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Quantum computing has attracted the attention of the scientific community in the past few decades.
The development of quantum computers promises one path toward safer and faster ways to treat, extract, and
transfer information. However, despite the significant advantages of quantum computing, the development of
quantum devices operating at room temperature has been compromised by the thermal decoherence process. In
addition, in most undergraduate and graduate quantum mechanics courses, the study of thermofield dynamics
is usually neglected. In this scenario, this work presents a didactic approach to simulate thermal qubit systems
through Thermofield Dynamics (TFD), applied in a quantum computing setup. The results show that the Bloch
sphere representation for a qubit can be written in terms of the Bogoliubov transformation, which allows a
practical construction for the thermal qubits in a quantum computing setup. Therefore, this work introduces
thermofield dynamics through quantum computing to teachers and curious students interested in teaching and
learning this important field of studying the temperature impacts on quantum protocols using the TFD technique.
Keywords: Quantum Computing, Thermofield Dynamics, IBM Quantum Experience.

1. Introduction

In the past few years, we have seen the emergence
of several technologies based on quantum properties of
advanced materials [1–10]. However, the advantages of
these quantum technologies are compromised since it is
impossible to decouple the system from its surroundings
and the decoherence phenomena are inevitable [11].
Quantum features such as entanglement [12] and coher-
ence [13], for instance, are extremely sensitive to thermal
coupling, compromising their usability at room temper-
ature and, consequently, the development of quantum
technologies under room conditions [9, 11, 12].

As a consequence, the study of thermal effects on
the dynamics of quantum systems has attracted the
attention of the scientific community [14–22]. In this
scenario, the Thermofield Dynamics (TFD) appears
as a useful approach since it allows the treatment of
temporal and thermal contributions equally [14, 16–
19, 23–26]. Therefore, TFD is a natural approach to
studying quantum states at finite temperatures. In con-
trast to other finite-temperature quantum field theories,
which employ imaginary-time based on path integrals,
the TFD formalism differs by doubling the degrees of
freedom in a Hilbert space and applying a temperature-
dependent Bogoliubov transformation [27]. The appli-
cation of higher-dimensional Hilbert spaces has been
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used for simplifying quantum logic in the construction
of quantum circuits [28]. On the other hand, the TFD
approach gives an advantage in studying gate-based
quantum computers because it is a real-time operator-
based approach, using Bogoliubov transformations of
quantum field theory at finite temperature [23].

In this context, this theory has shown great potential
for studying the thermal properties of qubit systems
regarding the development of quantum protocols at finite
temperatures [14, 17, 23–26, 29]. In addition, applying
higher-dimensional Hilbert spaces have been used to
simplify quantum logic in the construction of quantum
circuits [28]. Implementing qubits and logical gates at
finite temperature using TFD formalism has long been
a question of great interest in the past few years [14,
17, 23, 24, 26, 29, 30]. As a result, the realization of
simulation of thermal qubits using variational methods
was developed [17, 23, 24, 30], and recently it was
demonstrated that the verification of TFD doubled state
on a trapped-ion quantum computer [25]. Furthermore,
since quantum computers can model other quantum
mechanical systems, the preparation of thermal equilib-
rium states in quantum computers can be used to study
temperature-dependent quantum phenomena [14, 19].

In this context, this paper shows a teaching approach
for simulating thermal qubit systems using Thermofield
Dynamics (TFD) in a quantum computing environ-
ment. The primary objective is to present a proof-of-
concept for implementing thermal qubits in a quantum
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computing configuration using the TFD theory, in a
manner that is accessible to undergraduate students
with an interest in this important and expansive field
of quantum physics. We assume that the readers have
knowledge of the well-known quantum mechanics and
quantum computing fundamentals [31] Exploiting that
the TFD formalism uses dual states to express temper-
ature dependence [23], we show how to build a Bloch
sphere representation for a two-level quantum system
(qubit) in terms of the Bogoliubov transformations.
The thermofield-double qubits were simulated using
the quantum information software development kit –
IBM Qiskit, available on the IBM Quantum Experience
platform [32–35], available free of charge and easily
accessible to students.

Using the TFD algebraic approach, we show the imple-
mentation of the famous quantum teleport algorithm at
finite temperatures. The results show that using Bloch
sphere representation for a qubit, written in terms of the
Bogoliubov transformation, allows the construction of
thermal qubits in a quantum computing setup, making it
more intuitive and approachable for quantum algorithm
developers. Consequently, the algebraic method of TFD
theory makes modeling quantum protocols at finite
temperatures easier for quantum algorithm developers,
lowering the number of quantum gates required. This
decrease in gates simplifies quantum logic opening a
large avenue for the teaching and learning of thermal
effects on quantum protocols. Therefore, this work pro-
vides an enticing introduction to thermofield dynamics
via quantum computing, aimed at undergraduate teach-
ers, and inquisitive undergraduate and graduate stu-
dents, interested in teaching and learning this significant
and extensive field of researching the thermal effects on
quantum protocols. The codes used in this article are
accompanied by detailed protocols throughout the text1,
enabling readers to replicate and apply them to their
own quantum computing initiatives, even if they have
limited experience in scientific computing.

2. Thermofield Dynamics

Thermofield Dynamics (TFD) is an approach to quan-
tum field theory at finite temperature [19, 27, 37, 38].
Different from other finite-temperature quantum field
theories, based on fictitious imaginary times [37, 38], the
TFD formalism emerges as a natural way of describing
the thermal phenomena in a real-time operator-based
approach through the doubling of the Hilbert space
and the applying of the Bogoliubov transformations
[27, 37, 38].

In this scenario, the tilde (∼) conjugate rules give the
doubling of Hilbert space, where the thermal space can
be defined as ST = S ⊗ S̃, with S being the standard

1 In addition, the codes used in this work are also available on
GitHub [36].

Hilbert space and S̃ being the tilde (dual) space [27, 38].
This doubling is defined by the mapping (∼) : S → S̃,
which connects each operator in S to each operators in
S̃, such as

A = a⊗ 1, Ã = 1 ⊗ a . (1)

Thus, the relationship between the tilde Ãi and non-tilde
Ai operators can be defined as:

(AiAj)∼ = ÃiÃj , (cAi + Aj)∼ = c∗Ãi + Ãj ,

(A†
i )∼ = Ãi

†
, (Ãi)∼ = −ξAi,

(2)

with ξ = −1 for bosons and ξ = +1 for fermions [27, 37,
38].

On the other hand, a Bogoliubov transformation,
U(α), is used to introduce thermal effects by inducing
a rotation between the tilde and non-tilde variables, and
it is defined as

U(α) =
(
u(α) −v(α)
ξv(α) u(α)

)
, (3)

where u2(α) + ξv2(α) = 1. The α parameter is
defined as the compactification parameter given by
α = (α0, α1, · · · , αD−1). The temperature effect can
be algebrically described by choosing α0 ≡ β and
α1, · · ·αD−1 = 0, where β ∝ 1

T with T being the
temperature.

2.1. Boson representation for the SU(2) algebra

In order to introduce the concept of a thermal qubit, one
can use an alternative algebraic approach to studying
two-level systems as spin-1/2, for instance, through
a boson representation of SU(2) algebra [27]. In this
context, the ladder operators can be defined as

S± = (σx + iσy), and S0 = σz . (4)

Consequently, for each spin variable, we get

[S0, S±] = ±S±, [S+, S−] = 2S0 . (5)

Then one can define

S+ = a†
1a2, S− = a†

2a1, and S0 = 1
2(a†

1a1 − a†
2a2) ,

(6)
where a1 and a2 satisfying the double boson algebra

[ai, a
†
j ] = δi,j (7)

with i, j = 1, 2, and all other commutations being zero.
Thus, the connection to the original SU(2) algebra can

be recovered assuming n1 = s + m, n2 = s − m, where
ni = a†

iai, with s and m are related to the usual results

σ2|s,m⟩ = s(s+ 1)|s,m⟩,
σz|s,m⟩ = m|s,m⟩

(8)
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The rules for applying S± operators to states are as
follows:

S−|0, 1⟩ = 0,
S−|1, 0⟩ = |0, 1⟩,

S+|1, 0⟩ = 0,
S+|0, 1⟩ = |1, 0⟩,

(9)

It is worth noting that, S−|0, 1⟩ = 0, i.e. |0, 1⟩ is the
vacuum state for S−. Due to the fact that this represents
a two-level system, one can represent a ground state and
an excited state from an energetic point of view. In this
context, the corresponding basis of this Hilbert space
can be redefined as

|0, 1⟩ = |0⟩, |1, 0⟩ = |1⟩,

where |0⟩ is the ground state, and |1⟩ is the excited
one. Thus, one can construct the doubled Hilbert space
in order to build the thermal algebra and consequently
simulate thermal qubits.

2.2. Thermo-SU(2) algebra

In order to double the SU(2) algebra, one needs to
define the set of conjugation rules, which results in the
following non-vanishing commutation rules[

S0, S±] = ±S±[
S+, S−] = 2S0,[
S̃0, S̃±

]
= ±S̃±,[

S̃+, S̃−
]

= 2S̃0.

(10)

Due to the fact that a unitary operator U(β) can be
assumed as a canonical transformation, for the algebra
which characterizes the physical system, the so-called
TFD thermal operators can be defined by

S±(β) = U(β)S±U−1(β),
S0(β) = U(β)S0U−1(β),

S̃±(β) = U(β)S̃±U−1(β),

S̃0(β) = U(β)S̃0U−1(β),

(11)

where U(β) corresponds to the Thermal Bogoliubov
Transformation. As a consequence, the thermal opera-
tors fulfill the following requirement of destroying the
so-called thermal vacuum states |0(β)⟩:

S−(β)|0(β)⟩ = 0, S̃−(β)|0(β)⟩ = 0, (12)

where

|0(β)⟩ = U(β)|0, 0̃⟩

= 1
Z(β)1/2

∑
n=0

eβ nω
2

(
S+S̃+ − S−S̃−

)n

|0, 0̃⟩,

(13)

with Z(β) = 1 + e−βω being the canonical partition
function, and

U(β) = 1
Z(β)1/2

∑
n=0

e−β nω
2

(
S+S̃+ − S−S̃−

)n

. (14)

The thermal vacuum states |0(β)⟩ can be defined as
the vacuum of the field emerging in a thermal bath,
being an alternative way to represent the temperature in
quantum mechanics in an algebraic perspective without
the need for quantum statistics [27]. In this scenario, the
Bogoliubov transformations can be seen as a rotation in
the duplicated Hilbert space which leads to the creation
of thermal effects [37, 38].

3. Thermal Qubits

Let us consider the particular case of a two-level system
(qubit). From Eq. (13) one can define the thermal
vacuum qubit or thermal qubit [14] as

|0(β)⟩ = 1
Z(β)1/2

(
|0, 0̃⟩ + e−β ω

2 |1, 1̃⟩
)
. (15)

It is worth noting that, since the double thermofield is
always in the same state as the real fermion, the mixed
states |1, 0̃⟩ and |0, 1̃⟩ cannot be seen [27, 37, 38].

In this regard, rewriting Eq. (15) as

|0(β)⟩ = a|0, 0̃⟩ + b|1, 1̃⟩, (16)

leads Eq. (16) to a form that resembles the geometrical
representation for a pure state of a two-level quantum
system, the so-called Bloch Sphere representation of a
qubit [31]:

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩, (17)

where:

a = cos θ2 = 1√
1 + e−βω

,

b = sin θ2 = e−βω/2
√

1 + e−βω
.

(18)

Thus, as a remarkable result, the thermal vacuum can
be represented in a quantum circuit setup as sketched in
Fig. 1. The circuit is created in order to implement the
Bogoliubov transformation using the geometrical ideas
of the Bloch sphere representation. The operator

Ry(θ) = e−i θ
2 σy =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
(19)

represents a rotation of an angle θ around Y -direction
on the non-tilde qubit |0⟩, while the CNOT gate [31],
controlled by the non-tilde qubit, targets the tilde one,
doubling the Hilbert space in this way.

It is worth noting that this procedure is only possi-
ble due to the boson representation of SU(2) algebra
reported previously in this section. This representation
gives us a short circuit obtained through the analytical
construction of the Bogoliubov transformation. More-
over, this result can be compared with the literature in
the example reported in reference [23]. In this reference,
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|0⟩ Ry(θ)

|0̃⟩ X

Figure 1: Sketch of the circuit that implements the Thermal
Bogoliubov Transformation by applying the TFD approach for
a single two-level quantum system. The state |0⟩ is ground state
in the S Hilbert space, while |̃0⟩ is the ground state of the S̃
one.

the authors use a function of IBM Qiskit [32] that
decomposes a given unitary matrix into quantum gates.
However, it currently only works for 2-qubit, while
the circuit shown in Fig. 1 can be implemented as a
subroutine limited only by the number of qubits present
in a given quantum computer. In addition, using the
Bogoliubov transformation approach also differs from
other results reported recently in references [24], and
[30], since it does not use a variational approach for
simulating thermal qubits. Therefore, using the algebraic
approach of TFD theory can make the simulation of
quantum protocols at finite temperatures more intuitive
for quantum algorithm developers, reducing the number
of quantum gates needed for its implementation. This
reduction of the number of gates can open a large avenue
for the teaching of thermal effects on quantum protocols
since it reduces the cost of implementing thermal qubits,
simplifying the quantum logic in the circuits [28, 39, 40].

From Eq. (18), the angle θ in the Bloch sphere
representation can be defined only by the reciprocal
temperature β. Thus, one can conclude that

|0(β → 0)⟩ = 1√
2

(
|0, 0̃⟩ + |1, 1̃⟩

)
, (20)

|0(β → ∞)⟩ = |0, 0̃⟩, (21)

where in Eq. (20) we have the non-physical (infinity
temperature) maximally thermal vacuum and Eq. (21)
the non-thermal qubit. Therefore, increasing the tem-
perature (β → 0) will populate both ground and excited
states equally, reaching the maximally thermal vacuum,
Eq. (20). Consequently, decreasing it (β → ∞) leads the
system to the non-thermal state [23].

This result can be simulated by implementing the
circuit sketched in Fig. 1 in a quantum computing setup
using the IBM Qiskit framework [32]. Qiskit consists of
a platform that enables high-level programming, serving
as both a software development platform and a Quantum
Computing language 2.

2 For in-depth reading about QisKit, its initialization, commands
and implementation, we recommend reading the references [32–
34, 41–44].

3.1. Quantum algorithm

After installing a Python language compiler and Qiskit
module3, the readers are ready to learn how to write
code to simulate their thermal qubits through TFD
by constructing circuits and executing them on their
own personal computers. To initiate the program, it
is necessary to import the following modules into the
Python environment:

qiskit: the main module, used for designing the
quantum circuits and execute the quantum algo-
rithms [43–45];
qiskit.circuit: to import the sequence of coher-
ent quantum operations used in quantum comput-
ing. [43–45];
numpy: to create a mathematical workspace that
involves multidimensional arrays and matrices,
utilizing a vast range of mathematical functions
available [46];
matplotlib: used for generating graphs or creat-
ing data visualizations in general [47];
qiskit.tools.monitor: used to monitor the real-
time execution of our algorithms in a real quantum
computer by utilizing the job_monitor function
[43–45];
qiskit.visualization: used to visualize the
probability distributions through the function
plot_histogram.

This modules can be imported in the Python environ-
ment using the code:

Box 1: Importing the Packages

from qiskit import *
from qiskit.circuit import *
import numpy as np
import matplotlib.pyplot as plt
from qiskit.tools.monitor import job_monitor
from qiskit.visualization import␣

↪→plot_histogram

The next step is to define the rotation angle θ of
the non-tilde qubit performed by the operator Ry(θ) in
Eq. (19). Thus, we can represent the thermal vacuum in
quantum circuit as

Box 2: Creating the Thermal Vacuum State

# Define a variable theta to be a parameter␣
↪→with name ’theta’
theta = Parameter(’theta’)
# Set number of qubits and classical bits␣

↪→to 2
qubits_count = 2
bits_count = 2

3 Tutorials available on the references [33, 42–45].
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# Initialize a quantum circuit with two␣
↪→qubits
qc = QuantumCircuit(qubits_count,bits_count)
# Add a parametrized RX rotation on the␣

↪→qubit
qc.ry(theta,0)
qc.cx(0,1)
qc.draw(output=’mpl’)

The thermal vacuum state can be checked by mea-
suring the corresponding qubits, the reader can measure
the associated qubits and interpret the results using a
classical computer. The outcomes of each qubit’s mea-
surement can be stored as classical bits (either 0 or 1)
in the circuit’s defined classical bits [33]. Qiskit offers a
powerful solution for running quantum simulations on
quantum processors using the cloud access to the IBM
Quantum Experience platform [48], through the IBM Q
Provider element [32, 42–44]. By specifying the number
of circuit repetitions (or shots), the simulator obtain
the counts for every measurement outcome in the final
state. In order to utilize the IBM Q Experience through
Qiskit and run projects on real quantum processors4,
it is necessary to create a free account. This can be
done by accessing the “My Account” settings in IBM
Q Experience [48]. Once the API token is obtained,
IBM Q devices can be accessed from a home computer
using Qiskit. To simulate the quantum circuit in the IBM
quantum processor using a home-classical computer, use
the following commands:

Box 3: Simulating the thermal vacuum state on a real
quantum processor

#Adding the measurements in the circuit
qc.measure([0,1],[0,1])

#Saving your IBM account in your device
IBMQ.save_account('Users_Token')

#Executing the circuit in a real quantum␣
↪→computer ibmq_lima
IBMQ.load_account() #Loading your IBM␣

↪→Account
provider = IBMQ.get_provider(hub =’ibm-q’)
qcomp = provider.get_backend(’ibmq_lima’)␣

↪→#Selecting your quantum hardware
job = execute(qc, backend=qcomp,␣

↪→shots=20000)
result = job.result()
counts = result.get_counts(qc)

4 When implementing quantum logic gates, there can be system-
atic errors due to various factors such as noises and other processes.
These inaccuracies in qubit control are not covered in this work.
For more information on how these factors affect qubit control and
quantum logic gates, refer to the Qiskit User Guide [44].

Figure 2: (a) Probabilities of the thermal vacuum state in
terms of the reciprocal temperature β (dimensionless units). (b)
Probability amplitude of the thermal vacuum in terms of θ (rad).
Dashed (red) and solid (blue) lines represent the theoretical
probabilities for the ground |0, 0̃⟩ and excited |1, 1̃⟩, respectively.
They are obtained from the square modulus of the probability
amplitudes a and b in Eq. (18).

Therefore, the thermal vacuum probabilities can be
calculated by dividing the state counts by the number
of shots. Fig. 2 shows the thermal vacuum probabilities
as a function of the reciprocal temperature (β) and the
angle θ. Dashed (red) and solid (blue) lines represent the
theoretical probabilities for the ground |0, 0̃⟩ and excited
|1, 1̃⟩, and are obtained from the square modulus of the
probability amplitudes a and b in Eq. (18). The crosses
and open circles represent the results obtained from
the simulation of the thermal qubit in a real quantum
processor, available in the backend ibmq_lima.

As can be seen in Fig. 2 (a), according to Eq.(21),
thermal qubit at high temperature (low β) is a superpo-
sition of the states |0, 0̃⟩ and |1, 1̃⟩. This superposition
decays exponentially until the qubit becomes the non-
thermal state |0, 0̃⟩ when the temperature drops (β
rises), Eq. (20). In Fig. 2 (b) we have the same prediction
of Fig. 2 (a), but now in terms of θ. It should be
noted that θ ∈ [0, π/2] when β ∈ [0,∞], this result is
in agreement with of quantum field theories at finite
temperature that see β as a compactification of a time
dimension [37, 38].
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Similar results were recently shown in reference [23]
in terms of β. However, the authors used a function
UnitaryGate available in IBM Qiskit, which creates a
quantum gate from a numeric unitary matrix [32]. On
the other hand, the result showed in Fig. 2 is directly
obtained from the Bloch sphere representation in terms
of the Bogoliubov transformations, obtained from the
circuit shown in Fig. 1, in which the angle of rotation in
the Ry(θ) gate defines the temperature.

4. Quantum teleportation at finite
temperature

In this regard, one can apply the formalism shown in
this section in order to simulate a quantum algorithm
involving thermofield states. As an example, we will sim-
ulate the quantum teleportation of thermofield states, a
problem that has been previously discussed in reference
[26]. In this reference, the quantum teleportation of
thermal qubits will consist of the transmission of a non-
thermal qubit |0, 0̃⟩ into a thermal reservoir between two
parties, conventionally known as Alice and Bob, spatially
separated [26, 31]. Thus in the doubled Hilbert space
representation, we have |0, 0̃⟩ → |0(β)⟩.

Initially, Alice has only a single copy of a non-
thermal qubit, and she wants to send this qubit to Bob’s
thermal reservoir. Thus, Alice prepares the qubit whose
information will be sent and uses a second (auxiliary)
thermal vacuum state which will be maximally entangled
to a third thermal vacuum state (auxiliary) belonging
to Bob, who will receive Alice’s non-thermal qubit.
In the following, Alice performs measurements on its
two thermal qubits and informs her results through a
classical channel to Bob. Finally, with this (classical)
information, Bob properly performs a set of (quantum)
operations in your thermal vacuum state to retrieve the
non-thermal qubit sent by Alice in his thermal reservoir
[26]. Therefore, at the end of the teleportation, the initial
non-thermal qubit |0, 0̃⟩ acquires the temperature infor-
mation of Bob’s thermal reservoir, becoming the thermal
qubit |0(β)⟩ in the doubled Hilbert space representation
of the TFD approach, Eq. (15).

From this protocol, one can build the circuit in IBM
Qiskit that simulates this procedure, as shown in Fig. 3.
The algorithm is divided into five main steps, described
as follows.

(I) Preparing the thermal vacuum states. Since
the usual teleport algorithm uses three qubits [31],
the TFD’s version needs six qubits in order to imple-
ment Bogoliubov’s transformations. The first four qubits
{q1, q̃1, q2, q̃2} belongs to Alice, while the last two
{q3, q̃3} belongs to Bob. Thus, the first step of the circuit
(after calling the packages as presented in Box 1) is to
create the circuit registers:

Box 4: Creating the circuit register for the TFD
teleportation algorithm

# Creating registers
qreg_q = QuantumRegister(6, ’q’)
creg_c = ClassicalRegister(2, ’c’)
circuit = QuantumCircuit(qreg_q, creg_c)

In addition, Alice’s first two qubits {q0, q̃0} are pre-
pared on a non-thermal state in the doubled Hilbert
space using the general U-gate defined as applied in the
tilde and non-tilde qubits:

U(α, β, γ) =
(

cos α
2 −eγ sin α

2
eβ sin α

2 eβ+γ cos α
2

)
(22)

Box 5 displays the code used to initialize Alice’s non-
thermal state.:

Box 5: Initialization of Alice’s non-thermal state
#Alice prepares her non-thermal state to be␣

↪→teleported
circuit.u(alpha,beta,gamma,qreg_q[0])
circuit.u(alpha,beta,gamma,qreg_q[1])

The parameters alpha, beta and gamma on Box 5 can
be selected by the user in order to initialize the state to
be teleported.

On the other hand, using the circuit shown in Fig. 1
(code shown in Box 2), Alice prepares an auxiliary
thermal vacuum state |0(β)⟩A in qubits {q2, q̃2} while
Bob does the same in qubits {q3, q̃3}, preparing the
state |0(β)⟩B . The following Box shows the code for this
initialization of Alice’s and Bob’s thermal vacuum states:

Box 6: Initialization of Alice’s and Bob’s thermal
vacuum states
#Alice and Bob prepares their thermal␣

↪→vacuum states
circuit.ry(theta, qreg_q[2])
circuit.cx(qreg_q[2], qreg_q[3])
circuit.ry(theta, qreg_q[4])
circuit.cx(qreg_q[4], qreg_q[5])
circuit.barrier()

The user can define the temperature of the reservoir
by selecting the value of parameter theta using Eq. (18).

(II) Preparing the entanglement with the aux-
iliary thermal vacuum states. The next step is to
entangle Alice’s auxiliary vacuum state |0(β)⟩A with
Bob’s |0(β)⟩B , in the doubled Hilbert Space. Box 7
shows the code that for the entanglement of the thermal
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vacuum states |0(β)⟩A and |0(β)⟩B :

Box 7: Generating entanglement between Alice and
Bob’s thermal vacuum states
#Preparing the entanglement between Alice␣

↪→and Bob’s thermal vacuum states
circuit.h(qreg_q[2])
circuit.cx(qreg_q[2], qreg_q[4])
circuit.h(qreg_q[3])
circuit.cx(qreg_q[3], qreg_q[5])
circuit.barrier()

(III) Sending the non-thermal qubit. Then Alice
starts the process of sending the non-thermal state using
his auxiliary thermal vacuum state |0(β)⟩A, which is now
entangled with Bob’s |0(β)⟩B . The code for this process
is displayed in the following box:

Box 8: Decoding Alice’s non-thermal state into her
auxiliary thermal vacuum state.

#Alice decodes her non-termal state into␣
↪→his auxiliary thermal vacuum state
circuit.cx(qreg_q[0], qreg_q[2])
circuit.h(qreg_q[0])
circuit.cx(qreg_q[1], qreg_q[3])
circuit.h(qreg_q[1])
circuit.barrier()

(IV) Conditioned operations. The following step
would be for Alice to perform measurements on her
qubits. Depending on the results, contact Bob through a
classic channel to inform the corrections that Bob must
apply in his state in order to finish the teleportation
process, and he can retrieve the non-thermal qubit sent
by Alice. This step can be performed through an oper-
ation conditioned to the result of Alice’s measurements.
However, IBM QE does not allow the implementation of
this type of port conditioned to a classic channel [32].
In this case, we can replace it with the CNOT and
Z-Controlled gates. In this regard, Alice performs

controlled gates on Bob’s thermal vacuum state using
her qubits as controls. Thus, we were able to modify the
original circuit without changing its main objective. The
following Box displays the code for this process:

Box 9: Executing Alice’s conditioned gates on Bob’s
thermal vacuum state.
#Alice performs conditioned gates targeted␣

↪→to Bob’s thermal vacuum state
circuit.cx(qreg_q[2], qreg_q[4])
circuit.cz(qreg_q[0], qreg_q[4])
circuit.cx(qreg_q[3], qreg_q[5])
circuit.cz(qreg_q[1], qreg_q[5])
circuit.barrier()

(V) Measurement in Bob’s vacuum state. Finally,
Bob measures his thermal vacuum state, retrieving
the non-thermal qubit sent by Alice into his thermal
reservoir as the thermal qubit |0(β)⟩, Eq. (15). The
following Box exhibits the code for this step:

Box 10: Measuring Bob’s thermal vacuum state.

# Bob’s measurements
circuit.measure(qreg_q[4], creg_c[0])
circuit.measure(qreg_q[5], creg_c[1])
circuit.draw(output=’mpl’)

Thus, one can simulate the teleport algorithm through
TFD algebraic perspective (Fig. 3) using IBM Qiskit.
For the sake of simplicity, we chose the angles {α =
π, β = 0, γ = π} in Eq. (22), during step I (Box 4).
Thus, Alice sends the non-thermal state |1, 1̃⟩. Moreover,
considering the microwave frequency ℏω = 1.5×10−22 J
in Eq. (18), one can prepare the thermal vacuum states
|0(β)⟩A and |0(β)⟩B at the finite temperature 72 K,
by selecting the parameter θ = π/3 in the step I
(Box 5). In this regard, one can simulate quantum
teleportation at a finite temperature (Fig. 3) in both
ideal and real quantum processors [33]. Qiskit provides
a Quantum Assembly Language (QASM) simulator for

Figure 3: Teleportation circuit of a non-thermal qubit to a thermal vacuum state. The first four qubits {q0, q1, q2, q3} belongs
to Alice, while the last two {q4, q5} belongs to Bob. The protocol can be divided into five main steps: (I) Preparing the thermal
vacuum states; (II) Preparing the entanglement with Alice’s auxiliary vacuum state |0(β)⟩A and Bob’s |0(β)⟩B ; (III) Sending the
non-thermal qubit; (IV) Conditioned operations targeting in Bob’s state; (V) Measurement of Bob’s state in order to retrieve the
non-thermal qubit sent by Alice.
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quantum simulation on personal computers [32, 42–
44]. This tool is an integral part of the module and
is specifically designed to emulate the execution of
quantum circuits on a local classical processor. This
enables us to emulate an ideal quantum processor
without any external environmental disturbances. On
the other hand, in addition to being able to simulate
our quantum circuit on a numerically emulated ideal
processor on a home-classical computer, we can also run
our projects on real quantum processors using the IBM
Q Experience through the IBM Q Provider element (as
shown in Box 3). In the following, Box 11 shows the
code for running the quantum teleportation at a finite
temperature (Fig. 3) in both ideal and real quantum
processors:

Box 11: Simulating quantum teleportation under finite
temperature using an ideal and a real quantum proces-
sor.
#Ideal quantum processor
simulator = Aer.

↪→get_backend(’qasm_simulator’)
result = execute(circuit,␣

↪→backend=simulator, shots = 20000).result()
plot_histogram(result.get_counts(circuit))

#Real quantum processor ibm_lagos
IBMQ.load_account() #Loading your IBM␣

↪→Account
provider = IBMQ.get_provider(hub =’ibm-q’)
qcomp = provider.get_backend(’ibm_lagos’)␣

↪→#Selecting your quantum hardware
job = execute(circuit, backend=qcomp,␣

↪→shots=20000)
result = job.result()
counts = result.get_counts(circuit)

Fig. 4 shows the probability distributions for this
teleport algorithm simulated in ideal quantum processor
(QASM simulator [49]) and the 7-qubit real quantum
processor ibm_lagos5. As can be seen, the state mea-
sured in Bob’s vacuum state |0(β)⟩B was, in a good
approximation, the thermal qubit state

|1(β)⟩ =
√

1
4 |0, 0̃⟩ +

√
3
4 |1, 1̃⟩ , (23)

which is in agreement with the application of the Ther-
mal Bogoliubov Transformation, Eq. (14), on Alice’s
non-thermal state |1, 1̃⟩, with corresponding temper-
ature 72 K. Thus, the non-thermal state sent by
Alice acquires the temperature information of the bath,
becoming a thermal qubit in agreement with the pre-
sented Thermofield Dynamics model.

5 The ibm_lagos processor architecture can be found on IBM QE
platform [48]. The details of the processor are beyond the scope of
this paper.

Figure 4: Probability distribution for the teleportation algorithm
at finite temperature simulated for 20000 shots in (a) an ideal
quantum processor (QASM simulator [49]), and (b) a 7-qubit
real quantum processor ibm_lagos. The simulation is performed
considering the frequency ℏω = 1.5 × 10−22 J and 72 K for the
temperature of the thermal vacuum states.

The ideal processor numerically emulates the quantum
circuit execution shown in Fig. 3(a), without any influ-
ence from external perturbations due to the inevitable
coupling between quantum information processing sys-
tems and the external environment. The simulation
returns the counts of each measurement in the final
thermal state for the given set of 20000 shots. However,
even if no decoherence act and no additional errors
affect the system statistics, due to the fact that the
number of shots is not large enough, one can still notice
a slight statistical discrepancy between the obtained
result and the theoretically expected result observed
in Fig. 2(b). On the other hand, in the real quantum
processor, noise and other decohering processes lead to
imprecision in the fine control of the qubits, causing
systematic errors in the implementation of logic gates,
which explains the appearance of the states |0, 1̃⟩ and
|1, 0̃⟩. Nevertheless, these results show a proof of concept
regarding the implementation of thermal qubits through
the TFD approach. Therefore, using the Bloch sphere
representation in terms of the Bogoliubov transforma-
tion allows the construction of thermal qubits in a
quantum computing setup, opening a large avenue for
future research toward the study of thermal effects in
the development of optimal quantum protocols.
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5. Conclusion

In summary, this work shows how quantum computing
can be a useful tool for teaching the Thermofield Dynam-
ics and the Blogoliobov transformations in a practical
way. We show a didactic implementation of thermal
vacuum qubits in a quantum computing setup, using
an algebraic approach accessible to most undergraduate
physics students. The Bloch sphere representation for
a qubit is built in terms of the Bogoliubov transfor-
mations, and the thermofield-double space is simulated
through the IBM Qiskit. The approach reported in
this work can be implemented as a practical algebraic
framework in undergraduate and graduate classrooms
to study the thermal effects of the TFD approach
using quantum computing. The presented examples
show that constructing thermal qubits using TFD in
a quantum computing setup can be more intuitive and
approachable for professors, students, and even quantum
algorithm developers. The presented method appears as
an alternative to the complicated variational approach
methods used in the literature up to date [24, 30],
reducing the number of quantum gates and processes
needed for the implementation of the thermal qubits. In
addition, the use of TFD theory for quantum computing
opens a large avenue for physics teaching on the thermal
effects on quantum protocols, which can be a path
toward the understanding of the cost of implementation
of thermal quantum algorithms. Therefore, this work
highlights the potential of TFD algebraic perspective in
quantum computing to encourage the study of optimal
quantum protocols.
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