
Revista Ciência Agronômica, v. 50, n. 1, p. 131-139, jan-mar, 2019
Centro de Ciências Agrárias - Universidade Federal do Ceará, Fortaleza, CE
www.ccarevista.ufc.br ISSN 1806-6690

Scientific Article

Metabolisable energy prediction in energy feedstuffs and evaluation of
the stepwise validation procedure using bootstrapping1

Predição da energia metabolizável de ingredientes energéticos e avaliação da
validação do stepwise utilizando bootstrap

Newton Tavares Escocard de Oliveira2*, Paulo Cesar Pozza3, Leandro Dalcin Castilha3, Tiago Junior Pasquetti4,
and Carolina Natali Langer2

ABSTRACT - The use of predicted values of apparent metabolisable energy (AME), obtained from regression equations, can be
useful for both research institutions and nutrition industries. However, there is a need to validate independent samples to ensure
that the predicted equation for AME is reliable. In this study, data was collected in order to estimate the prediction equations
of corn, sorghum and wheat bran for pig feed, based on the chemical composition, in addition to evaluating the validity of the
stepwise selection procedure regressive method of non-parametric bootstrap resampling. Data from metabolism trials in pigs
and the chemical composition of feedstuffs was collected from both Brazilian and international literature, expressed as dry
matter. After the residue analysis, five models of multiple linear regression were adjusted to randomly generate 1000 bootstrap
samples of equal size from the database via meta-analysis. The five estimated models were adjusted for all bootstrapped
samples using the stepwise method. The highest percentage significance for regressor (PSR) value was observed for digestible
energy (100%) in the AME1 model, and gross energy (95.7%) in the AME2 model, indicating high correlation of the regressive
model with AME. The regressors selected for AME4 and AME5 resulted in a PSR of greater than 50%, and were validated for
estimating the AME of pig feed. However, the percentage of joint occurrence of regressor models showed low reliability, with
values between 2.6% (AME2) and 23.4% (AME4), suggesting that the stepwise procedure was invalid.
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RESUMO - A utilização de valores preditos de energia metabolizável aparente (EMA), obtidos a partir de equações de
regressão, pode ser útil para instituições de pesquisa e indústrias de nutrição. Contudo, há a necessidade de validação em
amostras independentes para assegurar que a equação de predição da EMA seja confiável. Neste estudo, foram coletados dados
para estimar equações de predição da EMA do milho, sorgo e farelo de trigo para suínos em função de composição química,
além de avaliar a validade do procedimento stepwise de seleção de regressoras pelo método de reamostragem bootstrap não
paramétrico. Dados de ensaios de metabolismo com suínos e de composição química dos alimentos foram coletados na literatura
científica nacional e internacional e expressos na matéria seca. Após a análise de resíduos, foram ajustados cinco modelos de
regressão linear múltipla e geradas aleatoriamente 1000 amostras bootstrap de mesmo tamanho a partir do banco de dados
formado via meta-análise. Em todas as amostras bootstrap foram ajustados os cinco modelos estimados, utilizando-se do
stepwise. Os maiores percentuais de significância por regressora (PSR) ocorreram para a energia digestível (100%) no modelo
EMA1, e para a energia bruta (95,7%) no modelo EMA2, indicando alta correlação das regressoras com a EMA. As regressoras
selecionadas nos EMA4 e EMA5 apresentaram PSR maior que 50% e são válidas para estimar a EMA de alimentos energéticos
para suínos. Entretanto, os percentuais de ocorrência conjunta de regressoras dos modelos apresentaram baixa confiabilidade,
com valores entre 2,6% (EMA2) e 23,4% (EMA4), invalidando o procedimento stepwise.
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DOI: 10.5935/1806-6690.20190016
*Author for correspondence
 Received for publication 02/09/2016; approved on 05/02/2018
1Parte da Dissertação de Mestrado em Zootecnia do último autor, apresentada na Universidade Estadual do Oeste do Paraná/UNIOESTE
2Curso de Zootecnia, Centro de Ciências Agrárias, Universidade Estadual do Oeste do Paraná/UNIOESTE, Rua, Pernambuco 1777, Marechal
Cândido Rondon-PR, Brasil, 85.960-000, newtonescocard@hotmail.com (ORCID ID 0000-0003-3347-9399), carolina_langer@hotmail.com

3Departamento de Zootecnia, Universidade Estadual de Maringá/UEM, Av. Colombo 5790, Jardim Universitário, Maringá-PR, Brasil, 87.020-900,
pcpozza@uem.br, leandrocastilha@hotmail.com

4Curso de Zootecnia, Universidade Estadual do Mato Grosso do Sul/UEMS, Unidade de Aquidauana, Rodovia Graziela Maciel Barroso, Zona Rural,
Aquidauana-MS, Brasil, 79.200-000, pasquettizoo@yahoo.com.br



Rev. Ciênc. Agron., v. 50, n. 1, p. 131-139, jan-mar, 2019132

N. T. E. Oliveira et al.

INTRODUCTION

Knowledge of the apparent metabolisable energy
(AME) of feedstuffs is essential for formulating balanced
rations (SAKOMURA; ROSTAGNO, 2016), as nutrient
requirements are expressed in terms of energy levels
of feed, which affect feed intake and pig performance
(ROSTAGNO et al., 2011).

The direct determination of AME values for pig
feed is time consuming, labour intensive and costly, as it
involves performing metabolic tests. A quick alternative,
which is also practical and economical, is the use of
regression equations to predict AME values. These
equations use the chemical composition of feedstuffs,
which are routinely obtained in laboratories (PELIZZERI
et al., 2013; POZZA et al., 2008), and can be used as
a tool to adjust AME values for variability in chemical
composition data. Furthermore, the values obtained are
more suitable than the use of values of feed composition
tables (SAKOMURA; ROSTAGNO, 2016).

However, the presence of outliers, due to
experimental errors or errors in the determination of
chemical composition of feed, combined with model
adjustment strategies, can change the parameter estimates
of the equations from the ordinary least squares method,
resulting in variation of the predicted AME values for
pig feed. This can compromise the validity of the model,
related to the stability and reasonableness of the regression
coefficients, and therefore, the usefulness of the model
for giving accurate predictions for new data samples
(CASTILHO et al., 2015; OREDEIN; OLATAYO;
LOYINMI, 2011).

The strategy for adjusting the regression models
of AME is based on the chemical composition of
feed energy. These results are obtained for different
experimental conditions, allowing a greater range of
AME values (LOVATTO et al., 2007; MARIANO et al.,
2012; NASCIMENTO et al., 2009, 2011), and therefore,
enabling determination of the most representative
adjustments to fit regression models. These models can
be tested using sample data taken from different studies
in the literature.

Some researchers have adjusted the equations
used for predicting the AME of pig feed for the chemical
composition (CASTILHA et al., 2011; MORGAN et
al., 1987; NOBLET; PEREZ, 1993; PELIZZERI et al.,
2013). A great variety of regressor sets for predictive
AME models have been reported in the literature. Some
studies have evaluated the validity of regressor selection
procedures on independent data samples in order to verify
the predictive ability of the models (CASTILHO et al.,
2015; OREDEIN; OLATAYO; LOYINMI, 2011).

The non-parametric bootstrap method can be
used to simulate real situations, in addition to validating
the regressor selection procedures (SCALON; FREIRE;
CUNHA, 1998). In this method, several samples are
randomly taken from a representative sample of the
original population, with replacement of each sample,
allowing the frequency of significance of the regressor
and the joint frequency of occurrence of the regressor to
be obtained relative to the total sample.

The objective of the present study was to adjust the
prediction equations for the AME of corn, sorghum and
wheat bran from data on the chemical composition and
energy for pigs, available in the Brazilian and international
scientific literature, in addition to evaluating the validity
of the stepwise selection procedure of regressive models
that are adjustable using the non-parametric bootstrap
method.

MATERIALS AND METHODS

Data collected from metabolism tests conducted on
pigs weighing between 7.0 and 75.0 kg was obtained in
the 20 Brazilian and 22 international scientific literatures
published in the period from 1965 to 2011, aimed at
forming a database containing the chemical composition
and energy of corn, sorghum and wheat bran.

After the literature search and tabulation of the
data, detailed screening was performed to exclude any
conflicting data that could result in biased estimates
of parameters. After the exclusion of incomplete and
conflicting data, 142 records remained, of which 69
were Brazilian and 73 international studies. Within the
Brazilian data, 46 records detailed the chemical and
energy composition of corn, 11 for sorghum and 12 for
wheat bran. In the international literature there were 41,
17 and 15 studies that provided data for corn, sorghum
and wheat bran, respectively.

All chemical composition and energy values
recorded for the natural matter were converted to dry
matter, in order to standardise and subsequently predict
the AME values.

The influential observations were initially
assessed to determine whether they met the assumptions
of normality, homogeneity and linearity of residuals
using multiple linear regression models, after which the
standardised residual student (RStudent) analysis was
performed. The criteria for the identification of outliers
was based on the normal distribution curve. RStudent
values higher than three standard deviations from the
mean were considered to be influential, and consequently
removed from the database.
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The prediction of AME values, based on the
reported chemical and energy composition of feedstuffs,
was performed by the adjustment of multiple linear
regression models (COELHO-BARROS et al., 2008). The
methods used were the ordinary least squares and stepwise
procedure regressor selection methods, including dummy
variables (binary values) for the “source” (Brazilian or
international research) and “feedstuffs” (corn, sorghum or
wheat bran) regressors.

The use of the “source” and “feedstuffs” indicator
variables allowed for the models to be classified according
to the selected dummy variables. For the “source” dummy
(SD) variables, the coding for the Brazilian studies
occurred when the variable received a zero (SD = 0),
while the coding SD = 1 identified international studies.
For the “feedstuffs” dummy (FD) variables, corn was
encoded as two classes of variables (FD1 and FD2), which
assumed that the value was zero. The effect of sorghum
was expressed when FD1 = 0 and FD2 = 1, and the effect of
wheat bran was expressed when FD1 = 1 and FD2 = 0.

A total of five models of multiple linear regression
were fitted to the AME data. The complete model (AME1)
was represented by the additive effects of the intercept, the
simple effects of the apparent digestible energy (ADE),
gross energy (GE), crude fibre (CF), ether extract (EE),
crude protein (CP), ash, source dummy (SD), feedstuffs
dummy 1 (FD1) and feedstuffs dummy 2 (FD2), in addition
to interactions of the dummies with the regressor chemical
and energy composition.

The second fitted model (AME2) represented
the complete model without the inclusion of ADE and
interactions between ADE and classification variables.
The third model (AME3) was fitted for the complete model
without the inclusion of ADE or GE, or their interactions
with the dummy variables. The fourth model (AME4) was
fitted from the complete model after removing ADE, GE
and CF, and their interactions with dummies. The fifth
and final model (AME5) corresponded to the complete
model without ADE, GE, CF and EE, and without their
interactions with the indicator variables.

The significance of each parameter was assessed
by a partial t-test to determine whether the null hypothesis
(bI = 0) and the occurrence of multicollinearity between
the regressors was verified by the observation of inflation
factor variance associated with each regressor. The
goodness-of-fit of the regression models to the AME
data was evaluated by determining the coefficient of
determination (R2). The precision of the estimates was
assessed from their respective standard deviations.

Using the original sample obtained from the
literature, we randomly generated 1000 bootstrap samples
of the same size, obtained by resampling and replacement

of each sample (COELHO-BARROS et al., 2008), in order
to evaluate the stepwise procedure regressor selection
based on their respective selection frequencies.

For all bootstrapped samples, the five models
described were fitted, using the stepwise procedure and
the ordinary least squares method for estimating the
parameters. The percentage of significance for regressor
(PSR) and the percentage of joint occurrence of regressor
(PJOR) models were verified for the 1000 bootstrap
samples.

The bootstrap estimates of jth regression coefficient
(bj*) were arranged in ascending order, after which the
confidence intervals of the parameters were estimated
by the percentile bootstrap method. In this method, 500
different bootstrap samples of the same size, obtained
by resampling and replacement of each sample, were
used to assess the significance of the bias (bj -  bj*) of
each coefficient and the significance of the regression
coefficients.

A significance level of 0.05 was used for all
statistical tests. All statistical analyses were performed
using R software (R CORE TEAM, 2013).

RESULTS AND DISCUSSION

In order to suggest high reliability of the estimates,
the coefficients of determination (R2) obtained needed to
be high and show that the estimated equations explained
more than 90% of the variation in the AME data as a
function of the chemical composition of corn, sorghum
and wheat bran, as obtained from the Brazilian and
international literature data (Table 1).

Among the estimation equations, it was observed a
higher R2 value when the ADE was included as a predictor
variable in the model (Table 1). This suggests that the
ADE explained most of the variation in AME, due to its
high correlation with the response variable (rxy = 0.9969)
compared to the other regressors. Noblet and Perez
(1993) also observed higher R2 values from equations that
included the ADE as a predictor.

Despite having the highest R2 value (99.67%)
compared to the other equations (Table 1), the AME1
model is not the most suitable in practice. This is because
faeces collection is required to determine the ADE in
metabolic experiments, making its use costly with little
applicability (PELIZZERI et al., 2013). However, the use
of prediction models that include ADE as the regressor
allow the energy loss in the faeces to be estimated, and
therefore, do not require the collection and measurement
of total excreted urine.
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Morgan et al. (1987) estimated equations for
predicting general feedstuff AME using the same
regressors, however, the goodness-of-fit of the models to
the data was much lower than that observed in our study
(0.39 ≤ R2 ≤ 0.43). In addition to the R2 value, it is also
essential to determine the significant predictors of models,
because equations that contain up to four chemical
composition variables are easier, require less time and are
more cost effective (POZZA et al., 2008).

After replacement of the binary values in the AME1,
AME2, AME3, AME4 and AME5 models, the daughter
equations were derived. Except for the AME5 model, the
results showed that the corn and sorghum data can be
combined into a single database, because the estimates for
corn and sorghum, provided by the AME1, AME2, AME3
and AME4 models, were the same (Table 2).

Unlike corn and sorghum, the AME1, AME4 and
AME5 estimation models for wheat bran showed that
CP was an important independent variable for reducing

the estimated AME (Table 2). This can be observed from
the average CP of corn, sorghum and wheat bran reported
in the literature, where the protein content of wheat bran
(CP = 15.62%) is much higher than for corn (CP = 7.88%)
and sorghum (CP = 8.97%) (ROSTAGNO et al., 2011). The
significant interaction between FD1 and CP in the AME1,
AME4 and AME5 parent models (Table 1) suggests that the
effect of CP was important in order to distinguish wheat bran
from corn and sorghum.

In models that simultaneously showed the
regressive CP and ADE, it was observed that CP reduced
the estimated AME of the corn (CASTILLA et al., 2011;
LANGER et al., 2013) and diets (NOBLET; PEREZ, 1993)
for pigs. However, when ADE was not included in the
models (NOBLET; PEREZ, 1993), the CP was positively
correlated with AME. Morgan et al. (1987) observed a
positive influence of CP in the estimation of AME for
food when ADE was not included. When the ADE was
included in the model, the CP estimates was negative as it
needed to be adjusted for urinary nitrogen loss.

Model1 Regressor Parameter estimate Standard deviation R2

AME1 Intercept2 2.55 62.00

0.9967
(n = 96) ADE 0.969 0.01

SD 36.78 5.53
FD1*CP -4.22 0.87

AME2 Intercept 2306.26 396.51

0.9239
(n = 106) GE 0.39 0.09

CF -123.95 4.50
EE 33.05 13.87

SD*ash -49.63 8.29
AME3 Intercept 3675.39 56.52

0.9106
(n = 117) EE 50.02 14.50

SD*CF -25.62 5.20
FD1*CF -91.23 3.28

AME4 Intercept 3824.44 60.05

0.9023
(n = 129) ash -105.29 18.84

EE 45.01 13.10
FD1*CP -37.26 3.68

AME5 Intercept 3982.99 28.40

0.9247
(n = 124) ash -79.97 17.17

FD1*CP -44.78 3.52
FD2*ash -43.42 16.27

1ADE - Apparent digestible energy; CP - Crude protein; GE - Gross energy; CF - Crude fibre; EE - Ether extract; SD - Source dummy; FD1 - Feedstuff
dummy 1; FD2 - Feedstuff dummy 2; 2Probability = 0,9673

Table 1- Multiple linear regression models of apparent metabolisable energy (AME), expressed in kcal kg-1, based on the chemical and
energy composition of corn, sorghum and wheat bran in pig feed, estimated from Brazilian and international data
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Table  2  - Regression models of apparent metabolisable energy (AME), expressed in kcal kg-1, based on the chemical and energy
composition of corn, sorghum and wheat bran in pig feed, expressed as dry matter

1ADE - Apparent digestible energy; CP - Crude protein; GE - Gross energy; CF - Crude fibre; EE - Ether extract; B - Brazilian data; I - International data

Feedstuff Data source Regression model1

Corn, sorghum B AME1A = 2.547 + 0.969ADE
Corn, sorghum I AME1B = 39.33 + 0.969ADE
Wheat bran B AME1C = 2.547 + 0.969ADE - 4.217CP
Wheat bran I AME1D = 39.33 + 0.969ADE - 4.217CP
Corn, sorghum, wheat bran B AME2A = 2306.26 + 0.39GE - 123.95CF + 33.05EE
Corn, sorghum, wheat bran I AME2B = 2306.26 + 0.39GE - 123.95CF + 33.05EE - 49.63ash
Corn, sorghum B AME3A = 3675.39 + 50.02EE
Corn, sorghum I AME3B = 3675.39 + 50.02EE - 25.62CF
Wheat bran B AME3C = 3675.39 + 50.02EE - 91.23CF
Wheat bran I AME3D = 3675.39 + 50.02EE - 116.85CF
Corn, sorghum B, I AME4A = 3824.44 - 105.29ash + 45.01EE
Wheat bran B, I AME4B = 3824.44 - 105.29ash + 45.01EE - 37.26CP
Corn B, I AME5A = 3982.99 - 79.97ash
Sorghum B, I AME5B = 3982.99 - 123.39ash
Wheat bran B, I AME5C = 3982.99 - 79.97ash - 44.78CP

The estimated values of AME based on the
international data were higher than that of the Brazilian
data, regardless of the feedstuff source, as the estimates
of the intercept were higher (Table 2). Differences in soil
fertility, climate, management and genetics, among others,
can affect the nutritional quality of feedstuff, and therefore,
the use of nutrients by the pigs (NATIONAL RESEARCH
COUNCIL, 2012).

The prediction of AME based on the chemical
composition and dummies, without the inclusion of ADE
(AME2 model), showed significance for the GE, CF, EE
and SD*ash regressors (Table 1). Replacement of the
binary values in the AME2 modelgenerated two equations,
separated by feedstuff source, for the corn, sorghum and
wheat bran from the Brazilian or international data (Table
2). These two equations showed no numerical difference
in the regression coefficients associated with the GE,
CF and EE for corn, sorghum and wheat bran. However,
when the AME was estimated using international data,
there was a negative effect of ash (Table 2). This indicated
that the AME estimate of international foods would be
less than the AME of Brazilian foods, when ADE is not
included in the model.

The  signs  of  these  predictors  were  similar  to
the signs of regressors observed by Noblet and Perez
(1993) in models including GE. These authors reported
a positive correlation between GE and AME, and
negative correlations for ash and fibre with AME, with a

R2 = 0.85 obtained by the models. The use of the AME2
model can be a viable alternative as there is no need
to conduct experiments on animals. However, the GE
analysis requires the use of a bomb calorimeter.

Replacement of binary values in the AME3 model
yielded two equations for corn and sorghum and two
daughter equations for wheat bran, which were dependent
on the feedstuff source data reported in the literature
(Table 2). Again, we were able to combine the corn and
sorghum data in a single database, as there were separate
equations for the Brazilian and international data. This can
be observed in Table 1, where the parent equation included
the interaction between the SD and CF (SD*CF).

The independent variable for chemical composition
for differentiating the origin of corn and sorghum was CF
(Table 2). The CF had a negative effect on AME for the
international data, indicating that the AME estimate for
corn and sorghum from international data was less than the
estimated value from the Brazilian data. For wheat bran,
the AME estimate for the international data was lower
than that of the Brazilian data, due to the lower regression
coefficient associated with the CF for international wheat
bran data.

Similarly, CF was the component that differentiated
wheat bran (WB) from the corn and sorghum cultivars,
as the AME estimates obtained for WB would be lower
than corn and sorghum cultivars, regardless of the source
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(Brazilian or international) (Table 2). The differentiation
of WB from the corn and sorghum cultivars by including
the CF regressor may be due to differences in the amount
of CF in these food sources. The average CF (%), as
obtained from meta-analysis data, was 10.13% for WB
and 2.52% for corn and sorghum. Noblet and Perez (1993)
also reported a negative effect of fibre and a positive effect
of ether extract on the prediction equations of AME diets
for pigs.

For the AME4 model, there was a distinction
between WB and corn and sorghum, characterised by the
interaction between FD1 and CP in the parent equation
(Table 1). Replacing the binary values resulted in two
independent origin equations, one for corn and sorghum
and another for WB (Table 2). This suggests that model
adjustment with the inclusion of ash, EE and CP, without
CF, was not sufficient to discriminate between the feedstuffs
in the literature, due to the similarities in digestibility and
metabolism of ash, EE and CP, or from difference in CF
content between different ingredients.

Similar to that observed for the AME1 model, CP
was the nutrient that differentiated the corn and sorghum
cultivars from WB in the AME4 model, showing a
negative effect on the AME of WB. This is possibly due
to differences in the CP of WB compared to corn and
sorghum cultivars. If the protein presents low quality, or if
it is present in excess in the feed, there will be an increase
in the nitrogen load of the animal, resulting in increased
energy expenditure required for nitrogen excretion,
therefore, reducing the amount of energy available to the
animal (POZZA et al., 2008).

There were no differences between the data
sources for the corn and sorghum cultivars and WB
with the adjusted AME4 model (Table 2). Therefore, a
single equation can be used for both the Brazilian and
international data. For both it was observed the negative
effect of ash together with the positive effect of EE on
the AME. This is due to the saponification of ash with
fats, resulting in reduced ADE and AME in the feed
(POZZA et al., 2008). These results are consistent with
those obtained by Morgan et al. (1987), which showed
the negative effect of ash on the AME of pig feed due to
the diluent action of ash on the GE, reducing the organic
matter content of feed.

For the AME5 model, three independent equations
of origin for the corn, sorghum and wheat bran (WB)
were produced. Models adjusted for the corn and sorghum
cultivars showed that ash was a significant independent
variable. The estimated values of AME for the sorghum
cultivars were lower than the AME values for the corn
cultivars, due to a lower estimate of the regression
coefficient. The CP exerted a negative effect on the

prediction of AME for WB, and was the regressor that
differentiated the WB equation from the AME equations
predicted for corn and sorghum (Table 2).

The AME3, AME4 and AME5 models presented
few regressors for chemical composition (Tables 1 and
2). This is more applicable as the laboratory tests required
are routinely performed, and there is no need to use bomb
calorimeter or conduct experiments on animals, thereby
reducing the cost of research and the execution time
(PELIZZERI et al., 2013; POZZA et al., 2008).

The results obtained using the bootstrap resampling
method (Table 3) showed that, after the model had been
adjusted to the data for 1000 bootstrap samples, the ADE
showed 100% PSR in the AME1 model. This means that
ADE was selected (p<0.05) in all 1000 bootstrap samples
during the final stage of the stepwise procedure for selecting
the regressor. Similarly, GE was highly significant in the
1000 bootstrap samples using the AME2 model, with
95.7% selection. The high correlation between ADE and
GE with AME highlights the importance of this regressor
in its ability to explain the AME of pig feed.

In general, the values generated by the PSR models
were deemed to be satisfactory (Table 3), as the selection
frequency was above 50%, with the exception of the
FD1*CP interaction in the AME1 model (PSR = 26.8%),
SD*ash and EE in the AME2 model (PSR of 28.3 and
46.4%, respectively) and SD*CF in the AME3 model
(PSR = 45.3%).

In the AME4 and AME5 models,  the  PSR  of  all
regressors were greater than 50.0% (Table 3). Few reports
are available in the animal science regarding the use of
simulation procedures for the validation of covariate
regression models. However, Scalon, Freire and Cunha
(1998) recommended a minimum of 50% for the regressor
selection frequency index in bootstrap samples to validate
the predictive ability of multiple linear regression models
with covariates. Their study was related to the health
of newborns, and the parameters were estimated by the
ordinary least squares method that appeared in the original
model, selected by the stepwise procedure.

These results indicate that regressors can be used
in the AME4 and AME5 models for the prediction of AME
models that did not include ADE and GE, due to the high
correlation with AME, suggesting that experiments are not
required in order to predict the AME of pig feed.

The PJOR values observed in the 1000 bootstrap
samples were low, ranging from 2.6% (AME2) to 23.4%
(AME4) (Table 3), indicating low reliability of the predicted
models for estimating the AME of corn, sorghum and
wheat bran in pig feed. Reliability increases with higher
PJOR values, and therefore, a higher chance of regressive
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Table 3 - Percentage of significance for regressor (PSR) and joint occurrence of regressor (PJOR) in 1000 bootstrap samples, including
the average estimates, standard deviation and percentile confidence interval bootstrap (PCIB) in 500 different bootstrap samples

1AME - Apparent metabolisable energy; ADE - Apparent digestible energy; CP - Crude protein; GE - Gross energy; CF - Crude fibre; EE - Ether extract;
SD - Source dummy; FD1 - Feedstuff dummy 1; FD2 - Feedstuff dummy 2

set of selection in different databases, but originating from
the main database obtained from the scientific literature.

Some criticisms have been made regarding the use
of the stepwise procedure for regressor selection, due to
bias of the coefficients and predictions, in addition to the
instability of the model. Small changes in the data can
have large impacts on the set of independent variables
included in the model, the parameter estimates and its
predictions (HESTERBERG et al., 2008). Construction
of the bootstrap sample requires the selection of random
samples, which are the same size as the original sample,
with replacement of each sample. Therefore, in a particular
bootstrap sample, some data may be used more than once
and others may be omitted (MONTGOMERY; PECK;
VINNING, 2006). Changes to bootstrap sample may have
affected the PJOR models in this study.

In setting the AME1 model using the stepwise
procedure, the intercept, ADE, SD and FD1*CP appeared
together 94 times in the 1000 bootstrap samples (Table 3).
However, the number of possible models are set to include

up to five significant regressors, expressed as the sum of
binominal coefficients for 27 regressors (n) and the number
of successes (p) of between one and five, resulting in 101,583
possibilities. This indicates that although the reliability is
low, the criteria for evaluating PJOR is subjective, given the
high number of model adjustment possibilities. It is worth
mentioning that there are no studies in the literature that
have evaluated models based on the PJOR.

Similarly, for the AME2 model adjusted by the
stepwise procedure, the intercept, GE, CF, EE and SD*ash
interaction appeared together only 26 times in a total of
1000 bootstrap samples (Table 3). However, there were
44,551 potentially significant models in the final step
of the stepwise process. Compared to the AME1 model,
the AME2 model presented lower PJOR and a decreased
number of possible model adjustments, indicating worse
reliability.

For the AME3 model, the PJOR was observed
64 out of 1000 times, from a total of 16,663 possible
significant models, indicating lower reliability of this

Model Regressor1 PSR (%) PJOR (%) Average estimates Standard deviation PCIB(95%)

AME1

Intercept 100.0 9.4 33.46 78.38 [-102.50; 190.41]
ADE 100.0 0.959 0.020 [0.918; 0.997]
SD 63.6 45.33 6.00 [33.41; 57.01]

FD1*CP 26.8 -4.666 1.095 [-6.92; -2.69]

AME2

Intercept 100.0 2.6 2251.99 383.46 [1466.05; 3057.57]
GE 95.7 0.403 0.089 [0.224; 0.585]
CF 64.6 124.71 5.58 [-135.43; -113.97]
EE 46.4 32.77 12.73 [8.04; 57.94]

SD*ash 28.3 -49.11 8.38 [-64.39; -32.71]

AME3

Intercept 100.0 6.4 3710.45 57.04 [3598.45; 3838.16]
EE 63.0 37.53 13.27 [9.63; 63.86]

SD*CF 45.3 -21.91 4.94 [-31.29; -12.25]
FD1*CF 51.9 -91.44 4.16 [-99.44; -82.86]

AME4

Intercept 100.0 23.4 3828.83 64.46 [3694.70; 3946.86]
ash 85.9 -106.58 27.37 [-163.54; -59.43]
EE 70.7 44.64 12.54 [21.52; 70.02]

FD1*CP 66.7 -37.08 5.25 [-46.88; -25.67]

AME5

Intercept 100.0 16.5 3983.70 38.65 [3909.31; 4058.70]
ash 83.0 -80.77 26.80 [-129.79; -30.21]

FD1*CP 66.9 -44.81 4.97 [-54.68; -35.97]
FD2*ash 51.8 -44.16 17.84 [-81.73; -10.90]
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model compared to AME1. The AME4 model had an index
of 234 occurrences in 1000 bootstrap samples (Table 3),
however, the number of possible models from a total of 15
regressors and up to five successes (significant regressors
at the end of the stepwise process) was 4,943 cases,
which is much less than the previous models. The greatest
PJOR can be expected for the AME4 model, based on the
occurrence probabilities of the models.

For the adjusted AME5 model, there were 165
joint occurrences of regressors out of a total of 1000
bootstrap samples (Table 3). The number of possibilities
for this adjusted model was 1023, the lowest of all the
models, which indicates that the reliability of AME5 is
lower than the AME4 model.

In the AME1 model, all parameters were significant
except for the intercept. In the AME2, AME3, AME4 and
AME5 models, all estimated parameters were found to be
significant, as none of the estimated confidence intervals
had a value of zero (Table 3). These results were similar
to those obtained using the ordinary least squares method
(Table 1), in which the multiple linear regression models
for AME was adjusted based on the chemical and energy
composition.

The parameters estimated using the ordinary least
squares (OLS) method were among the minimum and
maximum percent confidence interval bootstrap (PCIB)
at 95% probability (Tables 1 and 3), indicating the that
bias was not present in the estimates of the bootstrap
parameters, therefore, there was no need to use the
confidence intervals to correct for bias.

The similarity between the parameter estimates
and their standard deviations, obtained via the OLS and
bootstrapping methods (Tables 1 and 3), showed that
the residue analysis performed prior to the least squares
adjustment resulted in the removal of outliers. This
suggests that the chemical and energy composition data
obtained from the literature and used in this study was
adequate and consistent, as it met the assumptions of
normality and homogeneity of errors for regression model
adjustment.

CONCLUSIONS

1. Based on the percentage of significance of the
regressors, the regressive models AME4 = 3824.440 -
105.294ash + 45.008EE - 37.257FD1*CP and AME5 =
3982.994 - 79.970ash - 44.778FD1*CP - 43.416FD2*ash
are valid for estimating the AME of corn, sorghum and
wheat bran for use in pig diets;

2. For the five adjusted models, the stepwise procedure
was not validated based on the percentage of joint
occurrence of the regressors.
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