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Spectral regionalization of tropical soils in the estimation of soil attributes1

Regionalização espectral de solos tropicais na estimativa dos atributos do solo

José A. M. Demattê2*, Henrique Bellinaso3, Suzana Romeiro Araújo2, Rodnei Rizzo2 and Arnaldo Barros Souza2

ABSTRACT - Conventional soil analysis produces large amount of residues and demand resources and time consuming. The
construction of soil spectral database for estimating soil attributes is the newest alternative on soil mapping. The objective
in this study was to build spectral libraries and study the quality of the generated prediction models for soil attributes. It
was obtained 7185 soil spectral (400-2500 nm) in laboratory with respective soil analysis. The spectral libraries “general”,
“regional”, and “local” were generated from these spectral readings. The general spectral library contained the full range of
data and several states, the regional libraries contained data from geographically close municipalities, and the local libraries
contained soil data from a single municipality. In general we observed the sequence of R² for General (0.85), Regional (0.67 to
0.77) and Local (0.55 to 0.77). In conclusion, the best database was the general one. On the other hand, independent of the size
of the database, predictive models based on physical attributes such as sand, clay, and organic matter generate good predictions
until an R2 of 0.7. The determination of spectral libraries including highly variable soils formed from different parent materials
create worse results for the estimation of chemical attributes and better results for the estimation of the physical ones. The low
range of variation in a given attribute was a limiting factor in the generation of effective predictive models. A great spectral
library can certainly improve soil quantitative evaluation.
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RESUMO - As análises convencionais de solo produzem grandes quantidades de resíduos e demandam muito tempo e
recursos. A construção de bancos de dados espectrais para estimar atributos do solo é uma alternativa em mapeamento de solos.
Objetivou-se neste estudo construir bibliotecas espectrais e estudar a qualidade dos modelos de predição de atributos do solo
gerados. Obtiveram-se 7185 espectros de solo (400-2500 nm) em laboratório, cada um com as respectivas análises de solo. As
bibliotecas espectrais “Geral”, “Regionais” e “Locais” foram geradas a partir dessas leituras espectrais. A biblioteca espectral
“Geral” contém toda a gama de dados e vários estados, as Regionais contêm dados de municípios geograficamente próximos,
e as Locais contêm dados do solo de um único município. Em geral, observou-se a seqüência de R² para Geral (0,85), Regional
(0,67-0,77) e Local (0,55-0,77). Em conclusão, o melhor banco de dados foi o Geral. Por outro lado, independente do tamanho
do banco de dados, com base em modelos de previsão de atributos físicos, tais como a areia, argila e matéria orgânica, obteve-se
bons prognósticos, até R2 de 0,7. A determinação de bibliotecas espectrais incluindo solos altamente variáveis formados a partir
de diferentes materiais de origem produziu resultados piores para a estimativa de atributos químicos e melhores resultados para
a estimativa de atributos físicos. A baixa amplitude de variação em um determinado atributo foi um fator limitante na geração
de modelos preditivos eficazes. Uma grande biblioteca espectral pode certamente melhorar a avaliação quantitativa do solo.
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INTRODUCTION

Agricultural planning requires detailed
information about soil attributes. However, this diagnosis
by routine analysis is often expensive, time consuming
and generate large amounts of potentially toxic residues.
Due to this and the growing demand for rational use of
natural resources, Chang et al. (2001) highlight the need
to develop techniques that meet the needs of land use
planning on a large scale.

Thus, reflectance spectroscopy has emerged as
an promising alternative method for estimating various
soil properties (SORIANO-DISLA et al., 2014). This
technique is based on the spectral behavior of a single
attribute interacting with a specific wavelength of the
electromagnetic radiation (EMR). The incident energy
on the target can promote the transition of electrons in
inter or intra-atomic and/or stretching and/or bending
levels of structural groups, characterizing the spectral
response of the target (GENOT et al., 2011). The
characteristics of repeatability and reproducibility of the
spectroscopic technique, associated with the accuracy of
the method make it a reliable reference method (GENOT
et al., 2011).

However, the organization and exhaustive study
of spectroscopy applied to soils need to be developed
properly in order to achieve the level of reliability required
for the implementation of the technique (VISCARRA-
ROSSEL; CHEN, 2011). This requires complex statistical
methods for modeling and validation of the results, being
more robust the greater the scope of the database reference
(GOMEZ; VISCARRA-ROSSEL; MCBRATNEY,
2008). According to Longley et al. (2013), the quality of
geographic analysis is limited by the quality of the database
used and by modeling data from which it derives. Thus,
the application of spectroscopic techniques in soil science
is subject to extensive and efficient characterization and
registration of the spectral response of soil samples in
spectral libraries (VISCARRA-ROSSEL et al., 2008).
In this aspect, spectral libraries are the ultimate goal on
preparing the field for future soil analysis. The point is
that, despite quantification papers are largely studied,
there are few relating with spectral regionalization. In fact,
there are still doubts about how to use the spectral libraries
on which are the best, local or regional.

The objective of this study was to evaluate
the quality of predictive models for soil attributes
generated from spectral libraries (obtained in the
laboratory in the VIS-NIR region) containing different
ranges and quantities of data. Thehypothesize is that
regional spectral libraries (within the same geological
and climatic zone) will bring better predictive models
than a single, general library.

MATERIALS AND METHODS

Soil samples were collected from areas in the states
of São Paulo, Minas Gerais, Goiás, Amapá and Mato
Grosso do Sul (Figure 1). In total, 7185 soil samples were
collected from horizons of morphologically described
soil profiles and from boreholes at depths of 0-20, 40-60,
and 80-100 cm (SANTOS et al., 2013).

Figure 1 - Construction of Spectral Libraries

The following values were determined or
calculated: organic carbon (O.C.), organic matter (O.M.),
P, K, Ca, Mg, Al, and H+Al content; hydrogenionical
potential in CaCl2 solution (pHCaCl2); sum of bases (SB);
cation exchange capacity (CEC); base saturation (V%);
and aluminium saturation (m%) (RAIJ, 2001). In addition,
the total sand, silt, and clay fractions were determined
(CAMARGO et al., 1986).

Spectral data were obtained in the laboratory with
a FieldSpec Pro spectroradiometer (Analytical Spectral
Devices, Boulder, Colo.). This instrument has a sensor
with a spectral resolution of 1 nm for wavelengths from
350 to 1100 nm and 2 nm for wavelengths from 1100 to
2500 nm. For the collection of reflectance data, samples
corresponding to a volume of approximately 15 cm3 of soil
were dried in an oven at 45 oC for 24 h (HENDERSON
et al., 1992) and then ground and sieved (2-mm). Each
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Table 1 - Characterization of Spectral Libraries

sample was placed in a petri dish for sensor reading. The
reflectance of each sample was given by the average of
100 sensor readings. The point of light capture of the
equipment (the opening of the fiber optic cable) was placed
in a vertical position 8 cm from the sample to measure
the light reflected by an area of approximately 2 cm2 in
the center of the sample. The light source used was a 50
W halogen lamp with a non-collimated beam at the target
surface. The light source was positioned 35 cm from the
sample with a zenith angle of 35º. A white spectralon plate
was used as the reference standard for 100 % reflectance.

Construction of spectral libraries

From the total spectral data collected, the following
distinct databases, or spectral libraries (SLs), were derived:
the General SL, which contained all of the collected spectral
data; Regional SL 01 and Regional SL 02; and local SLs
for Guararapes-SP, Porto Velho-AP, Goianesia-GO, and
Luis Antonio-SP. Table 1 summarizes the different SLs
and Figure 1 illustrates their construction.

Treatment of spectral data and statistical analysis

All reflectance data were pre-processed to
improve the stability of the regressions. Absorbance
values (1/R) were log transformed and transformed data
were centralized around the average. Statistical analysis
of the laboratory data was performed using SPSS 11.0.
The mean, standard deviation, maximum value, and
minimum value were calculated for each attribute.

A principal component analysis (PCA) of
the spectral data was performed using the program
Unscrambler 9.7. The PCA results indicate the soil
variability within each spectral library.Due to the large
quantity of spectral data included in the General SL
(7185), it was necessary to perform a representative

Spectral Libraries (SL) Number of Spectral data Region (counties)
Number of samples

for calibration
Number of samples

for validation

General 7185 All regions (counties) 4790 2395

Regional 01 3093
Guararapes-SP, Valparaíso-SP, Mirandópolis-SP,
Andradina-SP, Três Lagoas-MS e Aparecida do

Taboado-MS
2063 1030

Regional 02 903
São Carlos-SP, Piracicaba-SP, Matão-SP,

Araraquara-SP e Luis Antonio-SP
603 300

Local of Guararapes-SP 843 Guararapes-SP 562 281

Local of Luis Antonio-SP 563 Luis Antonio-SP 375 188

Local of Porto Velho-AP 621 Porto Velho-AP 414 207

Local of Goianésia-GO 541 Goianésia-GO 361 180

sampling of the data to develop predictive models. The
computational program Conditioned Latin Hypercube
Sampling (cLHs) was used for sampling (MINASNY;
MCBRATNEY, 2006).

Calibration and validation of spectral models and
quantification of attributes

For each SL, a subset of the data was used for
development and calibration of the predictive models
and the remainder of the data was used for subsequent
validation (test samples) (Table 1). The chemometric
program Unscrambler 9.7 was used to generate predictive
models (calibration phase). The partial least squares
regression (PLS) and projection on latent structures
regression (PLSR) modules included in this program
were used to develop the models. PLS regressions have
been widely used and perform well in the estimation of
soil attributes based on spectral behavior (VASQUES;
GRUNWALD, 2008; VISCARRA-ROSSEL et al., 2008;
ZORNOZA et al., 2008).

To calibrate the model for each of the attributes,
the number of PLS factors was chosen using the results of
the model validation as criteria (validation phase). During
the validation phase, each model was evaluated based
on the coefficient of determination (R2) , the root mean
square error (RMSE) (Equation 1), the mean error (ME or
bias) (Equation 2), the standard error of the mean (SEM
or SDE) (Equation 3), and the ratio of prediction deviation
(RPD) (WILLIANS, 1987):

                                                                                       (1)

                                                                                       (2)



Rev. Ciênc. Agron., v. 47, n. 4, p. 589-598, out-dez, 2016592

José A. M. Demattê et al.

Figure 2 - Principal Components Analysis of General, Regional and Local Spectral Libraries

                                                                                       (3)

Where i indicates the values estimated by the model,
yi indicates the observed values, and N is the number of
observations of the variable to be modeled. The difference
between the observed value (reference value) and the
predicted value is called the residual.

The RPD is the ratio of the standard deviation of
the reference data to the RMSE for the model validation.
The ME is the mean of the residuals and indicates whether
a model overestimates or underestimates the values of
the attribute. The SDE is the standard deviation of the
residuals, where high values of SDE indicate that the model
predicts some of the test samples well and predicts others
poorly. The results of these figures of merit were analyzed
as described in literature (CHANG et al., 2001; DUNN et
al., 2002; SAYES; MOUAZEN; RAMON, 2005).

RESULTS AND DISCUSSION

Principal Component Analysis (PCA)

The SLs showed great variability of soils (Figure
2) because data came from different regions and different
parent materials. The Principal Component one (PC1)

was correlated with the albedo of the samples (GALVÃO;
PIZARRO; EPIPHANIO, 2001) while the PC2 represents
the curve shape. Samples with greater reflectance had
lower PC1 scores. Reflectance is a function of the levels of
Fe2O3, sand, clay, and organic matter and the presence of
opaque minerals (BELLINASO; DEMATTÊ; ARAUJO,
2010). These attributes are related to the soil class and
parent material of each sample. Therefore, SLs with
high variation in PC1 scores showed high variability of
soils formed by different parent materials. SLs with low
variability of soils formed from the same parent material
showed tighter clustering of points in the graph of PC1
vs. PC2 (Figure 2).

Regional SL 01 encompassed less variability of
soils than Regional SL 02, as indicated by the lesser
variation in PC1 scores. The data that made up Regional
SL 01 represented regions in close geographic proximity
where most soils were derived from sandstones. Regional
SL 02 also encompassed data from geographically
proximate regions, but the soils were derived from a
greater variety of parent materials, including volcanic
rocks, siltstones, argillites, and even sandstones.

Among Local SLs, the Luis Antonio-SP SL and the
Porto Velho-AP SL showed greater variability of soils than
the Goianesia-GO SL and the Guararapes-SP SL. In fact,
soils from Porto Velho have contribuition of the Formação
Barreiras, and Goianésia from Serra-Geral. Greater variability
of soils occurs primarily in the Luis Antonio-SP region, with
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greater variation in the levels of clay and sand (Table 2).
This region also showed high variation in PC1 scores.

Statistical analysis of reference data

The Goianesia-GO and Guararapes-SP SLs and
Regional SL 01 showed a smaller range of variation in

Table 2 - Statistical analysis of the attributes for General, Regional and Local Spectral Libraries

Statistical parameter

Soil Attribute

Sand Silt Clay O.M.* O.C. P K Ca Mg Al H+Al SB CEC V m
pH CaCl2 --------g kg-1 --------- -------- mg kg-1 -------- ---------------------- mmolc kg-1 ----------------------- ----- % -----

General Spectral Library

Mean 523 83 392 13.7 7.9 4.4 1.3 13.1 4.9 3.5 26.1 20.9 46.9 41.0 21.7 4.7

SD 274 54 252 7.9 4.5 6.1 1.5 12.0 4.2 4.7 15.6 19.6 25.1 22.5 25.6 0.6

min 0.0 2.0 68 2.0 1.2 1.0 0.1 1.0 0.1 0.0 1.0 2.1 8.1 4.0 0.0 3.3

max 910 360 960 39.0 22.1 54.0 9.8 65.0 28.0 32.0 105 134 162 95.0 96.0 6.3

Regional Spectral Library  01

Mean 746 70 182 10.4 6.0 3.5 1.5 1.5 4.1 3.4 17.7 16.3 34.5 46.0 23.4 4.6

SD 70 31 55 4.8 2.8 3.4 1.2 1.2 2.7 3.8 7.4 10.6 11.9 21.6 27.4 0.6

min 540 0.0 40 1.0 0.5 1.0 0.1 0.1 1.0 0.0 1.0 2.1 7.5 5.0 0.0 3.3

max 920 185 350 26.0 15.1 23.0 23 6.7 14 16 42.0 53.3 75.9 98.0 87.0 6.4

Regional Spectral Library 02

Mean 488 78 433 15.4 8.9 5.7 0.9 11.5 3.8 2.7 29.1 16.3 46.0 33.3 20.3 x

SD 251 49 215 7.3 4.3 8.6 1.2 9.9 2.8 3.0 12.0 12.9 19.7 18.2 23.7 x

min 0.0 2.0 78 2.0 1.2 1.0 0.1 1.0 1.0 0.0 5.0 2.1 14.4 4.0 0.0 x

max 904 230 860 37.0 21.5 51.0 8.2 56.0 56.0 23.0 66.0 66.9 109 95.0 92.0 x

Spectral Library of Porto Velho - AP

Mean 491.4 40 468 13.5 7.8 1.8 0.5 2.0 1.2 4.4 25.9 3.9 30.0 14.4 47.0 4.56

SD 151.9 16 152 7.0 4.1 0.9 0.6 1.3 0.5 3.6 11.9 2.0 12.3 7.6 21.4 0.39

min 130.0 20 80 2.0 0.0 1.0 0.1 1.0 1.0 1.0 7.0 2.1 9.1 3.0 1.0 3.6

max 880.0 80 810 33.0 19.2 5.0 2.3 7.0 4.0 15.0 63.0 11.2 65.1 39.0 88.0 5.6

Spectral Library of Guararapes - SP

Mean 744 66 187 8.0 4.6 4.2 1.3 12.9 4.7 1.2 17.9 19.2 37.4 50.6 7.5 5.1

SD 68 33 51 3.9 2.2 4.3 1.5 5.6 2.3 1.4 5.0 7.7 9.3 12.6 9.8 0.61

min 540 3 69 3.0 1.7 1.0 0.1 2.0 1.0 0.0 10.0 3.0 20.0 14.0 0.0 3.8

max 890 188 306 20.0 11.6 30.0 7.8 33.0 14.0 6.0 34.0 47.0 72.0 80.0 44.0 6.6

Spectral Library of Goianésia - GO

Mean 229 109 660 18.2 10.8 16.4 1.9 22.2 7.8 0.7 30.7 31.6 63.8 47.5 4.6 x

SD 80 51 100 9.8 5.8 9.5 3.4 16.4 6.3 1.2 13.7 22.0 28.6 22.0 9.1 x

min 50 20 390 4.0 2.3 1.0 0.1 1.0 1.0 0.0 3.0 2.1 17.3 6.0 0.0 x

max 470 300 890 46.0 26.7 88.0 22 93.0 32.0 6.0 72.0 109 28.6 99.0 46.0 x

 Spectral Library of Luis Antonio - SP

Mean 403 92 509 17.6 10.2 5.7 0.8 12.1 3.5 2.2 30.2 16.9 47.8 32.7 16.9 4.95

SD 263 56 221 8.4 4.9 6.8 0.9 10.6 2.6 2.3 11.3 14.2 21.9 16.7 21.6 0.50

min 10 20 100 4.0 2.3 1.0 0.1 1.0 1.0 0.0 5.0 2.1 17.4 6.0 0.0 4.0

max 860 230 860 39.0 22. 35.0 5.3 51.0 13.0 10.0 61.6 112 112 78.0 80.0 6.1
*O.M.: organic matter; SB: sum of bases; CEC: cation exchange capacity; V: base saturation; m: aluminum saturation; x: there is no data

the levels of clay and sand (Table 2), confirming the PCA
results (Figure 2). All SLs showed high variation in OM
content (Table 2), with the Guararapes-SP SL having the
least variation. The range of variation differed among
other chemical attributes. Overall, the PortoVelho-AP SL
showed less variability of the chemical attributes, followed
by the Luis Antonio-SP and Regional SL 01 (Table 2).
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Table 3 - Internal validation of the calibration models generated by General, Regional and Local Spectral Libraries

¹R²: coefficient of determination; RMSE: root mean square error; NF: number of factors *O.M.: organic matter; SB: sum of bases; CEC: cation
exchange capacity; V: base saturation; m: aluminum saturation; x: there is no data

Statisical parameter¹
Sand Silt Clay O.M.* O.C. P K Ca Mg Al H+Al SB CEC V

pH CaCl2

m

--------- g kg-1 ---------- -------- mg kg-1 -------- mmolc kg-1 % %

General Spectral Library

R2 0.89 0.56 0.88 0.66 0.65 0.26 0.30 0.49 0.40 0.39 0.60 0.52 0.73 0.49 0.42 0.50

RMSE 93.93 37.03 90.3 4.69 2.69 5.08 0.87 8.77 3.57 4.05 10.92 11.84 14.16 16.4 0.43 13.4

NF 21 22 20 22 22 22 20 23 18 24 24 25 25 25 24 25

Regional Spectral Library 01

R2 0.68 0.43 0.71 0.62 0.62 0.40 0.50 0.69 0.56 0.66 0.57 0.71 0.71 0.66 x 0.71

RMSE 39.4 24.79 28.44 2.87 1.67 2.42 0.87 4.16 1.76 2.31 5.04 5.58 6.49 12.75 x 15.1

NF 22 25 22 20 20 24 25 25 22 25 25 25 23 25 x 24

Regional  Spectral Library 02

R2 0.84 0.63 0.84 0.66 0.66 0.31 0.18 0.37 0.36 0.41 0.46 0.38 0.46 0.24 x 0.40

RMSE 102.1 34.35 85.1 4.17 2.43 6.91 1.40 9.29 2.61 2.62 8.25 12.17 14.60 18.77 x 18.93

NF 19 18 20 17 17 16 10 10 10 18 19 11 11 9 x 16

Spectral Library of Porto Velho - AP

R2 0.85 0.32 0.89 0.62 0.62 0.25 0.64 0.45 0.14 0.61 0.61 0.49 0.61 0.45 x 0.52

RMSE 62.6 12.65 53.5 4.48 2.60 0.81 0.36 1.02 0.62 2.18 7.38 1.45 7.75 5.65 x 15.21

NF 19 16 19 16 16 14 17 15 9 16 15 15 16 14 x 14

 Spectral Library of Guararapes - SP

R2 0.76 0.28 0.76 0.76 0.76 0.49 0.62 0.77 0.64 0.52 0.62 0.77 0.77 0.70 0.69 0.50

RMSE 33.07 30.45 24.7 1.87 1.09 3.00 0.80 3.05 1.47 1.04 3.02 4.24 4.95 7.87 0.35 7.24

NF 14 11 17 16 16 20 25 21 24 25 20 19 14 24 21 21

Spectral Library of Goianésia - GO

R2 0.51 0.40 0.65 0.90 0.90 0.19 0.19 0.60 0.43 0.36 0.61 0.58 0.78 0.53 x 0.43

RMSE 64.84 31.89 65.98 3.35 1.95 13.15 3.65 10.71 4.42 1.19 9.18 16.14 13.45 14.51 x 8.33

NF 12 8 16 20 20 10 8 16 14 15 13 16 15 16 x 17

Spectral Library of Luis Antonio - SP

R2 0.82 0.68 0.81 0.67 0.69 0.36 0.31 0.36 0.33 0.27 0.29 0.52 0.57 0.23 0.31 0.38

RMSE 111.1 30.98 94.09 4.39 2.55 6.15 0.91 7.56 2.25 2.06 8.67 8.92 12.42 14.36 0.47 18.23

NF 14 12 14 14 14 11 12 9 7 7 7 16 14 7 6 10

Calibration and validation of predictive models
generated from the spectral libraries

Determining which R2 and RMSE parameter
values indicate an appropriate model is subjective,
and it is difficult to compare the results of different
calibrations (DUNN et al., 2002). However, Sayes,
Mouazen and Ramon (2005) has established that R2

values between 0.50 and 0.65 indicate that the model
can discriminate high and low concentrations, while R2

values of approximately 0.66 to 0.81, 0.82 to 0.90, and
0.90 or greater indicate acceptable, good and excellent
quantitative predictive models, respectively, for chemical
attributes. Chang et al. (2001) and Dunn et al. (2002)
have suggested that models with RPD values lower than

1.5 should be considered insufficient for the majority
applications, whereas models with values greater than
2.0 should be considered excellent. Models with RDP
values between 1.5 and 2.0 are considered useful in
relation to the accuracy of their predictions. Gogé et al.
(2013) found R2 > 0.75 in predict models for local library,
with R2 = 0.58 for clay, CEC, CaCO3 and Fe contents, but
when used the national database alone, the prediction of
soil properties for local site regression was inaccurate
for some properties. The predictive models for all SLs
showed greater accuracy for physical attributes such as
clay, sand, organic carbon, and organic material than
for chemical attributes (Tables 3-5). This agrees with
findings of Nanni and Demattê (2006) and recently with
Araújo et al. (2014).
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Table 4 - Results of model validation for estimating attributes generated from General, Regionals and Locals Spectral Libraries

Statistical parameter¹
Sand Silt Clay O.M. O.C. P K Ca Mg Al H+Al SB CEC V

pH CaCl2
m

------------ g kg-1 ----------- -------- mg kg-1 --------- ---------------------------- mmolc kg-1 --------------------------- % %

General Spectral Library

R2 0.86 0.51 0.85 0.63 0.63 0.17 0.18 0.4 0.31 0.16 0.46 0.37 0.66 0.3 0.22 0.23

RMSE 102.4 37.5 97.73 4.79 2.73 5.56 1.31 9.26 3.5 4.35 11.48 13.12 14.66 18.84 0.51 22.44

SDE 96.07 37.5 90.27 4.66 2.66 5.56 1.31 9.2 3.5 4.29 11.18 13.03 14.62 18.2 0.49 21.78

ME -35.54 -2.14 37.58 1.11 0.61 -0.08 -0.04 -1.07 -0.2 0.74 2.65 -1.64 1.13 -4.7 -0.11 5.46

RPD 2.67 1.43 2.58 1.66 1.65 1.10 1.11 1.29 1.21 1.09 1.36 1.50 1.71 1.20 1.14 1.14

 Regional Spectral Library 01

R2 0.64 0.3 0.67 0.61 0.61 0.3 0.38 0.63 0.51 0.61 0.48 0.66 0.64 0.61 x 0.68

RMSE 42.41 25.93 31.5 2.98 1.73 2.8 0.97 4.54 1.89 2.4 5.83 6.16 7.15 13.49 x 15.44

SDE 42.06 25.9 31.14 2.97 1.73 2.8 0.97 4.54 1.89 2.4 5.8 6.15 7.1 13.5 x 15.4

ME 5.65 -0.66 -4.7 -0.22 -0.13 -0.22 0.01 -0.22 -0.1 0.02 -0.71 -0.43 -0.96 0.63 x 0.13

RPD 1.66 1.20 1.75 1.61 1.62 1.21 1.28 0.27 1.43 1.60 1.28 1.72 1.67 1.60 x 1.77

Regional Spectral Library 02

R2 0.78 0.55 0.77 0.65 0.65 0.27 0.06 0.4 0.32 0.33 0.39 0.4 0.52 0.19 x 0.39

RMSE 117.54 33.19 103.46 4.36 2.54 7.33 1.14 7.61 2.33 2.43 9.41 9.96 13.61 16.34 x 18.43

SDE 117.6 32.4 102.3 4.33 2.52 7.34 1.13 7.5 2.32 2.4 9.02 9.82 13.6 15.9 x 18.4

ME 5.69 7.46 -16.8 -0.6 -0.35 -0.31 0.14 1.3 0.23 0.14 -2.74 1.73 -0.56 4 x -0.64

RPD 2.13 1.49 2.08 1.69 1.69 1.17 1.04 1.30 1.22 1.23 1.28 1.29 1.45 1.11 x 1.29

The models internal validation is displayed in
Table 3. Among the predictive models generated from
the general SL, sand and clay showed excellent results,
with R2 values greater than 0.85 and RPD greater than 2.0
(Table 4).

Organic matter, organic carbon, and CEC showed
good predictive ability, with R2 values greater than 0.6 and
RPD greater than 1.6 but lower than 2.0. The remaining
attributes showed unsatisfactory results, with RPD values
lower than 1.6. The attributes that createdthe worst
predictions were P, K, Al3+, CaCl2 and pH (Table 4).

In fact, this is in agreement with Soriano-Disla
et al. (2014) review, which observed low values for
these elements. The accuracy of the predictive models
differed between regional SLs (Table 4). Regional
SL 01 lead to good predictions for clay, sand, organic
carbon, OM, Al3+, SB, CEC, V% and m%. Regional SL
02 generate excellent predictions for clay and sand and
good predictions for organic carbon and OM.

Regional SL 01 result in better predictions than
Regional SL2 for P, K, Mg, Al, SB, CEC, V%, and m%
and poorer predictions for sand, clay, organic carbon,
OM, and Ca. To summarize, Regional SL 02 result in
better predictions for physical attributes, while Regional
SL 01 was for chemical attributes. Regional SL 02 had
greater soil variability than regional SL 01, as shown in

¹ R²: coefficient of determination; RMSE: root mean square error; SDE: standard deviation of the residuals; ME: mean error; RPD: ratio of prediction
deviation. *O.M.: organic matter; SB: sum of bases; CEC: cation exchange capacity; V: base saturation; m: aluminum saturation; x: there is no data

Figure 2. Whereas Region 02 is located at the transition
between the Peripheral Depression and the Western
Plateau of São Paulo, where distinct parent materials such
as sandstones, siltstones, and volcanic rocks are present
and Region 01 is located on the Western Plateau of São
Paulo, where the parent material is mostly sandstone.

The presence of distinct parent materials causes
a high diversity in the soils of Region 02, where sandy
soils and clay soils with high Fe2O3 content can be found.
Therefore, the spectral libraries with greater soil variability
generated better predictive models for physical attributes
such as clay, sand, and organic carbon, consistent with the
results found for models generated from the general SL.

Sankey et al. (2008) observed that the combination
of local spectral data with global data leads to better
predictions for sand and organic carbon than the use
of global data or local data alone. In this context, the
importance of local data and the need for data variability
become evident for the generation of better predictive
models.

The quality of predictions varied among Local SLs
(Table 5). Excellent predictions for clay and sand were
found in the model for the local SL of Porto Velho-AP,
and for sand in the model of the local SL of Luis Antonio-
SP. Good predictions were obtained for OM and organic
carbon in the model for the local SL of Porto Velho-AP;
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Statistical parameter¹
Sand Silt Clay O.M. O.C. P K Ca Mg Al H + Al SB CEC V

pH CaCl2

m

----------- g kg-1 ----------- ------- mg kg-1 -------- ------------------------ mmolc kg-1 ------------------------- % %

Spectral Library of  Porto Velho - AP

R2 0.77 0.21 0.77 0.62 0.62 0.13 0.55 0.31 0.1 0.58 0.57 0.29 0.56 0.36 x 0.37

RMSE 72.8 14.33 73.06 4.29 2.49 0.87 0.41 1.06 0.5 2.34 7.79 1.65 8.13 6.04 x 16.98

SDE 69.53 x 75.98 4.27 2.48 0.87 0.41 1.07 0.49 2.33 7.78 1.66 8.12 6.05 x 16.92

ME 22.15 x -20.07 -0.48 -0.28 0.01 -0.02 0.03 0.05 -0.23 -0.73 -0.08 -0.65 0.25 x -1.89

RPD 2.09 1.13 2.08 1.63 1.64 1.08 1.49 1.21 1.04 1.54 1.52 1.19 1.51 1.25 x 1.26

Spectral Library of Guararapes - SP

R2 0.68 0.21 0.71 0.66 0.66 0.37 0.49 0.56 0.43 0.31 0.54 0.57 0.65 0.55 0.62 0.26

RMSE 38.39 29.64 27.65 2.25 1.31 3.42 1.05 3.7 1.77 1.19 3.38 5.05 5.38 8.44 0.37 8.36

SDE 38.1 29.2 27.7 2.26 1.31 3.44 1.1 3.64 1.76 1.2 3.38 4.95 5.3 8.32 0.37 8.38

ME -5.26 5.5 1.4 -0.07 -0.04 0.18 -0.08 0.68 0.21 -0.02 -0.32 1.05 0.95 1.53 -0.06 -0.22

RPD 1.77 1.11 1.84 1.72 1.72 1.26 1.41 1.51 1.32 1.21 1.48 1.53 1.73 1.49 1.65 1.17

Spectral Library of Goianésia - GO

R2 0.45 0.5 0.55 0.61 0.61 0.19 0.29 0.53 0.32 0.27 0.27 0.51 0.69 0.42 x 0.34

RMSE 66.5 38.16 75.63 6.06 3.52 8.54 3.2 11.25 5.17 1.16 11.66 16.83 15.85 16.74 x 8.74

SDE 66.5 38.3 75.7 5.96 3.5 8.43 3.19 11.15 5.19 1.16 11.55 15.18 16.76 x 8.76

ME -5.1 0 5.4 1.16 0.7 1.53 0.36 1.76 0.05 0.04 1.84 4.7 0.92 x -0.12

RPD 1.12 1.35 1.32 1.62 1.64 1.12 1.06 1.46 1.21 1.00 1.18 1.31 1.80 1.31 x 1.04

Spectral Library of Luis Antonio - SP

R2 0.77 0.71 0.74 0.54 0.54 0.28 0.23 0.45 0.34 0.22 0.36 0.42 0.49 0.26 0.44 0.26

RMSE 127.08 30.53 113.22 5.68 3.3 5.79 0.81 7.82 2.14 2.02 8.98 10.76 15.56 14.3 0.37 18.6

SDE 115.6 29.39 103 5.23 3.04 5.81 0.81 7.75 2.15 2.01 8.97 10.71 15.45 14.28 0.37 18.5

ME 53.6 -8.56 -47.6 -2.23 -1.3 0.01 0.13 -1.23 -0.07 0.26 -0.77 -1.28 -2.15 -1.33 0.01 2.29

RPD 2.07 1.85 1.96 1.49 1.48 1.18 1.15 1.36 1.23 1.13 1.26 1.32 1.41 1.17 1.35 1.16

Table 5 - Results of model validation for estimating attributes generated from Local Spectral Libraries

¹R²: coefficient of determination; RMSE: root mean square error; SDE: standard deviation of the residuals; ME: mean error; RPD: ratio of prediction
deviation. *O.M.: organic matter; SB: sum of bases; CEC: cation exchange capacity; V: base saturation; m: aluminum saturation; x: there is no data

for sand, clay, OM, organic carbon, CEC, CaCl2 and pH
in the model for the local SL of Guararapes-SP; for OM,
organic carbon, and CEC in the model for the local SL of
Goianesia-GO; and for silt and clay in the model for the
local SL of Luis Antonio-SP.

Stevens et al. (2013) working with a continental
scale (Europe), showed relatively large error (more than 4
g kg-¹), sugesting that organic carbon prediction on large
scale spectral library are not accurate. The comparison
among the results of the local SLs (Table 5) demonstrated
that, overall, SLs with greater soil variability lead to
a better predictions for physical attributes and poorer
predictions for chemical attributes. According to Zornoza
et al. (2008), soil properties such as CEC and exchangeable
bases are primarily controlled by the types of clay minerals
and the types and content of organic matter, which possess
functional groups of varying adsorption capacities for
different cations and water.

Therefore, when working with data from various
soil classes with different parent materials, there is likely to

be variation of the types of clay minerals that contribute to
CEC. Each type of clay mineral (oxides, clay minerals 1:1,
and clay minerals 2:1) is associated with specific spectral
bands; thus, the CEC may be correlated with different
spectral bands in different soils. Therefore, if an attribute
is correlated with a particular band in a particular soil, with
another band in another soil, and so forth, this will lead to
confusion in the development of predictive models. This
fact partially explains why, in some areas of lower soil
variability, the predictive models for chemical attributes
are better: for the majority of samples in these areas, the
predicted attributes are related to the same bands.

Another important factor in the development of
predictive models for chemical attributes is the range
of variation. This can be observed when comparing
the results obtained for Regional SL 01 to those of the
Guararapes SL. Both exhibit low soil class variability and
similar parent materials, as shown in Figure 2. However,
SLs with greater ranges of data variation produced better
predictive models (Table 6). This information is consistent
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Table 6 - The influence of the range of data variation in quality of predictive models

Statistical parameter
Sand g kg-1 C g kg-1 Ca Al SB CEC V

------------------------------------- mmolc kg-1 --------------------------------------- %
Regional Spectral Library 01

R² 0.64 0.61 0.63 0.61 0.66 0.64 0.61
RMSE 42.41 1.73 4.54 2.40 6.16 7.15 13.49
RPD 1.66 1.62 0.27 1.60 1.72 1.67 1.60

Spectral Library of Guararapes-SP
R² 0.68 0.66 0.56 0.31 0.57 0.65 0.55
RMSE 38.39 1.31 3.7 1.19 5.05 5.38 8.44
RPD 1.77 1.72 1.51 1.21 1.53 1.73 1.49

Regional Spectral Library 01
Mean 746.5 6.0 1.5 3.37 16.35 34.46 46.0
SD 70.5 2.8 1.24 3.83 10.60 11.94 21.6
min 540.0 0.5 0.1 0.0 2.1 7.50 5.0
max 920.0 15.1 6.7 16.0 53.3 75.90 98.0

Spectral Library of Guararapes-SP
Mean 744.0 4.65 12.9 1.21 19.2 37.4 50.6
SD 68.0 2.25 5.58 1.44 7.75 9.3 12.6
min 540.0 1.74 2.0 0.0 3.0 20.0 14.0
max 890.0 11.63 33.0 6.0 47.0 72.0 80.0
Similar results No similar results Smaller range of variation Higher range of variation

with the conclusions of Dunn et al. (2002), who found
that a low range of variation in a particular attribute may
lead to poor predictive models. For example, Viscarra-
Rossel et al. (2008) obtained excellent predictive models
for Ca2+ from a database whose values ranged from 1.9 to
313.5 mmolc kg-1.

Sankey et al. (2008) have presented revised
results in which for the prediction of clay and O.C.
tends to improve from global SLs to regional SLs and
from regional SLs to local SLs. However, the size of the
SL is perhaps not the best form of comparison among
soil spectral libraries. Rather, the variation in the data
in a spectral library may be better for comparison.
For example, there are relatively small areas in Brazil
with high soil variability and large areas with low soil
variability.

No general rule was found by Gogé et al. (2013)
for use local or global models, for CaCO3, for example,
the best strategy was use global library, without local
samples and for clay content, the prediction model was
better using 50 local samples (representing 35 % of total
local samples).

The discussion of what is the best to predict
soil attributes, if local or general libraries raised with

Henderson et al. (1992). They already stated this type
of difficulty. Afterwards Demattê and Garcia (1999)
observed that local models where significantly better than
general ones, working in Paraná State, Brazil.

CONCLUSIONS

1. Greater or lesser variability in soil classes formed from
different parent materials influences the efficiency
of the predictive models generated from a spectral
library;

2. Variability of soil and parent materials within a
spectral library impairs the accuracy of predictive
models for chemical attributes and improves
predictive models for physical attributes;

3. A spectral library aimed at predicting chemical
attributes should have low soil variability, and the data
used to calibrate the models should have a large range of
variation of the modeled attribute;

4. The results indicate the sequence of R² for Global
(0.85), Regional (0.67 to 0.77) and Local (0.55 to 0.77).
Despite  this,  in  all  cases,  the  fact  is  that  models  still
indicate good accuracy for soil quantification;
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5. There is still necessary research on the subject to
reach the best database.
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