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ABSTRACT - In order to meet future food demands and ensure sustainability new technologies have been incorporated into
agriculture. Some researchers believe that we are living in the fourth agricultural revolution or Agriculture 4.0. Among the many
technologies involved in the Agriculture 4.0, it is necessary to highlight the importance of geostatistics in the implementation
of those technologies. Geostatistics is a class of statistics used to analyze and predict the values associated with spatial or
spatiotemporal phenomena, and it is very important to understand the spatial distribution of agricultural variables. Therefore,
the objective of this review is to show the potential of geostatistics in Agriculture 4.0. The article presents an exhaustive
literature review of geostatistics and its potential in agriculture, by showing a brief of geostatistical approaches, some practical
use of geostatistics in agriculture, and a description of multivariate geostatistics for multi-source data fusion using some case
studies. This review showed that geostatistics has been used for agricultural purposes and has been producing exciting results.
In addition, more advanced analysis such as multivariate geostatistics in fuse heterogeneous data can be easily adapted to any
experimental conditions and type of sensor data and/or sampling data to increase estimation accuracy.
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RESUMO - Para atender as demandas futuras de alimentos e garantir sustentabilidade, novas tecnologias foram incorporadas
à agricultura. Acredita-se que a quarta revolução agrícola ou Agricultura 4.0 esteja ocorrendo. Dentre as diversas tecnologias
envolvidas na Agricultura 4.0, é necessário destacar a importância da geoestatística na implementação dessas tecnologias.
A geoestatística é uma classe de estatística usada para analisar e predizer os valores associados à fenômenos espaciais ou
espaço-temporais, e é muito importante para entender a distribuição espacial das variáveis agrícolas. Portanto, o objetivo desta
revisão é mostrar o potencial da geoestatística na Agricultura 4.0. O artigo apresenta uma revisão exaustiva da literatura sobre
geoestatística e seu potencial na agricultura, mostrando um resumo das abordagens geoestatísticas, alguns usos práticos da
geoestatística na agricultura e uma descrição da geoestatística multivariada para fusão de dados de múltiplas fontes usando
alguns estudos de caso. Esta revisão mostrou que a geoestatística tem sido usada para fi ns agrícolas e produzido resultados
interessantes. Além disso, análises mais avançadas, como geoestatística multivariada na fusão de dados heterogêneos, podem
ser facilmente adaptadas a quaisquer condições experimentais e tipo de dados de sensor e/ou dados de amostragem para
aumentar a precisão da estimativa.
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DOI: 10.5935/1806-6690.20200095
Editores do artigo: Professor Daniel Albiero - daniel.albiero@gmail.com e Professor Alek Sandro Dutra - alekdutra@ufc.br
*Author for correspondence
 Received for publication 16/01/2020; approved on 17/11/2020
1Doutor em Agronomia, Universidade Federal do Vale do São Francisco/UNIVASF, Petrolina-PE, Brasil, marcos.rodrigues@univasf.edu.br (ORCID
ID 0000-0002-6567-1273)

2G.D’Annunzio University, Chieti-Pescara (Italy), Viale Abruzzo, 332, 66100 Chieti - Italy, annamaria.castrignano@unich.it (ORCID ID 0000-0003-2301-8118)
3CNR-IREA National Research Council - Institute for Electromagnetic Sensing of the Environment, (Bari, Italy) Via Amendola, 122/D - 70126 Bari,
Italy, belmonte.a@irea.cnr.it (ORCID ID 0000-0002-9227-3174)

4Engenheiro Agrônomo, Mestre em Agronomia, Universidade Federal do Vale do São Francisco/UNIVASF, Petrolina-PE, Brasil, katia_a.s@outlook.com
(ORCID ID 0000-0001-6618-8753)

5Doutor em Agronomia, Universidade Federal do Vale do São Francisco/UNIVASF, Petrolina-PE, Brasil, bruno.ftlessa@univasf.edu.br (ORCID ID
0000-0002-0472-1417)



Rev. Ciênc. Agron., v. 51, Special Agriculture 4.0, e20207691, 20202

M. S. Rodrigues et al.

INTRODUCTION

The population of the world is expected to
reach 9.2 billion people by 2050 (FAO, 2013) and food
demand which will inevitably lead to increased plant
production for food and feed, is expected to increase
by 70%. Meeting this demand, while avoiding further
deterioration of agricultural systems and natural
resources, will require a radical change in the way
farmers manage their farms. It is then necessary to
abandon practices that do not sustain the environment
and open up to new methods and technologies that are
based on rational use of resources.

In trying to meet the recent expectation from the
agricultural sector, some researchers have stated that
we are living the ‘fourth agricultural revolution’, or
‘Agriculture 4.0’ (KLERKX; ROSE, 2020). According to
Rose and Chilvers (2018) this “new agriculture” is closely
related to high technologies such as the internet of things
(NYÉKI et al., 2020), cloud computing (MEKALA;
VISWANATHAN, 2017), robotics (MARINOUDI
et al., 2019), artifi cial intelligence (PATRÍCIO;
RIEDER, 2018), sensors (OJHA et al., 2015), satellites
(MURUGAN et al., 2017), etc. Consequently, Precision
agriculture (PA) attempts to respond to the necessity for
innovative actions in the fi eld of primary production.

The current defi nition of PA by International
Society of Precision Agriculture (ISPA) states that
precision agriculture is a management strategy that gathers,
processes, and analyses temporal, spatial and individual
data and combines it with other information to support
management decisions according to estimated variability
for improved resource use effi ciency, productivity, quality,
profi tability and sustainability of agricultural production.

Geostatistics is one of the most important tools in
PA. This statistical approach, which was initially created
for mining, is now used in many fi elds of study including
agriculture. Its main function in PA is to understand spatial
distribution patterns and obtain more accurate maps.

Therefore, the objective of this review is to
show the potential of geostatistics as an important tool
in Agriculture 4.0. The study presented a brief history
of geostatistics and an introduction to its analysis. In
addition, an exhaustive review of the use of geostatistics
in agriculture is presented. Finally, the use of geostatistics
in data fusion with some case studies is described.

Brief history and concepts of geostatistics analysis

Environmental variables usually present spatial
continuity (LI; HEAP, 2011) and classical statistics
are not effi cient in analyzing this kind of data, because
classical statistics do not take spatial distribution

into account. In a classical approach, the samples are
considered independent and the error is random. Although
the existence of spatial variability was undeniable, even
for developers of classical statistics, spatial variation
was regarded as a little consequence (OLIVER, 2010).
However, Daniel Krige, a South African Mining engineer,
noticed that the absence of a spatial structure in predicting
ore grades could be a huge problem. Therefore, in 1963
his empirical approach was mathematically formalized
by Matheron (1963).

Matheron developed the regionalized variable
theory. A regionalized variable is an actual function that,
takes a defi nite value in each point of space (MATHERON,
1963). To assess whether data are spatially correlated
and to what extent, the variogram or semivariogram was
developed. The variogram or semivariogram is a curve
representing the degree of continuity of some variables
(MATHERON, 1963).

The equation of a semivariogram is defi ned as
(Equation 1):

                                                                                       (1)

where N(h) is the number of h-distant point pairs
(xi,  xi + h). The result of the point estimates is a set of
semivariogram values for various distances h between
points. However, to compile Kriging equation is necessary
to know the semivariogram values for any distance h.
Therefore, when quantifying spatial dependence, the
obtained estimates are approximated with a theoretical
curve. The most common semivariogram models used
in agricultural variables are spherical, exponential, and
Gaussian model (ZŮVALA et al., 2016).

From the fi ttings of the mathematical models to
experimental semivariograms, parameters were defi ned
as a spatial dependence range (a) which defi nes the
distance, where the semivariogram value is constant.
Sample locations separated by a distance shorter than
the range are spatially autocorrelated; locations farther
apart than the range are uncorrelated. Sill (C0 + C) is the
semivariogram value in the range. The nugget effect (C0)
is defi ned as the limit of the semivariogram for h decrease
o zero. The nugget effect can be caused by measurement
errors or by the fact that the process includes spatial
variability at distances smaller than the sampling interval
(ZŮVALA et al., 2016).

The semivariogram is an important tool to
determining whether a variable presents spatial
dependence and quantifi es this dependence. However,
it is necessary to introduce another geostatistical tool
for mapping: the kriging interpolation method, which
name was in honor of Daniel Krige. Kriging is a generic
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term for a range of least-squares methods to provide
the best linear unbiased predictions, best in the sense
of minimum variance (OLIVER; WEBSTER, 2014). In
the beginning, kriging was used to map ore in South
African minings; however, it is now used for many
kinds of data, including variables related to agriculture,
such as soil properties, weed, crop yield, etc (CHAVES
et al., 2018; METWALLY et al., 2019; SAN MARTÍN
et al., 2018).

Kriging usually performs better than other
interpolation methods. This is because kriging takes into
account the manner in which a property varies in space
through the variogram. In addition, kriging provides
not only predictions but also kriging variances or errors
(OLIVER, 2010).

The ordinary kriging system can be explained by:
Letting z(xi),i = 1,2,… ,N, be the observed values of variable
z at points x1 ,x2,… ,xN, in two dimensions xi ≡ {xi1,xi2}

T. For
any new point x0 we predict Z by (Equation 2):

                                                                                       (2)

The  λi,  i  =  1,2,…,N,  are  the  weights  chosen  to
minimize the prediction error variance by the following
set of equations (Equations 3 and 4):

                                                              for all j             (3)

                                                                                       (4)

Here, γ(xi − xj) is the semivariance between data
points i and j, γ(xj − x0) is the semivariance between data
point j and the target point x0, and ψ(x0) is a Lagrange
multiplier introduced for the minimization of error
variance.

A detailed description of semivariogram and
kriging method was provided by Oliver (2010) and Oliver
and Webster (2014).

Use of geostatistics in agriculture

Geostatistics have been shown to be very effi cient
defi ning the spatial variability of agricultural variables.
It has been used for many different variables such as
crop yield, soil properties, weed, etc. In this review, we
focused on the soil and weed application. In addition,
other applications using crop yield and sensor data were
approached in the data fusion topic.

Geostatistics applied to soil sampling

The soil samples must accurately reproduce
the condition of an agricultural fi eld, using a minimum

number to satisfactorily estimate the mean value of the
soil attributes, thus the management of irrigation and soil
fertility in crop fi elds will be refi ned (BUDAK, 2018).
This is because has been estimated that 80-85% of the
total error in the results used in the recommendation of
fertilizers and correctives can be attributed to sampling in
the fi eld and 15-20% may be due to laboratory analyses
(CARVALHO et al., 2002).

Based on classical statistics, the traditional study
carried out by Catani et al. (1954) defi nes as representative
sampling 20 individual soil samples to obtain a sample
composed in areas of up to 10 hectares considered
homogeneous by farmers (same soil type, crop, slope,
etc) are commonly applied in Brazilian agricultural fi elds
(SILVA et al., 2020). Random sampling, based on classical
statistics,  is  also  widely  used  in  other  countries,  such  as
the United States (LAWRENCE et al., 2020). However,
for classical statistics to be properly applied, one of its
premises is that the randomness of errors is met, that is, the
samples are spatially independent (BUDAK et al., 2018).

However, the presence of spatial dependence has
been verifi ed in most agricultural variables, such as soil
attributes (ARMANTO, 2019; GAO et al., 2019; LI et al.,
2017; MIRZAEE et al., 2016; ROSEMARY et al.,
2017; USOWICZ; LIPIEC, 2017; YANG et al., 2020),
thus limiting the use of classical statistics. According to
Welsch et al. (2019), soil variability can affect sampling
plan, and may result in inadequate sampling intensities
and high levels of uncertainty in evaluated attributes and,
consequently, inappropriate management if the spatial
distribution is not taken into account.

Therefore, geostatistics has been shown to be
a viable alternative for the optimization of a number
of individual soil samples, considering the spatial
dependence (MONTANARI et al., 2012), where
semivariogram is the main tool used for the description
of spatial autocorrelation (SEIDEL; OLIVEIRA, 2016).
Based on the knowledge of semivariogram parameters,
Carvalho et al. (2002) state that it is possible to defi ne a
sampling radius with the its range value because distances
greater than its value guarantee the independence of the
sampling points.

Scaled semivariogram, which is obtained from the
division of the semivariance by the statistical variance of
experimental semivariograms, can be used in defi nition
samples, and it is useful because it allows several
attributes to be inserted in the same graph, obtaining a
single range value (PEREIRA et al., 2013).

Some studies on crops of agronomic importance
such as sugar cane - Saccharum offi cinarum L.  -
(MONTANARI et al., 2012), beans - Phaseolus vulgaris
L. - (CASTIONE et al., 2019), and mango - Mangifera
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indica L. - (SILVA et al., 2020) have shown the effi ciency
of the use of geostatistics compare to classical statistics in
determining the ideal number of individual soil samples.

Soil chemical attributes of two areas cultivated
with sugar cane, located in Jaboticabal county, São Paulo
state, Brazil, were assessed by Montanari et al. (2012)
to optimize the procedure of soil sampling plan, and
they found that the use of geostatistics, using the range
of experimental semivariogram reduced the number
of individual samples needed to represent the area. In
addition, the number estimated by classical statistics
would make collection unviable in practical terms.

In a study to defi ne the minimum sampling density
of soil physical attributes in a central pivot area cultivated
with beans, in Cristalia county, Goiás state, Brazil,
Castioni et al. (2019) identifi ed that geostatistics, through
scaled semivariogram, must be utilized as a strategy for
characterizing spatial variability and determining the
minimum scale of points in a sampling area.

Soil sampling approaches and point allocation
sampling methods in irrigated mango orchards in the
Brazilian semiarid region, Silva et al. (2020) observed the
effi ciency of geostatistics compare to classical statistics
since the method of 20 individual soil samples proved to
be ineffi cient. They noticed that the addition of spatial
component, using the range of the scaled semivariogram
was appropriate in obtaining the minimum soil sample
density in each of the studied areas. In addition, the
allocation of sample points demonstrated that, in the
sampling method, the collection site is as important as the
number of individual soil samples to be collected.

Based on the above considerations, it is evident
that careful sampling, which accurately represents the
sampled area, aims at cost reduction and resources
optimization, guaranteeing agricultural viability. It
is essential to study sampling projects for each area,
depending on the intrinsic characteristics of each one,
since variability could be affected by several factors
such as topography, management, vegetation, and soil
formation factors (WELSCH et al., 2019).

Hence, geostatistics is the most appropriate tool
for defining sample density when compared to classical
statistics, because geoestatistics takes into account
the spatial dependence found in most crop fields.
Therefore, the range parameter to define the number of
individual soil samples may be a satisfactory method
to define soil sampling.

Geostatistics applied to weed science

The presence of undesirable plants in agricultural
fi elds, also known as weeds, can be defi ned as higher

plants that interfere with the interests of humans and
environment (PITELLI, 2015). The establishment of these
plants to form plant clusters with different populations
(weed community) causes environmental disturbances and
various damages, especially when it comes to agricultural
production systems.

In addition, to the factors inherent to the species
and its biotype, climatic, physiographic factors, and
biotic factors determine the occurrence and permanence
of weeds in any given environment and period (FRIED
et al., 2019), and interferes with the way populations are
distributed: generalized or punctual.

The ability to describe and map the weed spatial
distribution is the fi rst step in the study of its spatial
variability, guaranteeing effi cient management the
concepts of precision agriculture. In-plant health, the
spatial pattern of unwanted populations can be studied
through statistical indexes based on mean and variance,
which gives the degree of aggregation of pests and
diseases. This degree can vary between highly aggregate,
aggregate and uniform, and many studies have already
shown that the degree of weed distribution in agricultural
fi elds, generally shows an aggregate population pattern
(LOPES et al., 2020; MARTÍN et al., 2018; SILVA et al.,
2017).

However, Schaffrath et al. (2007) affi rm that the
traditional measurements of tendency and dispersion
are of little use and can induce overestimation since
the position of individuals in space is not considered.
Therefore, the use of geostatistics in studies of the
spatial distribution of weed has technological and
environmental potential (SCHAFFRATH et al., 2007),
enabling more accurate mapping techniques, such as
Kriging (KRAHMER et al., 2020).

Several studies have shown that the distribution
of weeds in agricultural fi elds is not a random process
but follows a spatial dependence. In the literature, there
are reports of moderate to strong spatial dependence
for weed variables (AVILA et al., 2019; CHIBA et al.,
2010; IZQUIERDO et al., 2020; KALIVAS et al., 2012;
LÓPEZ-GRANADOS et al., 2016; METCALFE et al.,
2016, SIQUEIRA et al., 2016).

Among the weed species found in the agricultural
fi elds of recent studies that showed spatial dependence,
are: Abutilon theophasti, Bidens pilosa, Bromus diandrus,
Cenchrus equinatus, Commelina spp., Convolvulus
arvensis, Conyza spp., Cynodon dactylon, Cyperus
rotundus, Datura ferox, Euphorbia spp., Eleusine indica,
Heliotropium indicum, Ipomoea triloba, Solanum nigrum,
Sorghum halepense and Xanthium strumarium (CHIBA
et al., 2010; IZQUIERDO et al., 2020; KALIVAS et al.,
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2012; KRAHMER et al., 2020; ROCHA et al., 2015;
SCHAFFRATH et al., 2007).

Geoestatistical studies assists in the planning
of sustainable control, carrying out site-specifi c
management, that is, where it is strictly necessary,
bringing benefi ts such as greater economic return and less
environmental impact (MARTÍN et al., 2018; ROCHA
et al., 2015). For example, there is the possibility of
using a precision agriculture technique called variable
rate application, that is, when an input, (in this case, the
pesticides), is applied based on the spatial distribution of
the target to be controlled. This technique can maximize
the effectiveness of herbicides, and studies showed
savings of approximately 25% (GUNDY et al., 2017;
KEMPENAAR, 2017).

In addition, an important characteristic of this type
of study is the possibility of correlational analysis with
agro-environmental variables with the same coordinate
as weed variable, in assisting the understanding of the
occurrence of weeds. These variables include metrics or
qualitative data on soil properties, types of management,
and crop characteristics (AVILA et al., 2019; COMAS
et al., 2016). According to Pätzold et al. (2020), weed
population maps integrated with soil maps can potentially
be used in weed planning and management to estimate
herbicide requirements or meet application limitations.

In a study of weed community of a corn crop
fi eld in Arganda del Rey, Madrid, Spain, Martin et al.
(2018) revealed that the variance for S. halepense and
A. theofhasti along the direction of crop rows was larger
at lags exceeding 5 m. This indicates the existence
of large patches at this scale and that there might be
an interaction between the effect of cultivation or
harvester dragging seeds with variable soil properties.
In correlating the weed seed bank in a soybean fi eld
with the soil properties, Avila et al. (2019) found a
signifi cant negative correlation between the grass seed
seminal bank and the variation in the sand content.
Regarding chemical management and reporting, the
authors recommended the use of their result in fi eld
management, because that lower doses of pre-emergents
could be applied in sandy areas, warning against the risk
of fi xed-rate applications.

Therefore, weed mapping, favors the understanding
of how the weed community is distributed in the fi eld
and the reasons for its distribution, whether they are
of ecological or anthropic origin, enabling, not only a
more effi cient plant health management but also a deep
understanding of its ecophysiology (BOTTEGA et al.,
2018; KRAHMER et al., 2020; MARTÍN et al., 2018).
Krahmer et al. (2020) also pointed out that comparative
tests for different locations, improvement of existing maps

for more frequent species, standardization, expansion of
herbicide resistance maps, and mapping of rare weeds as
potentials and objectives for infestation mapping works.

Based on the information collected, it can be
considered that geostatistical analyses, and mapping
techniques are integrated with the so-called Agriculture
4.0 model, enabling digital and technological tools for
local diagnosis and guiding modern agriculture for weed
management and more sustainable, economical, and
effi cient crop production.

Multivariate geostatistics for multi-source data fusion

To achieve a suffi cient degree of agronomic and
fi nancial effectiveness, it is necessary to improve the
accuracy of estimation of relevant variables, which could
be achieved by intensifying sampling. Given the costs
associated with both sample collection and laboratory
analyses, an advantage in terms of accuracy of estimation
could come from the integration of sparse sample data with
variables recorded using remote and/or proximal sensors
on a variety of spatial and temporal scales.

In particular, there are different types of real-
time on-the-go sensors, that are, already widely used
and capable of recording both soil and plant attributes
at a very fi ne spatial resolution (CASTRIGNANÒ et al.,
2017; 2018; VISCARRA ROSSEL et al., 2011). However,
the relationship between the property of interest and
output of sensor is not direct because the latter depends
on several factors (CASTRIGNANÒ et al., 2017; 2018;
DE BENEDETTO et al., 2012). Therefore, more sensors
are needed, based on different measurement principles, to
separate the different effects and consequently improve the
interpretation of the different causes of variability. A new
technique, called sensor data fusion (CASTRIGNANÒ et
al., 2017, 2018, 2019; MASARIK et al., 2016; WANG
et al., 2013), has been developed, it combines several
sensing techniques and is more informative about reality
than the one based on a single sensor.

However, these multi-source data are collected
for a variety of spatial scales more often than the one
of interest and most environmental variables display
spatial structures, such as gradients, patches, trends,
and complex spatial autocorrelations, which may exist
at many scales. Moreover, the assessment of spatial
variations strongly depends on the size of the sampling
unit or measurement unit of the sensor. Therefore, the
size of the sampling/measurement unit is quite important
in the process of investigation because it can critically
infl uence our perception of environmental phenomena
(BELLEHUMEUR et al., 1997).

Multivariate Geostatistics offers a set of linear
unbiased estimators (cokriging) with minimum error
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variance, and allows one to combine a virtually infi nite
number of variables with different characteristics and
with different degrees of uncertainty. In particular block
cokriging, in its more general formulation, considers
both upscaling and downscaling (CASTRIGNANÒ;
BUTTAFUOCO, 2020). However, the generation of
cokriging estimates may require the inversion of very
large matrices, due to the often massive character of
proximal/remote sensing data. This operation with big data
may take a lot of computer time or even be impossible to
perform. Multicollocated cokriging (RIVOIRARD, 2001)
is a simplifi ed version of full cokriging, and makes use
of secondary variable(s) only at the point being estimated
and at all points where the primary variable is known
(CASTRIGNANÒ et al., 2009). This approach requires
the secondary variable(s) to be known at all points where
estimation of the primary variable is desired, therefore, it
is well suited for remote/proximal sensing data, usually
in grid format. Moreover, it effectively combines the
differences among sensors and enhances the integration
between remote/proximal sensing observations and
ground-based truth data (CASTRIGNANÒ et al., 2012).

Another geostatistical data fusion technique,
widely used especially in PA, is factor cokriging,
which allows to synthesis of a wide array of variables
in spatial indices that are scale-dependent. These can
be used to partition an agricultural fi eld into more
homogeneous units (Management Zones), with respect to
a large variety of soil physical, chemical, and hydraulic
properties and crop attributes, which can be used for
differential management (CASA; CASTRIGNANÒ,
2008). Moreover, some factors affecting crop response
are expected to act over a short-range action, however,
others act over longer distances, and such fi eld
delineation is expected to be scale-dependent. Using this
geostatistical technique, it is possible to perform within-
fi eld delineation at different spatial scales, differently
compared to traditional clustering, thus increasing the
effi cacy of site-specifi c management.

The objective of this contribution is to describe
a method of geostatistics-based data fusion that is
widely applied, as evidenced by numerous bibliographic
references, and suffi ciently fl exible to be able to jointly
analyse a virtually infi nite number of multi-source data
with applications particularly in precision agriculture.

The various steps, which make up the proposed
approach for the delineation of homogeneous areas in PA,
are indicated below.

1. Exploratory data analysis

A dataset with selected variables for analysis
generally requires some preliminary adjustment. If some

variables are gridded, they have to be migrated to the
nearest sample location to create the co-regionalised
dataset. Exploratory data analysis is then performed by
calculating basic statistics (mean, median, minimum
and maximum values, standard deviation, skewness, and
kurtosis).

2. Point Gaussian anamorphosis

Skewed or erratic data can often be made more
suitable for geostatistical modeling by appropriate
transformation. Therefore, normalization and
standardization may be required before kriging
(ARMSTRONG, 1998). One way is to perform all
geostatistical procedures in the Gaussian domain
and at the end to back-transform the estimates to the
original units. Each variable is transformed into a
normally distributed variable beforehand if it shows
a large departure from Gaussian distribution. This is
performed by fitting a mathematical function, called
Gaussian Anamorphosis, expressed as an expansion
of Hermit polynomials (CHILES; DELFINER,
2012; WACKERNAGEL, 2003). An advantage of
the Gaussian distribution is that spatial variability
is easier to model because it reduces the effects of
extreme values providing more stable semivariograms
(ARMSTRONG, 1998).

3. Block/support correction

If the estimates are produced on a block instead
of a point support, a coeffi cients is needed to obtain an
anamorphosis on a block support (CHILES; DELFINER,
2012), which will be later used to back-transform block
Gaussian estimates into raw data. A support correction
coeffi cient r is determined from the variance of blocks,
and the punctual variance calculated as the sill of the
variogram assumed stationary. The variogram based on
a point support is calculated on the smallest support,
whereas a variogram on a given block support requires
a process of regularization, consisting of discretizing the
blocks into equal cells after which a pseudo-experimental
variogram is calculated in the fi ctitious cell centers, and
then the point variograms are averaged over the block
(MANZIONE; CASTRIGNANÒ, 2019).

4. Spatial modelling of multivariate dataset

Multivariate spatial correlations are modeled
under the scope of the linear model of co-regionalization
(LMC) (JOURNEL; HUIJBREGTS, 1978), which
considers all the studied variables to be generated by the
same independent physical processes acting at Ns different
spatial scales (WACKERNAGEL, 2003). Therefore,
all (both direct and cross) variograms are modeled as
linear combinations of the same basic spatial structures
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(authorized mathematical functions) corresponding to
the NS spatial scales.

5. Geostatistical solutions for support correction

Geostatistical techniques are used to model the
effects of re-scaling data due to the change of support
when treating heterogeneous spatial data. Block
cokriging is the traditional geostatistical interpolation
method used in solving a change of support problem
(ARMSTRONG, 1998; CHILÈS; DELFINER, 2012;
JOURNEL; HUIJBREGTS, 1978) when observations on-
point support are used to predict the average values of a
multivariate process on a larger scale. The main difference
between block (co)kriging and point (co)kriging is in the
calculation of the point-to-block covariance through the
regularization process as described above.

The display of cokriging estimates after back-
transformation allows the production of thematic maps of
individual attributes and may be an effective support for
decision making.

6. Multi-collocated block cokriging

Multivariate spatial prediction, or cokriging,
is used to treat the multivariate data set. It is a quite
popular geostatistical estimator because it enables the
coestimation of poorly sampled variables from secondary
more exhaustive information. Details of the cokriging
system can be found in reports of Wackernagel (2003),
and Chilès and Delfi ner (2012). The equations are
valid regardless of the support of data; however, taking
into account the different supports in the calculation of
autocovariance and cross-covariance functions is crucial
to obtain valid inference (CASTRIGNANÒ et al., 2018).
Once a consistent model for the point covariance functions
is estimated, using LMC, block cokriging is applied by
replacing the point cross-covariances in point cokriging
by their block-averaged counterparts through the above-
mentioned variogram regularisation (MYERS, 1984).

The variant multi-collocated block cokriging
is used when fusing sparse sample data with gridded
variables as the ones from remote or proximal sensing.
Here it is suffi cient to point out that its use is indispensable
in the treatment of big data, whereby the inversion of a
huge matrix for the resolution of the cokriging system
could be otherwise impossible. Indeed, bock cokriging,
in its more general formulation, can also be used in
downscaling, when the estimates are on a smaller support
than the one of observations. In this case it is necessary
a process of deregulation and deconvolution to transform
variograms on areal support into variograms on point
support. This is achieved through an iterative fi tting
process (CASTRIGNANÒ; BUTTAFUOCO, 2020), but

unfortunately, at present, it is implemented only on very
few commercial or free softwares.

7. Factor block cokriging

This geostatistical procedure is similar to the
traditional Principal Component Analysis (PCA)
instead of applying it to the whole variance-covariance
matrix, it applied to its individual spatial components
(co-regionalization matrices). This decomposition is
accomplished through the determination of the linear
model of co-regionalization. PCA decomposes each co-
regionalization matrix into two additional matrices: the
eigenvalues and egeinvector matrices (WACKERNAGEL,
2003). The transformation (loading) coeffi cients
correspond to the covariances between the variables
and principal component, which are called regionalized
factors, relative to a given spatial scale. They express the
infl uence of each variable on the factor at a given spatial
scale and are then used to assign a physical meaning to the
factor. Mapping the scale-dependent regionalized factors
is a very powerful and synthetic way to display the spatial
relationships among several variables at different spatial
scales. Therefore, it is commonly used in PA to produce
a partition of the fi eld in homogeneous zones, according
to the attributes represented by the variables chosen
for the analysis. In addition, if exhaustive information
is available, multi-collocated factor block cokriging is
preferred to the full version. Figure 1 provides a complete
overview of the proposed method.

Some applications

The approach previously described is now widely
applied in various experimental contexts with space-
time data of different nature, spatial support, temporal
frequency, and different degrees of uncertainty for a
variety of objectives. The most frequent application
is the subdivision of study areas into relatively
homogeneous zones, according to the attributes selected
and measured using various sensors, submitting them to
site-specifi c management in PA. The wide fl exibility of
the method, which is applicable to a practically infi nite
number of sensors of any type, is demonstrated by the
numerous bibliographical references. Interested readers
should refer to them for more details and clarifi cations
(AGGELOPOOULOU et al., 2013; BUTTAFUOCO
et al., 2015, 2017, 2019; CASTRIGNANÒ et al., 2009,
2012, 2017, 2018; CASTRIGNANÒ; BUTTAFUOCO,
2020; DE BENEDETTO et al., 2013, 2013a; LANDRUM
et al., 2015; MANZIONE et al., 2019; SHADDAD et al.,
2019).

Three case studies are briefl y presented here as
examples to illustrate the potential of the approach. The
fi rst one (BUTTAFUOCO et al., 2017) is located in Foggia,
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southeastern Italy in a fi eld of 12 ha cultivated with rainfed
durum wheat (Triticum durum Desf.). One hundred soil
samples, arranged according to a regular grid, were picked
up at two depths (0.20 and 0.40 m) and analyzed in the
laboratory for different physical, chemical, and hydraulic
attributes. In addition, the grain yield was measured with
a John Deere combine over three growing seasons (2005-
2007). The regionalized factor with an effective range
of approximately 285 m was used for partitioning the
fi eld. The organic matter content, total nitrogen, and fi eld
capacity weighed were mainly and positively correlated,
whereas clay negatively correlated because the soil was
heavy and moderately drained. Therefore, this factor could
be interpreted as an indicator of soil chemical fertility. The
fi eld could be roughly divided into three macro-areas of
equal extension with a central area, which was less fertile
due to the reduced values of organic matter and N.

For each macro-area, the expected value and
standard deviation of grain yield were also estimated over
the three crop seasons (Figure 2) using polygon kriging
(CASTRIGNANÒ; BUTTAFUOCO, 2020), a sort of
block cokriging but on an irregular block (polygon). As can
be seen in Figure 2, the spatial variation in yield differed

Figure  1  - Flowchart of the proposed methodology based on
geostatistical data fusion techniques

among the growing seasons, and the variation was mainly
in rainfall: the 2005-2006 season had the highest rainfall,
while the 2006-2007 season had the least rainfall. The
polygon to the north showed the greatest variability over
time, probably due to the coarse texture that negatively
affected the soil water content during the dry periods.

It is now known that the simple traditional
sampling is not capable of assessing the variability of
agricultural system at a space-time scale that is necessary
for effectively PA management. Therefore, it is then
necessary to integrate it with proximal and/or remote
sensing of both soil and crop at fi ner scales.

The second case study shows an example of data
fusion including both soil variables measured in the
laboratory and the ones obtained from online visible
spectroscopy (SHADDAD et al., 2016). The study
was conducted in an 18-ha fi eld located in Wilstead,
Bedfordshire, UK. A total of 183 soil samples on a 30 m x
30 m cell grid were collected and submitted for different
physical and chemical analyses in the laboratory. The
fi eld was also surveyed with a mobile fi bre-type Vis-
NIR spectrophotometer along parallel transects of 700-m
length and 15 m apart for four variables: pH, P, K, and
water content. The regionalized factor over a scale of
approximately 181 m was used to delineate homogeneous
zones. It was mainly and positively correlated with
total carbon, pH, total N, and cation exchange capacity,
therefore it could be interpreted as a soil fertility indicator.
The fi eld was then partitioned into three macro-zones of
equal size with the central and northern parts characterised
by lower fertility (Figure 3).

In order to evaluate the productive capacity of such
delineation, the map as shown in Figure 3 was compared
with a barley yield map of the same fi eld (Figure 4) and
the yield was calculated for each macro-area. As shown

Figure 2 - Polygon yield maps for the 2005-2006, 2006-2007
and 2007-2008 growing seasons
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in Table 1, there is a direct relationship between soil
fertility, as expressed by the regionalized factor, and yield.
However, the degree of spatial association between the
two maps was less than 40%. This means that even if soil
variation affects yield variation, it does not fully explain
yield variation, which seems more related to dynamic
factors. For effective site-specifi c crop management, it

Figure 3 - Map of three management zones (MZ) according to
the estimates of the factor (F1) with scale of 181 m

would then be necessary to integrate soil characterization
with on-time monitoring of plant status.

The third case study is taken from Precision
Viticulture (ANASTASIOU et al., 2019), which requires a
very fi ne space-time monitoring scale to accurately assess
the variation in a vineyard. The study was conducted at
a commercial table grape vineyard located in Corinth,
southern Greece, planted with Vitis vinifera L. cv.
Thompson seedless. Two different types of proximal
sensors were used to assess and map the spatial-temporal
variation of the vineyard: the one on the plant was a crop
circle canopy sensor (ACS-470, Holland Scientifi c Inc.,
Lincoln, NE, USA), used to scan the side vine canopy
and collect georeferenced radiometric data at three bands:
670 nm (red), 730 nm (red-edge) and 760 nm (NIR) at
three crop stages: start of veraison, mid of veraison and
technological maturity/harvest. For soil monitoring, a
single electromagnetic induction (EMI) soil survey was
conducted using an EM38 sensor (Geonics Ltd, Ontario,
Canada). The two sensors had different supports:  the one
of Crop Circle was a spot of 0.40-m diameter, whereas the
one of EM38 was of approximately 1-m horizontal length.
The application of the proposed approach then required a
change of support. While EMI map showed some spatial
dependence structures, due to differences in soil texture,
the radiometric ones appeared noisier.

This was refl ected in the map of the regionalized
factor with 32-m scale (Figure 5), obtained from the joint
analysis of 10 variables, 9 radiometric variables and one
variable relative to the soil that was the most infl uential.
Actually, the examination of Figure 5 shows that it is
diffi cult to subdivide the vineyard into macro areas to be
subjected to differential agronomic management. In fact,
the fi eld is characterized by high micro variability, due
to the particular vine management, for which it would
be better to apply variable rate technology at a very fi ne
spatial scale.

From the analyses of the three case studies may be
verifi ed that the method is quite fl exible and can easily
adapt to any experimental conditions and type of sensor

F1 Mean Yield (Mg ha-1)

Low 6.19

Medium 6.65

High 6.97

Figure 4 - Barley yield map

Table 1 - Mean yield of each management zone delineated by
F1
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