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ABSTRACT - In view of the exponential growth in the volume of data that is considered in intelligent decision-making,
hyperspectral remote sensing (HRS) has, without doubt, brought greater dominance over agricultural crops as it goes beyond
the paradigm of little information being available about the targets. In this review of the state of the art of HRS, complementary
views on the use of sensors and analytical techniques in agriculture over the last decade are grouped together. State-of-the-
art technologies, and research trends associated with each level of data collection are cited. There is still a long way to go in
the agricultural sciences; however, specialists in precision agriculture are devotees of the valuable insights offered with the
increased availability of hyperspectral data. In this respect, this review is organised as follows: Section 1 helps the reader
to contextualise and conceptualise the basics of remote sensing; the second section discusses the types of sensors and their
resolutions; section 3 presents four subsections that show recent applications of these technologies according to their level of
acquisition; fi nally, the fourth section offers the reader a discussion on the positive trends achieved in managing vegetation,
soils and waterbodies over the last ten years, as well as the needs and challenges of the next decade.
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RESUMO - Em virtude do crescimento exponencial no volume de dados considerados nas tomadas de decisões inteligentes,
o sensoriamento remoto hiperespectral (SRH) tem indubitavelmente trazido maior domínio sobre os cultivos agrícolas
porque ultrapassa o paradigma de pouca informação disponível sobre os alvos. Nesta revisão do estado da arte do SRH foram
agrupadas visões complementares sobre o uso de sensores e técnicas analíticas na agricultura desta última década. Foram
citadas tecnologias de ponta e as tendências de pesquisa associadas a cada nível de coleta de dados. Ainda há muito a avançar
nas ciências agrárias, no entanto, os profi ssionais da agricultura de precisão estão devotados aos insights de aplicações valiosas
com a maior disponibilidade de dados hiperespectrais.  Neste sentido, esta revisão está organizada da seguinte maneira: A seção
1 contextualiza o leitor e conceitua fundamentos para o sensoriamento remoto. A segunda seção discorre sobre os tipos de
sensores e suas resoluções. A seção 3 traz quatro subseções que apresentam aplicações recentes destas tecnologias segundo o
nível de aquisição. Finalmente, a quarta seção oferece ao leitor a discussão sobre as tendências positivas alcançadas no manejo
de vegetação, solos e corpos hídricos nos últimos dez anos, bem como as necessidades e desafi os para a próxima década.
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INTRODUCTION

Since the successful launch of the first
experimental Sputnik satellite in 1957, mankind has
experienced unprecedented advances in technology,
and has applied them positively to navigation,
communications and Earth observation. Notable
applications of Remote Sensing (RS) include those
related to meteorology, agriculture, geology, mapping,
urban planning, ecological monitoring and environmental
disasters. Although mainly visible electro-optical sensors
have been used, more recently the application of thermal
imagers, light detection and ranging (LIDAR), and
hyperspectral imagers has gained more and more attention
from academia and industry. Conceptually, RS can be
understood as a set of techniques aimed at observing,
collecting and recording signals propagated from objects
over a given period of time, and necessarily requiring
some distance between the sensors and the targets.

The concept of Precision Agriculture (PA)
prioritises better management of such agricultural inputs
as water, fertiliser, herbicides, seeds and fuel, allowing
the proper kind of management to be undertaken exactly
where and when it is needed. Considering that large
agricultural areas under conventional management
receive a uniform application of inputs, under PA
these areas can be subdivided into management zones,
where each receives varying inputs, based on the type
of soil, altitude or history of mineral requirements. A
knowledge of the physical, biological and chemical
properties of the soil is especially important in designing
and implementing strategies for irrigation, drainage,
nutrition and health control when managing crops. As
such, PA improves the productivity and profi tability of a
crop, together with higher environmental quality (DALE
et al., 2013). The axiom that guides all PA technology
is to acquire information about crops, whenever, and at
whatever spatial resolution is necessary for decision-
making. To that end, RS is undoubtedly a valuable tool
for providing this information.

 More recent advances in RS have paved the way
for the development of hyperspectral sensors and the
processing of larger volumes of data. Researchers around
the world have long recognised the need to map ground
cover for the sustainable management and monitoring of
natural resources, not only on a regional scale, but also
from a complementary local or global perspective (WANG;
MASRY, 2010). The advantage of RS is its ability to
provide periodic information (YAN et al., 2017) without
destructive crop sampling (WALLACE et al., 2017),
which can be used to provide information on agricultural
canopies using various agronomic parameters.

Depending on the specifi city of the desired
information, RS can be a competitive alternative means

of acquiring data over large geographical areas, since it
can provide prompt, reliable data for a fraction of the
cost of the traditional method and, as highlighted by
Yu et al. (2020), with the collection of less fi eld data.
Combined with Geographic Information Systems, RS is
highly benefi cial to the creation of information layers
in time and space that can be successfully applied to
various agricultural challenges, including the mapping of
fl oodplains, hydrological modelling, changes in land use,
monitoring crop growth and stress detection (KINGRA
et al., 2016).

The principle behind refl ectance spectrometry
is the perception of electromagnetic radiation (EMR) to
assess the characteristics of a target (JENSEN, 2011). As
such, when a beam of light is directed at the target, one
part interacts with the sample and is refl ected from its
surface, while the other part is transmitted and absorbed
by the sample (DAHM; DAHM, 2013). Different objects
exhibit typical spectral behaviour at given intervals and
are used to distinguish between vegetation, exposed soil
and waterbodies, as well as variations within the same
class, such as clayey or sandy soils (ALMEIDA et al.,
2020), saline soils (MOREIRA et al., 2015), water with
sediments or undergoing eutrophication (KELLER et al.,
2018), and the most diverse architecture and physiological
oscillations in plants (NIGAM et al., 2019).

The metabolic changes that occur due to each type
of stress can alter these refl ectance patterns, a fact that
can be detected remotely (SHANMUGAPRIYA, 2019).
The growth stages of the crop and its development are
infl uenced by a variety of factors, such as the available soil
moisture, time of planting, air temperature, length of day
and condition of the soil, and these in turn are responsible
for productivity. Thus, monitoring the crop at regular
growth intervals is necessary to discern any adverse effects
of the environment on the crop (GÜRTLER et al., 2018)
and to predict possible losses in production due to stress
factors (LU et al., 2020).

A key decade for technological transition is
coming to an end. Proof of this substantial incursion
into modern agriculture is that 1,688 articles on
hyperspectral data in agriculture, published between
2011 and 2020, can be found in the noteworthy
principal Web of Science collection alone, in contrast
to the 490 articles from the previous decade (2001-
2010). The massive global adoption of mapping and
navigation applications has accelerated the evolution
of applications for the RS industry, the main factor
in this transformation being the improvement in
techniques of resolution (WEI et al., 2019), precision
(OLIVEIRA et al., 2018 ), speed (FAN et al., 2017)
and analysis (ABDULRIDHA et al., 2019). Within
this context, scientific parameters and achievements
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will be presented in this review, demonstrating that
hyperspectral remote sensing (HRS), the quintessence
of traditional RS, is ready to  play a disruptive role
in modern agriculture by offering a non-destructive
and increasingly more assertive alternative for crop
management.

SENSORS AND THEIR SPECIFICATIONS

The human eye is able to see only a restricted
part of the electromagnetic spectrum, and can distinguish
objects based on their different spectral responses in the
narrow visible spectral range (VIS) between 400 and
700 nm (NOVO, 2010). To overcome these limitations,
multispectral image sensors have been developed that are
capable of acquiring representative data in points other
than the infrared, usually between 400 and 2500 nm.
The aim of obtaining the signal over a greater spectral
range makes it possible to construct refl ectance profi les
(SHANMUGAPRIYA, 2019) and detect patterns that
discriminate between the various types of targets far
beyond any visible colouring. Therefore, the beyond-
visible band was especially employed.

It is essential to emphasise that the sensor is more
important than the platform to which it is attached. The
importance of the satellite lies in its altitude. Noise in
the data can be seen to a greater or lesser extent from the
physical effects of the EMR interacting with gases in the
atmosphere. However, the decisive factors in acquiring
good-quality spectral data are the capabilities and
limitations of the sensors.

Types of Sensor

Hyperspectral data are obtained using passive
sensors. Essentially, there are two types of technology in
RS that depend on the energy source: i) passive RS (for
example, optical) and ii) active RS (for example, LiDAR
and radar). The principal difference is that the former
requires an electromagnetic energy source external to
the sensor, such as the sun (JENSEN, 2011). There is
therefore a direct dependence on the incidence of this
EMR source on the area under analysis. The second type
has an internal EMR source, and, in this respect, is able to
acquire information about the target independently.

Nature of the data

It is worth adding that when referring to the nature
of spectral data, it is understood that they can be collected
by both imaging sensors (Figure 1A) or non-imaging
sensors (Figure 1B). Therefore, if characterisation by
spatial patterns is irrelevant, the readings can be essentially

numeric instead of expressed by pixel intensity. This
considerably reduces the volume of data to be processed.

The idea of a hypercube for the three-dimensional
representation of data, groups stacks of light-intensity
measurements distributed in the two spatial dimensions
(X and Y), while the third denotes the energy measured at
each wavelength (λ) the sensor is able to capture. There is,
therefore, a match for each spatial unit (pixel) of these data.
Each value provides what are called spectral refl ectance
factors, i.e. the percentage of EMR that is received by
the sensor after refl ecting off the surface of the target
(JENSEN, 2011). There is, therefore, a unique variation in
refl ectance between the matching pixels for each type of
target. The concept of a spectral signature, i.e. individual
behaviour by the target, only occurs in very specifi c cases,
such as with soil minerals, e.g. mimetite (SWAMY et al.,
2017), which even in different landscapes, latitudes and
weathering can be easily identifi ed (TEKE et al., 2013).

Data Resolution

During a remote-sensing analysis, four parameters
have to be analysed: the spectral, spatial, temporal and
radiometric resolutions. The sensors provide information
normally categorised according to their spectral resolution,
which can be: i) multispectral, ii) super-spectral or iii)
hyperspectral. Multispectral data refer to sensors of less
than 10 discrete bands, each covering a wide spectral range
of tens to hundreds of nanometres. Super-spectral data
(COLLIN et al., 2019), in turn, come from sensors that
express 10 to 20 bands, still representing broad portions
of the spectrum, while hyperspectral sensors, the focus
of this review, convey a series of continuous channels of
narrow spectral bandwidth (typically less than 10 nm),
hence their ability to express spectral nuances which are
often imperceptible under other approaches.

In this context, multispectral data, such as those
obtained by orbital sensors coupled to the Landsat (10
bands) and SPOT (4 bands) satellites, have been widely
used in agricultural studies due to the prompt availability
of the data. Interesting techniques are already being
applied to estimate crop biomass (DONG et al., 2020),
land use and cover (CHAVES et al., 2020), the chlorophyll
content of a crop (ZHOU et al., 2020), or mapping soil
degradation (PHINZI; NGETAR, 2017). A quantity
of even smaller bands was used by Calou et al. (2020)
when classifying RGB (Red-Green-Blue) images in the
detection of yellow sigatoka in the banana crop in Ceará,
Brazil. However, due to limitations in spectral resolution,
the accuracy of recovered variables is often limited, and
the fi rst signs of crop stress, such as nutrient defi ciency or
plant disease, are not detected early enough. Super-spectral
sensors, such as those of the WorldView3 (16 bands) and
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Figure 1 - A) Three-dimensional representation (hypercube) of imaged data. B) Numerical and simplifi ed representation of
vegetation hyperspectral data (OLIVEIRA et al., 2020)

Sentinel2 (13 bands) satellites, have been applied in the
direct detection of hydrocarbons, compounds associated
with anthropogenic pollution (ASADZADE; SOUZA
FILHO, 2015). In this study, the researchers used the
eight bands of the visible (VIS) and near infrared (NIR),
and eight bands of the short-wave infrared (SWIR) of the
WorldView3 satellite for environmental monitoring in
São Paulo, Brazil. Hyperspectral data - for example, from
EO-1/Hyperion (242 bands), Gao-FEN-5 (330 bands) and
AVIRIS (224 bands) - with hundreds of bands can capture
more subtle spectral distortions of the ground cover, as in
studies by Peón et al. (2017), predicting organic carbon
in burnt areas, or the physiological state of maize (Zea
mays L.) via the high-yield phenotyping of its biochemical
characteristics (YENDREK et al., 2017) and how they
change over time.

It is imperative to point out that what differentiates
multispectral from hyperspectral data is primarily the
bandwidth (TESFAMICHAEL et al., 2018) used to
represent the data of the electromagnetic spectrum. As
such, this parameter is more relevant than the number of
wavelengths that a sensor can supply. An image sensor can
cover a wide range of the electromagnetic spectrum (for
example, 400 to 2500 nm) but still have a low spectral
resolution if it acquires a small number of broad spectral
bands. On the other hand, if a device is sensitive to a
smaller range of the electromagnetic spectrum (400 to
1000 nm), but captures a large number of narrow spectral
bands, it is said to have a high spectral resolution, giving
it the ability to hierarchise components into elements of a
similar spectral pattern.

Another important point that should be highlighted
are the minimum dimensions that can be discernible on

the surface imaged by each sensor, known as its spatial
resolution, and usually related to the GSD (Ground Sample
Distance). This variable is fi xed for orbital sensors, but
can vary for other levels of collection. The smaller the
size of the pixel, the more precise the boundaries and
characterisation of each target. Characterisation of ground
cover with hyperspectral sensors such as Hyperion (United
States), CHRIS (Italy), GaoFEN-5 (China), En-MPA
(Germany) or HISUI (Japan) with a GSD of approximately
30 m, expresses in a single pixel, the representative value
of each element that makes up the landscape of 900 m².
Assuming homogeneous and continuous coverage, such
as extensive commodity-producing areas, this level of
detail would be suffi cient to characterise the ground cover.
However, when the analysis requires a more refi ned level
due to the excessive mixture of targets within the frame, it
is necessary to reconsider the level of collection (Table 1).

The temporal resolution depends on the orbit taken
by the platform that houses the sensor. This parameter is
extremely relevant, as it describes the time needed to revisit
the precise place of interest (PANTERAS et al., 2018). In
the case of Precision Agriculture, time is a crucial variable
in making urgent decisions, such as monitoring the
water requirements of a crop (ZHANG et al., 2019). The
revisit period of the EO-1/Hyperion (inactive), PROBA-
1/CHRIS and GaoFEN/GF-5 is around 16, 7 and 2 days
respectively. This value is generally related to the height
of the developed orbit, which is stable during the working
life of the satellite, and considerably limits the frequency
of orbital analyses in agricultural management.

The fourth resolution to be understood is that
which expresses the radiometric properties of a sensor.
This parameter describes the ability to discriminate very
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small differences in measured energy and, therefore,
establishes a fi xed interval over which the entire range
of the read data can be represented. Digital systems like
the airborne ProsSpecTIR store VIS-NIR data in blocks
of 12 bits based on 4096 (212) possible intensity values to
represent a target. One important operational objective in
HRS systems is the ability to adjust the amplifi er controls
so that a highly refl ective object produces its maximum
value within the available number of bits.

The greatest challenge lies in the fact that solar
incidence varies considerably throughout the day and
produces lower digital numbers (DN) whenever the sun is
off-nadir. The need then arises to change the amplitude of
the radiometric band according to the latitude, an ability
already found in more-modern sensors.

Using sensors whose variations are barely
discernible means that differences between similar spectra
are not captured as they are easily saturated, seriously
compromising the application of normalised spectral
indices. A high radiometric resolution is essential for
agricultural applications, especially to model crop vigour
(BANDYOPADHYAY et al., 2017) and phytosanitary
problems accurately during the early stages (VANEGAS
et al., 2018), in addition to identifying subtle changes in
the soil when mapping moisture (AINIWAER et al., 2020)
and organic carbon (GUO et al., 2019).

Table 1 - The application of hyperspectral sensors according to the level of spatial resolution

Level of spatial
resolution Altitude Usage Sensor Application

Low > 30 m

-Usually launched by
governments to monitor the

environment and the effects of
global climate change on natural

resources and agriculture.

Hyperspectral
Imager (HySI)

Crop classifi cation
(KHOBRAGADE;
RAGHUWANSHI,

2015)

Medium 5 a 30 m

-The multiple suppliers of these
sensors are at the beginning of a
new frontier, where commercial

startups plan to launch
constellations of cheaper and

more-accessible nanosatellites.

EO-1/Hyperion
Copper stress in

vegetation (ZHANG
et al., 2019)

High 1 a 5 m
-Aerial sources are being heavily

used in local and regional
agricultural applications.

ProSpecTIR
Soil texture

(ALMEIDA et al.,
2020)

Ultra-high < 1 m

-The advent of the
miniaturisation of hyperspectral

sensors enables them to be
placed on board UAVs, and
promises to revolutionise

the detection of agricultural
problems, even for smallholders.

Headwall Micro-
Hyperspec

Leaf carotenoid
content (ZARCO-

TEJADA et al., 2013)

LEVEL OF DATA COLLECTION

Applications of hyperspectral data in modern
agriculture are described in this review according to the
sensor system used, which includes: i) orbital, ii) airborne,
iii) short-range and iv) proximal.

Orbital Systems

The Hyperion sensor aboard the EO-1 satellite
was the most widely used orbital hyperspectral sensor
for agriculture, collecting data in the visible (VIS), near
infrared (NIR) and shortwave infrared (SWIR) bands. Even
after its shutdown in 2017, signifi cant results continue
to be produced worldwide, as in the work of Moreira et
al. (2015) and Moharana and Dutta (2019), when they
established relationships between the vegetation index and
leaf water content in rice based on in situ measurements to
investigate water stress in rice fi elds. In the United States,
Aneece and Thenkabail (2018) focused on the differences
between the fi ve main global crops (maize, soybean, wheat,
rice and cotton) during different growth stages. In order to
do this, using Principal Component Analysis (PCA), the
authors built a spectral library containing the thirty least-
redundant bands capable of carrying out this classifi cation
(Figure 2A). In this study, using only 20 narrow bands, the
best overall precision remained between 75% and 95% for
the various growth stages.
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Measurements of electrical conductivity (EC) in
the laboratory, such as those carried out by Moreira et al.
(2015) employed different metrics in discriminating saline
and non-saline soils in areas of irrigated rice. In this study,
the authors found that, using the Hyperion data, NaCl
resulted in no absorption bands; however, brightness
was the construct that gave the best representation of the
data structure. On the other hand, silviculture benefi ted
when Lim et al. (2019) applied data from the same sensor
to classify the trees of three species in Chinese forests
using machine-learning techniques, such as Random
Forest (RF) and Support Vector Machine (SVM), with
an accuracy of 0.99 and 0.97 respectively. Data from the
CHRIS orbital hyperspectral sensor aboard the PROBA-
1 satellite are commonly used to estimate the leaf area
index (LAI), as in studies by Wang et al. (2016), using an
angular vegetation index based on in situ measurements.

In recent years, several hyperspectral orbital
sensors have been launched or are scheduled for upcoming
launches. Among recently launched but still unavailable
satellites are GAOFEN-5 (2018), PRISMA (2019) and
EnMPA (2020). Some researchers have simulated images
and evaluated the performance of these future sensors in
climate study and agricultural management: research in
which Chen et al. (2017) and Tang et al. (2018) simulated
data from the GaoFEN-5 satellite to model an algorithm
for predicting the temperature of the soil surface and of
waterbodies; Malec et al. (2015) simulated images from
EnMPA to investigate the degree of soil erosion in Costa

Figure 2 - A) Classifi cation of crop type using 30 narrow bands of the EO-1/Hyperion hyperspectral sensor  (ANEECE; THENKABAIL,
2018), and B) Electrical conductivity (EC) of the soil estimated from images from the ProSpecTIR-VS sensor, based on the PLSR
model (ROCHA NETO et al., 2017)

Rica and Castaldi et al. (2015) also carried out simulations
of the PRISMA sensor from spectral data in the laboratory
to estimate clay content, and tried to reduce the infl uence
of soil moisture on these estimates.

 Among the scheduled launches is the SHALOM
mission in 2022, a partnership between the Israeli and
Italian space agencies, with a spatial resolution of 10 m
in the 400–2500 spectral range (STAENZ et al., 2013).
Another sensor is the HyspIRI by NASA, that will cover
the same spectral range with an interval of 10 nm and a
spatial resolution of 60 m (LEE et al., 2015).

Airborne Systems

While satellite data concentrates on more
comprehensive studies, airborne sensors are commonly
preferred when studying regional peculiarities. The aircraft
follow the fl ight plan at medium to high altitude (from 1
to 4 km for CASI; 20 km for AVIRIS) with the acquired
images generally having high to medium spatial resolution
(Table 1), approximately 4 m for the CASI images, 5 m for
HyMap and 20 m for AVIRIS. Image acquisition missions
generally need to be scheduled in advance, on cloudless
days, and at continuing high cost.

Serving as an example are the works of Rocha
Neto et al. (2017) mapping salinity (Figure 2B) in the
soils of Ceará, Brazil. In this study, the authors fl ew
over the area of interest and, during the same period,
revisited the area to collect soil samples. The association
between the EC of the soil and the refl ectance factors
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collected by the ProSpecTIR sensor was made possible
by selecting pure bands, and using PCA and PLS
regression models. In a study on plant stress, Kobayashi
et al. (2016) used the Japanese AISA Eagle sensor with
spectral bands between 430 and 1,000 nm, to map rice
blast, an important disease of the rice panicles.

Since Brazil gained access in 2010, when the
Brazilian FotoTerra® entered into a technological
partnership with the American SpecTIR®, numerous
studies have been carried out in various areas using data
from this sensor, considering many other approaches
in vegetation, such as the mapping of invasive species
with woody formations by Amaral et al. (2015)
and geological mapping by Amaral et al. (2018).
Sophisticated techniques such as continuum removal
could also be implemented for the absorption valley at
680 nm by Sanches et al. (2014) when studying chlorosis
in plants. Specialists in water spectra were favoured by
the studies of Streher et al. (2014), correcting sunglint
in images of fl ooded areas. Airborne sensor data were
especially useful in studies by Almeida et al. (2020) to
determine the texture of a Cambisol in the Chapada do
Apodi, Ceará, employing 357 spectral bands (VIS, NIR,
SWIR).

Short-Range Systems

The frequent acquisition of high-spatial-resolution
images via commercial satellites (nadir and off-nadir)
or contract fl ights can be expensive, especially for
smallholders. Considering that the collection and
processing of images in these systems can suffer a serious
loss of information due to the light being obstructed by the
plant canopies, short-range image sensors are generally
closer to the ground and capable of carrying out strategic
agricultural inspections.

These compact hyperspectral sensors (1 to 2 kg)
contain hundreds of narrow bands in the NIR range and
can be deployed quickly in different vehicles, both manned
and unmanned. Innovative works, such as those by Van
De Vijver et al. (2020), point to a new level in PA. In this
study, the researchers built a hypercar (Figure 3A) capable
of traversing a potato crop and detecting Alternaria Solani.
Using the technique of a convolutional neural network
(CNN), only damaged leaf tissue is stored and classifi ed
as to the presence of the fungus, which greatly optimises
the time and performance of the processing algorithms.

In recent years, the noticeable trend towards
miniaturisation of hyperspectral and more affordable
sensors for commercial use, has prompted researchers
to place them aboard unmanned aerial vehicles (UAVs)
to acquire images of extremely high spatial resolution in
routes and directions that are easily readjusted. Multirotors,

helicopters and fi xed-wing aircraft have been used in
studies of vegetation, among them such works as those by
Kang et al. (2019), placing the Headwall Nano-Hyperspec
sensor aboard the DJI Matrice 600 Pro UAV to inspect
plant health and water quality in Ontario, Canada. PIKA
is another super-light sensor, whose performance was
reported by Abdulridha et al. (2020), when classifying
tomato leaves into healthy and asymptomatic, and the early
and late stages of bacterial spot and target spot. The main
contribution of the work was to emphasise that incorrect or
late diagnoses are followed by inappropriate management
decisions or even application of the wrong chemicals. In
this context, HRS becomes even more important when it
is understood that fi eld analysts may not notice metabolic
changes (such as the initial stages of a bacterial infection),
but can rely on a dedicated device to do so.

Fang et al. (2019), carrying out an environmental
analysis, applied PLSR, SVM and ANN to images
from the Cubert-UHD185-Firefl y sensor to map iron
concentrations in exposed soil. The phenotyping of
high-yield (CHAWADE et al., 2019) and quantitative
resistance to disease in plants (MAHLEIN et al., 2019)
using hyperspectral sensors is already a reality. In this
scenario, it is clear that although the cost of using land
vehicles (FUE et al., 2020) and UAVs on a commercial
scale still requires high investment, small and medium
producers can join together to share useful technologies
in the control of pests and diseases between neighbouring
areas, such as potato virus Y (POLDER et al., 2019) or
black sigatoka in the banana (FAJARDO et al., 2020).

The possibility of obtaining hyperspectral data
more than once a day makes it possible to detect early
anomalies. This revolution is clearly exploited in the works
of Ge et al. (2019) when combining machine learning
with UAV images to monitor soil moisture, as well as
by Tao et al. (2020) when estimating the parameters of
wheat production. Water parameters require rigorous
inspection in studies by Matsushita et al. (2016) and Luo
et al. (2019) when monitoring the quality of waterbodies,
in addition to the methodological adaptations cited by
Kang et al. (2019) when mounting hyperspectral sensors
aboard UAVs. Keller et al. (2018) innovated by combining
machine learning to interpret hyperspectral responses
when estimating chlorophyll-a, diatoms, green algae and
turbidity in water under eutrophication.

Proximal Systems

Despite the unprecedented benefi ts, the
main obstacles to the use of hyperspectral images in
agricultural applications include the high cost of the
sensors/missions, the technical challenges of the signal-
to-noise ratio (atmospheric windows), and processing
large volumes of data on a desktop computer. One
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Figure 3 - A) Vehicle with onboard hyperspectral sensor (VAN DE VIJVER et al., 2020), and B) Saline stress in rice using FieldSpec3
(MOREIRA et al., 2015)

objective alternative are proximal reading devices, in
which numerical measurements are obtained almost
in contact with the target. Despite their limitations in
representing spatial variability over large areas (LU et
al., 2020), these portable devices allow a more accurate
and more representative numerical understanding of a
given target. The refl ectance factors of thousands of
wavelengths can be read in situ, or the samples can
be collected and taken to the laboratory (dark-room)
equipped with a single light source (usually a halogen
lamp).

Hand-held spectroradiometers, such as the
FieldSpec from Analytical Spectral Devices Inc., are
compact alternatives and widely used in the spectral
characterisation (350-2500 nm) of vegetation, as well as
estimating the nitrogen content of the canopy (WEN et al.,
2019) in maize, or potassium defi ciency in cotton leaves
(OLIVEIRA et al., 2020). Soil parameters are also richly
detailed, as in research by Moreira et al. (2015) (Figure
3B), estimating electrical conductivity in saline areas,
Wei et al. (2020) estimating soil arsenic content, and by
Almeida et al. (2020), investigating soil granulometry
using a contact-probe.

As it is an indirect method of estimation, to
obtain an effi cient qualitative and quantitative analysis,
the methods of refl ectance spectroscopy demand a high
rate of accuracy during validation with unpublished
data. This technique is known as chemometrics, and
uses statistical methods to measure the biochemical
concentrations of objects. Studies, such as those by
Sankaran et al. (2010) and Pourezza et al. (2016), on
early detection of the incurable Huanglongbing (HLB)
disease in citrus orchards, have shown that starch
concentrations are signifi cantly higher in infected

leaves than in healthy leaves or in those suffering from
nutrient defi ciency (Figure 4). It is therefore reasonable
to assume that the detection of refl ectance factors above
a certain threshold level can infer the presence of HLB
in the orchard, even before the appearance of visual
symptoms.

Non-imaged hyperspectral data can provide
superfi cial information, albeit strongly related to food
quality, such as the detection of anthracnose in sweet
mangoes (Mangifera indica L.) during post-harvest
(ARDILAet al., 2020) or even when classifying the quality
of honey (CHIEN et al., 2019) and milk (KIMBAHUNE
et al., 2016).

CHALLENGES AND THE OUTLOOK
FOR THE FUTURE

Robustness in data analysis offers more hope to
the agricultural sector. In this brief review, powerful
analytical methods have been explored in recent studies
where HRS could be the link between the challenges
and the understanding of patterns in the agricultural
environment. The management of productive areas
with sub-metric precision (ANGEL et al., 2020),
recognition of plant disease in the canopy and fruit,
post-harvest classifi cation, chemometrics in nutrients,
and differentiating varieties of the same crop (SILVA
JUNIOR et al., 2018) are scientifi cally possible realities
of modern agriculture.

 The achievements listed here were only
possible thanks to the improvement of techniques and
technologies that are capable of organising RS in an
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Figure 4 - Comparison of starch content (SANKARAN et al., 2010) and hyperspectral absorbance (POUREZZA et al., 2016) in
healthy citrus leaves under nutrient defi ciency and infected with HLB

objective, continuous and concrete way. The outlook
for Agriculture 4.0 points to imminent global and local
revolutions. In this scenario, in which the use of ultra-
spectral resolutions is already beginning to be discussed
(KARAS; GRISHKANICH, 2020), in which data
processing and analysis software are inseparable from
the professionals of agricultural science, and in which
multidisciplinary information comes from domains
beyond the visible, it is understood that a “new way of
doing agriculture” has already arrived.
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