
in the phase space M . However, it is possible do develop
a phase space formulation for the Quantum Mechanics
based on the Wigner’s quasi-distribution function [13]
and Weyls’s correspondence [14, 15] between quantum
operators and ordinary c-number phase space functions.
Groenewold and Moyal, independently, understood the
problem, initially tackled by Wigner and Weyl, and
proposed a deformation in the scalar product between
two functions, usually called Moyal ⋆-product, so that
noncommutativity arises in the phase space M , since Qi

and Pi no longer commute: Qi ⋆ Pi ̸= Pi ⋆ Qi. Further,
the Moyal ⋆-product of two function, f and g, at the
point ξ ∈M involves f and g at ξ and, as well as, the all
higher derivatives of these functions at ξ. Since f and g
and their all derivatives are well define at ξ, then f and
g are well define on the entire M . As a consequence, it
is possible to departure from Classical Mechanics to the
corresponding Quantum Mechanics by using the same
quantities used to describe classical systems. Roughly
speaking, the observables of the system are described by
the same functions on phase space M as their classical
counterparts.

After a brief historical summary of the role played by
noncommutativity, first in the break between Classical
and Quantum Mechanics, and then in the extension of
the former into the latter through the deformation of the
product between functions defined in phase space, we
will present the basic foundations of this deformation,
i.e., the Moyal ⋆-product and its relations with the
canonical quantization.

The Moyal ∗-product [16, 17] which, written in a more
general way, is

(f⋆g)(ξ) ≡ f(ξ) exp
[
iℏ
N

( ←−
∂

∂Qi

−→
∂

∂Pi
−
←−
∂

∂Pi

−→
∂

∂Qi

)]
g(ξ),

(9)

where
←−
∂

∂Qi
e
−→
∂

∂P ′
i

mean, respectively, derivative to the
left and to the right, and N is a deformation parameter
to be inferred to reproduce both experimental and the-
oretical results. Note that the Moyal ⋆-product presents
a noncommutative algebra – (f ⋆ g)(ξ) ̸= (g ⋆ f)(ξ) –
and, for physical applications, the ⋆-product should
be Hermitean: f ⋆ g = g ⋆ f , where f denotes the
complex conjugate of f . It is important to notice that
this noncommutativity is due to the ⋆-product of the
functions f and g at ξ, which involves not only the values
of the functions f and g at this point, but also all higher
derivatives of these functions at ξ. As a consequence, this
noncommutativity disappears when N →∞ in Eq. (9),
i.e., Eq. (9) reduces to the Eq. (1).

After that, we would like to explore the Moyal ⋆-
product through the condition ℏ/N << 1, which reduces
Eq. (9) to

f(ξ)⋆g(ξ) = f(ξ)
[

1 + iℏ
N

( ←−
∂

∂Qi

−→
∂

∂Pi
−
←−
∂

∂Pi

−→
∂

∂Qi

)]
g(ξ),

(10)
where the first term in the series is the scalar product,
given in Eq. (1), while the power terms O[(ℏ/N)n], for
n ≥ 2, are overlooked. From this point, we get the
following relation

f(ξ) ⋆ g(ξ)− g(ξ) ⋆ f(ξ) = ı
ℏ
N

2{f(ξ), g(ξ)},

[f(ξ), g(ξ)]⋆ = ı
ℏ
N

2{f(ξ), g(ξ)},
1
ıℏ

[f(ξ), g(ξ)]⋆ = 2
N
{f(ξ), g(ξ)}, (11)

which reveals the connection between the classical and
quantum behavior of the dynamical system. Now, we
assume that f and g are, respectively, Qi and Pj ,
consequently, Eq. (11) changes to

1
ıℏ

[Qi, Pj ]⋆ = 2
N
{Qi, Pj}. (12)

Since the quantum procedures, the canonical quantiza-
tion, based on Eq. (6), and the ⋆-product, based on
Eq. (12), must be consistent with each other, we must
fix N = 2 and, consequently,

[Qi, Pj ]⋆ ≡
[
Q̂i, P̂j

]
. (13)

In this sense, for instance, the time dependent
Schrödinger equation changes to

ı
∂ψ

∂t
= H(ξ) ⋆ ψ,

ı
∂ψ

∂t
=
(

1
2P ⋆P + V (Q, t)

)
⋆ ψ,

ı
∂ψ

∂t
= H(Q, P̃)ψ, (14)

with

P̃i = Pi − ı
ℏ
2

∂

∂Qi
. (15)
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At this point, H(Q, P̃) → Ĥ(Q̂, ̂̃P) and P̃i →
̂̃
P i, then

equation (14) reproduces equation (7).

4. Updating Planck’s Radiation Law
Through Noncommutativity

At this section, we present the motivation for revisiting
Planck’s radiation law, which describes the measured
spectral density of black body electromagnetic radiation
in thermal equilibrium at a given temperature T , in the
scenario where there is no net flow of matter or energy
between the body and its environment. Rayleigh and
Jeans proposed a law which related the intensity of the
radiation given off by a black body to the frequency
at a specific temperature through classical arguments.
This law present a problem for high frequencies, called
ultraviolet catastrophe. The Fig. (1) [23] below makes
the matter more clear. In order to fix the ultraviolet
catastrophe problem presented in Fig. (1), Planck postu-
lated that the energy of any harmonic oscillator system
is discrete and multiple of a linear value at the frequency
and, at the first time, the fundamental of Quantum
Mechanics was introduced.

Now, we present a short discussion about the
Planck’s postulate. The Hamiltonian of a simple three-
dimensional simple harmonic oscillator, written in the
phase space (Q,P), is

H(Q,P) = 1
2
(
P2 + ω2Q2) , (16)

with ω as a frequency. The energy is a physical quantity
of the system at some time and, therefore, it is calculated
by evaluating the Hamilton function at the point in
phase space ξ0 = (Q0,P0) that characterizes the state
of the system at this time, read as

W =
∫
H(Q,P)δ(6)(Q−Q0,P−P0) dQ dP, (17)

where δ(6)(Q − Q0,P − P0) is the six-dimensional
Dirac delta function. Planck dealt with the relationship
between energy, Eq. (17), and Hamiltonian, Eq. (16), of
the harmonic oscillator by postulating that of the energy

Figure 1: Comparison of the classical Rayleigh-Jeans Law and
the quantum Planck radiation formula.

of harmonic oscillator is discrete, that is, a multiple of a
linear value at the frequency, namely:

W =
∫
H(Q,P)δ(6)(Q−Q0,P−P0) dQ dP

↓
Wn = n ℏω, (18)

with H(Q,P) given by Eq. (16) and n ∈ N. After that,
Planck’s investigated this subject in his book [8], entitled
The Theory of Heat Radiation, where he got the ground
state energy as being ℏω/2, as well as, the quantized
energy1, a extension of Eq. (18), as being

Wn = (n− 1/2) ℏω, (19)

with n ∈ N∗. Many years later, an equivalent expression
to the equation (19), given by

Wn = (n+ 1/2) ℏω, (20)

with n ∈ N, it was obtained by the modern Quantum
Mechanics, establish in 1925 [24–27, 29] and pages 361,
489 and 734 of ref. [28].

The usual Planck’s radiation law for the black body
radiation spectrum, proportional to the average energy
⟨ε(ν, T )⟩, is presented in many textbooks as being

ρ(ω, T ) = ω2

π2c3 ⟨ε(ν, T )⟩ , (21)

where the average energy ⟨ε(ν, T )⟩ is

⟨ε(ν, T )⟩ =

∑
n

Wn e
−Wn/k T

∑
n

e−Wn/k T
, (22)

with k and T as being, respectively, the Boltzmann’s
constant and temperature. After that, Planck applies its
postulate, given in Eq. (18), into Eq. (21) and get this
following radiation law

ρ(ω, T ) = ω2

π2c3

∑∞
n=0 nℏωe−(n)ℏω/kT∑∞

n=0 e
−(n)ℏω/kT

,

= ω2

π2c3

(
ℏω

eℏω/kT − 1

)
, (23)

At the time Planck’s article was published, where he
introduced the quantum of the energy, he did not
suspected that the ground state energy was not null.
Some years later, Planck got the correct ground state
energy, as we pointed out before, and corrected the result
given in Eq. (23), as he demonstrated in his book [8].

At this work, we propose to get the non-null
ground state energy by updating the Planck’s quantize

1 See chapter III of ref. [8], page 141.
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energy for harmonic oscillator through noncommutativ-
ity [16, 17]. The noncommutativity [16, 17] will be intro-
duced into the Rayleigh-Jeans theorem [2–6]. In order
to get this, the scalar product among the phase space
variables will be changed to the ⋆-product [16, 17],
then the Hamiltonian of a harmonic oscillator in a
noncommutative framework is

H̃(Q,P) = 1
2
(
P ⋆P + ω2Q ⋆Q

)
,

= (P− ıωQ)√
2

⋆
(P + ıωQ)√

2
,

= 1
2
(
P2 + ω2Q2)+ ℏω

N
,

= H(Q,P) + ℏω
N
, (24)

where Eq. (10) was applied. Note that Eq. (24) is the
usual Hamiltonian, given in Eq. (16), plus the NC term
ℏω/N . This allows us to update the result obtained
from the application of the Planck’s postulate, given in
equation (18), to

W =
∫
H̃(Q,P)δ(6)(Q−Q0,P−P0) dQ dP

=
∫
H(Q,P)δ(6)(Q−Q0,P−P0) dQ dP + 1

2ℏω

↓

W =
(
n+ 1

2

)
ℏω, (25)

with H̃(Q,P) given by Eq. (24), N = 2 and n ∈ N.
In order to justify why N = 2, we present a heuristic
analysis of a vibrating string. Consider a string of
length L with its extreme points fixed, which cannot
move. The string vibrations modes are given by the
Fig. (2). The Fig. (2) represents the equilibrium state,
n = 0, and the normal modes n = 1, 2, 3. Note that
for n > 0, the expression L = n λ/2 is correct. As
the vibration modes into the 3-dimensional black body
cavity are analogous to what was briefly presented, the
physical inferences obtained for string vibration modes
are still valid when the 3-dimensional black body cavity
is considered. At this context, Planck proposed that
the energy is discrete and multiple of a linear value at the
frequency (nℏω), as shown in the Fig. (2). However, the
equilibrium state – ground state – of a vibrating system
at frequency ω is the first vibration mode (n = 1),
which comprises the half wavelength (λ/2). Therefore,
this state should comprise the half linear discrete energy
at frequency ω – ℏω/N → ℏω/2 –. To update Planck’s
original postulate, the term ℏω/2 must be added ad
hoc to your postulate, which results in the Eq. (25).
Due to this, the quantum harmonic oscillator modes are
represented in the Fig. (3) [30].

We would like to point out that the non-null ground
state energy (ℏω/2), as shown in Fig. (3), is also

Figure 2: The string vibration modes.

Figure 3: Wavefunction representations for the first eight bound
eigenstates.

due to the noncommutativity and that the updated
Planck quantum theory reproduces the result obtained
by Planck in his book [8] and by the modern Quantum
Mechanics [24–27, 29] and pages 361, 489 and 734 of
ref. [28]. Recently, the quantization of simple harmonic
oscillator through ⋆-product was obtained, in a quantum
modern way, by Allen C. Hirshfeld and Peter Henselder
in ref. [31].

The black body electromagnetic energy W in a non-
commutavive framework is given by

W = 1
2

∫
V

u(ν, T ) dV,

= 1
2

∫
V

(
ε0 E⃗ ⋆ E⃗∗ + 1

µ0
B⃗ ⋆ B⃗∗

)
dV, (26)

where u(ν, T ), E⃗ and B⃗ are the electromagnetic energy
density, the electric and the magnetic fields, respec-
tively, and the usual scalar product is replaced by the
⋆-product. From the Maxwell’s equations in vacuum,
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it is obtained the following differential equation for the
potential vector

∇⃗2A⃗− 1
c2
∂2A⃗

∂t2
= 0, (27)

where the Lorentz’s gauge was applied, namely,
∇⃗ · A⃗ = 0. The equation (27) is a wave equation, then the
potential vector field A⃗ is a periodic vector function, with
A⃗ = 0⃗ at the boundary of the black body cavity. After a
straightforward calculation, equation (27) is solved and
the periodic field vector is obtained as

A⃗(r⃗, t) =
∑

n

2∑
λ=1

(
q⃗ (k⃗n, λ) ei k⃗n·r⃗ + q⃗ ∗(k⃗n, λ) e−i k⃗n·r⃗

)
,

(28)
with k⃗n and λ as being, respectively, the radiation
propagation direction and the orthogonal directions of
polarization. Further, q⃗(k⃗n, λ) are independent vectors

and orthogonal to k⃗n . As E⃗ = −∂A⃗(r⃗, t)
∂t

and B⃗ =

∇⃗ × A⃗(r⃗, t), equation (26) is rewritten as

W = 2V ε0
∑

n

∑
λ

[ ˙⃗q ⋆ ˙⃗q ∗ + ω2
n (q⃗ ⋆ q⃗ ∗)

]
, (29)

with ω2
n = k2

n c
2 and c =

√
1/ε0 µ0. Rewritten q⃗ and q⃗ ∗

in terms of the phase space coordinates (Q⃗, P⃗ ), given by

q⃗ = 1
2
√

2V ε0

(
Q⃗+ i

P⃗

ωn

)
ê(k⃗n, λ) e−i ωn t,

q⃗ ∗ = 1
2
√

2V ε0

(
Q⃗− i P⃗

ωn

)
ê(k⃗n, λ) ei ωn t, (30)

the equation (29) reduces to

W =
∑

n

∑
λ

[
1
2
(
P 2 + ω2

n Q
2)+ ℏ

2 ωn

]
, (31)

which represents harmonic oscillators and N = 2. This
is the noncommutative version of the Rayleigh-Jeans
theorem for the radiation field.

Applying the Boltzmann distribution of energy among
an infinite and enumerable number of oscillators con-
fined in a cavity of volume V , considering the updated
Planck’s postulate, Eq. (25) and (31), one obtains, by
analogy to the usual Planck development, the energy of
radiation field as being

Wn =
(
nλ(ω) + 1

2

)
ℏω, (32)

where nλ(ω) is assumed to be the number of pho-
tons with frequency ω and polarization λ while, for
nλ(ω) = 0, there is a non-null ground state energy equal
to ℏω/2. The energy of the radiation field is the sum of
the eigenvalues Wn, given in Eq. (32), implies to the sum

of ℏω/2 term over all propagation direction, which leads
to following divergent expression:

∑
n

∑
λ ℏω/2→∞.

The introduction of a noncommutativity, obtained
through the replacement of the usual scalar product by
the ⋆-product, induces a non-null ground state energy,
as shown in Eq. (32), and, consequently, this approach
changes the Planck’s radiation law for the black body
radiation spectrum, given by

ρ(ω, T ) = ω2

π2c3

∑∞
n=0 (n+ 1/2)ℏωe−(n+1/2)ℏω/kT∑∞

n=0 e
−(n+1/2)ℏω/kT

,

= ω2

π2c3

(
ℏω

eℏω/kT − 1
+ 1

2ℏω
)
. (33)

The equation (33) is exactly the Planck’s radiation
law2 for the full black body energy spectrum, which
was presented by Planck in his book [8]. Usually, this
information is not presented in basic modern physics
textbooks. In order to improve the education of physics
students, this Planck’s radiation law should be noticed
in these textbooks.

It is important to notice that the molecules on
the black body cavity boundary, a conducting surface
connected to a thermal reservoir, oscillate and, con-
sequently, emit electromagnetic waves that propagate
through the interior of the cavity and then hits the inter-
nal surface of the cavity transferring energy to it, induc-
ing the molecules to oscillate and, as a consequence,
these molecules emit electromagnetic waves again; this
process takes place successively. Those molecules behave
as charged harmonic oscillators and they would still
come to thermal equilibrium with the ambient ther-
mal radiation [8]. Indeed, a classical charged harmonic
oscillator acquires an average energy equal to the aver-
age energy per normal mode of the surround random
classical radiation at the frequency ω0 of the oscillator.
Therefore, in the limit as the temperature decreases to
absolute zero, the charged harmonic oscillators would be
in equilibrium with the random radiation which exists
at absolute zero temperature, i.e., there is a zero-point
energy induced by particle motion. Since at the absolute
zero temperature the quantum realm strongly prevails
to the classical one, this random radiation is a quantun
electromagnetic zero-point radiation. Another example
of this is the Casimir effect [32], where the force between
two uncharged parallel conducting plates depends upon
all the radiation surrounding the plates. This force was
experimentally measured [32–37] and it was shown that,
at absolute zero, the Casimir force does not vanish, but
this force was explained quantitatively by the existence
of random radiation with an energy spectrum εω =
ℏω/2 per normal mode [9]. Due to this, we present an
alternative way to fix N = 2 in equation (31) and,
consequently, the correct ground state energy, whether
for radiation fields or oscillating systems, is obtained.

2 See chapter III of ref. [8], page 142.
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5. Conclusion

The ⋆-product among the phase space coordinates was
applied to the process of determining the electromag-
netic energy associated with the radiation emitted by
the black body. With this, the correct relationship that
determines the quantization of the harmonic oscillator
was obtained, i.e., the non-null ground state energy was
obtained and the original Planck’s radiation law was
extended in order to embrace the non-null ground state
energy (ℏω/2), as shown in ref. [8].

There is another point that we would like to speculate.
Assume that the boundary of the black body cavity is
at infinity so that the radiation field behaves like a free
field, i.e., it seems that the radiation field propagates
in a space which is not bounded by a cavity. In order
to implement the transition from a scenario where the
cavity edge is at infinity to one without a cavity, the
first vibration mode (n = 1) in Fig. (2) tends to zeroth
mode n = 0, consequently, the NC term (ℏω/N) in
Eq. (31) should be null, then N → ∞. In this scenario,
we argue that only vibration modes, integer multiples
of the wavelength (λ), remain. Then, the quantum
contribution due to the ⋆-product disappears, i.e., the ⋆-
product reduces to the scalar one, as shown in section 3.
Assuming this hypothesis as true, the NC contribution
disappears and Eq. (32) reduces to

Wn = nλ(ω)ℏω. (34)

Now, the energy of the radiation field, which is the sum
of the eigenvalues Wn, does not present a divergence.
From what we presented using Moyal ⋆-product and
edge, we can argue that the existence of non-zero ground
state energy is due to the existence of a boundary.

In the papers [9–12] the Planck’s law for black
body energy spectrum and the ground state energy
(ℏω/2) where obtained by assuming the Lorentz-
invariant electromagnetic radiation at the absolute zero
of temperature, without the notion of energy discrete
linear in frequency, or Dirac’s classical-quantum analogy
for the harmonic oscillator, or pure temperature ideas.
On the other hand, we get the same result extending
the Planck’s postulate by using ⋆-product. Further, the
deformation quantization method also reproduces the
same previous result, even by the modern Quantum
Mechanics. Due to this, there are, at least, five dis-
tinct descriptions of the Planck’s law for black body
energy spectrum and the ground state energy (ℏω/2),
equivalent when compared at experimental level. This
shows that the realm for deciding which theory is correct
is not only at the experimental level(e.g. black body
radiation), but also at the theoretical level. Indeed, over
time, modern Quantum Mechanics started at 1925 has
shown to be the theory that best provides a description
of the physical properties of nature at the scale of atoms
and subatomic particles, far beyond the semi-classical
limit. Despite that, deformation phase-space techniques

are widely used, especially in quantum optics [38], chem-
istry [39] and application to quantum technologies [40].
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