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Development of a robotic structure for acquisition and classifi cation of
images (ERACI) in sugarcane crops

Desenvolvimento de estrutura robótica para aquisição e classifi cação de imagens
(ERACI) em cultura da cana-de-açúcar

José Ricardo Ferreira Cardoso1*, Carlos Eduardo Angeli Furlani2, José Eduardo Pitelli Turco2, Cristiano
Zerbato2, Franciele Morlin Carneiro2 and Francisca Nivanda de Lima Estevam2

ABSTRACT - Digital agriculture contributes to agricultural effi ciency through the use of such tools as computer vision,
robotics, and precision agriculture. In this study, the objective was to develop a system capable of classifying images through
the recognition of pre-established patterns. For this purpose, a geographically distributed system was created, based on the
Raspberry Pi 3B+ computer, which captures images in the fi eld and stores them in a database, where they are available
to receive a pre-classifi cation by a supervisor. Subsequently, classifi ers are generated, evaluated, and sent to the remote
device to conduct a classifi cation in real time. For an evaluation of the system, 23 classes were defi ned and grouped into 3
superclasses, 36,979 images were captured, and 1,579 pre-classifi cations were conducted, which allowed the classifi cation
tests to be carried out by means of a cross-validation by randomly dividing into the equivalent number of classes. These tests
revealed that the accuracy delivered by each classifi er is different and directly proportional to the quantity and balance of
the samples, with a variation of 11% to 79%, with 26 and 2,200 samples considered, respectively. The response time of the
system was evaluated during 1,585 periods and was maintained within approximately 0.20 s, and under controlled speed of
the vehicle, can be used for the dispersion of inputs in real time.

Key words: Digital Agriculture. Machine Learning. Open source. Raspberry Pi. Computer Vision.

RESUMO - A agricultura digital contribui com a efi ciência agrícola por meio da utilização de ferramentas como a visão
computacional, robótica e agricultura de precisão. Com este trabalho o objetivo foi desenvolver um sistema capaz classifi car
imagens por meio do reconhecimento de padrões pré estabelecidos. Para este fi m foi criado um sistema distribuído geografi camente,
baseado no computador Raspberry Pi 3B+, que captura imagens no campo e armazena em um banco de dados, onde estão
disponibilizadas para receber uma pré-classifi cação por parte de um supervisor. Depois disso, classifi cadores são gerados, avaliados
e enviados para o dispositivo remoto realizar a classifi cação em tempo real. Para a avaliação do sistema foram defi nidas 23 classes
agrupadas em 3 superclasses, capturadas 36.979 imagens e, realizadas 1.579 pré-classifi cações, que permitiram a realização de
testes de classifi cação por meio de validação cruzada com divisão equivalente a quantidade de classes e de forma embaralhada.
Estes testes mostraram que a acurácia entregue por cada classifi cador é diferente e, diretamente proporcional a quantidade e
balanceamento das amostras, com variação da acurácia de 11% a 79%, com 26 e 2.200 amostras consideradas, respectivamente.
O tempo de resposta do sistema foi avaliado em 1.585 períodos e se mantiveram em aproximadamente 0,20 segundos, podendo,
sob velocidade controlada do veículo, ser utilizada para dispersão de insumos em tempo real.

Palavras-chave: Agricultura digital. Machine Learning. Open source. Raspberry Pi. Visão computacional.
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INTRODUCTION

Despite the diffi culties generated by the cost of
production, mainly concentrated in the harvest, sugarcane
is an important crop in Brazil owing to demand for
products generated through its processing (CONAB,
2020).

Waste from the inputs is considered when
producing the crop. For this reason, to reduce such waste,
and consequently the production costs, while maintaining
the good development of the culture, the use of equipment
with information systems capable of carrying out the
necessary actions in the places previously, has spread.
determined. (BERNARDES; BELARDO, 2015).

The use of technologies in the context of precision
agriculture allows the mapping of soil fertility and the
development of culture with localized management
intervention (RESENDE; COELHO, 2017). Equipment
that obtains information on plant health, such as a canopy
refl ectance sensor and normalized difference vegetation
index sensors, which present responses in real time, has
been used more frequently in the fi eld and is one of the
most promising options for supplying a technological
bottleneck (CASTRO, 2016). In addition to these
technologies, devices interconnected by the network (IoT)
show a clear trend, together with the development of
remote sensing equipment (GIMENEZ; MOLIN, 2018).

In addition, the recognition of the plant of
interest is important to be able to distinguish whether
the application of a certain nutrient or pesticide should
occur (KHMAG et al., 2017). To this end, the leaves
of the plants have proven to be viable sources of
information and are widely used in the identification
of different species. This task is usually conducted by
specialists, which, given the need for high productivity
in the field, is infeasible.

Within the context of agriculture technologies,
several scientifi c studies have used digital image
processing and artifi cial intelligence techniques for the
capture, segmentation, extraction of characteristics, and
classifi cation of images (GONZALEZ; WOODS, 2010;
LUGER, 2013). According to Kang and Oh (2018), the
means by which images are obtained deserves special
attention, and one choice may imply a high performance
of the system while sacrifi cing user convenience, whereas
another choice can bring about great convenience, but
with a performance reduction of the user system.

The concern with the rapid development of
new technologies, i.e., eliminating technology-based
tasks already on the market, has led to a diffusion and
use of software, framework, and opensource hardware
(OSROOSH et al., 2018; MISHRA et al., 2019; SAHU

et al., 2019).The overall objective of the present research
was the implementation of a robotic structure capable of
detecting the presence of sugarcane and weeds, as well as
the absence of plants. The following specifi c objectives
were therefore stipulated: a) acquire and store images in a
database, b) allow the generation of computer knowledge
through computer vision algorithms and manage such
knowledge, c) check the relationship, number of samples
versus accuracy delivered by machine learning algorithms,
d) apply pattern recognition in real time, and e) analyze
the response time of the system, from image acquisition
to classifi cation.

MATERIAL AND METODHS

The Robotic Structure for Image Acquisition and
Classifi cation (ERACI) was designed and developed in
an integrated effort between the Agricultural Machinery
and Mechanization Laboratory (LAMMA) and the
Instrumentation, Acquisition, and Processing Laboratory
(LIAP), both from FCAV/UNESP and campus Barretos
of the Federal Institute of São Paulo between August
2018 and December 2019. Image capture and device
tests were conducted in the municipality of Barretos-SP,
located around the geographic coordinates of latitude 20
° 33 ‘33″ S, longitude 48 ° 34 8″ W and altitude 544, 0
m. According to the Köppen classifi cation, the climate of
the region is classifi ed as Aw (ALVARES et al., 2013).
The average annual rainfall is 1,309 mm, with maximum
and minimum temperatures of 24.5 °C and 19.4 °C,
respectively (CLIMATE-DATA, 2020). The soil presents
well-diversifi ed characteristics passing through the clayey
purple eutrophic latosol on the bank of the Rio Pardo and
sandy red dystrophic Latosol to Argisol in the western part
of the municipality (INPE, 2020).

The diversity of images captured by ERACI was
aimed at adapting the system and conducting an evaluation
under different types of algorithms in the computer vision
and machine learning area, and images of rural and urban
environments that can be grouped into superclasses such
as urban and rural, and more specifi cally, sugarcane crops
were included (Table 1). Altogether, the DRR traveled,
captured images, and was tested within an area of
approximately 17.2 ha.

The system was designed to work under a
modular architecture, with its parts geographically and
independently separated, while guaranteeing security,
scalability, and transparency. These characteristics allow
the exchange of information between the devices that
compose it, in addition to connecting several specialists
through mobile devices (DMs) with a generator and
knowledge manager device (DGGC) and conducting
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a pre-classifi cation of images stored in the database
(Figure 1).

In the installation diagram (Figure 1), the remote
robotic device (DRR) node corresponds to the structure
taken to the fi eld to conducted the image capture and tests.
It  is connected to a node called a router,  which is a TP-
Link® router, model TL-MR 3420, capable of allowing
connection to the Internet through another router through
an RJ-45 wide area network (WAN) port or through
a 3G/4G modem connected to a universal serial bus
(USB) port. When the DRR is connected to the router, it
is possible to make use of a mobile device connected to
the same router for control and monitoring in real time
through the “eraci” application.

The DGGC (Figure 1) has software capable of
storing and managing the data of images, classes, user,
and classifi cations performed by the user exercising the
role of the teacher of the system, within the context of
supervised learning of machine learning. In addition,
the DGGC has the ability to maintain hypertext transfer
protocol (HTTP) services and generate fi les based on
machine learning algorithms, capable of applying pattern
recognition to images. The device represented by this
node is also connected to a TP-Link router; however, the
WR-840N model only allows connection to the Internet
through its RJ-45 WAN gateway.

When both extreme devices, DRR and DGGC,
are in operation and connected to their respective routers
they are, in turn, connected to each other through a wired
network or the Internet, allowing them to exchange
information. In this case, the DRR can send the captured
images to the DGGC, which processes them, extracts the
characteristics, and stores the images and characteristics

in the database. The DGGC sends the classifi er fi les to the
DRR, allowing it to recognize the patterns in the images
that are being “viewed.”

The DM node corresponds to a mobile device
that has an installed ERACI application. Using this
application, it is possible to manage the data stored in
the database, classify the images, control the viewing
angle, and monitor in real time what the DRR is “seeing”
and how the images are being classifi ed. The exchange
of information between the DRR and the DGGC
occurs through transmission control protocol/Internet
protocol (TCP/IP) sockets for text data with control and
monitoring information, and the user datagram protocol/
Internet protocol (UDP-based IP) for image data sent by
the DRR.

The way in which the system is organized allows
several instances of DRR and DM, and the interaction
between them occurs through the computer network
using HTTP, TCP/IP, and UDP/IP. Within a client/server
architecture, each DRR and DM behaves as a client
connected to the DGGC, which is capable of receiving
numerous connections from both clients. Thus, it is
possible that, in a production environment, there may be
several DRRs loading images to a single server capable
of generating increasingly better ML models. To generate
this “knowledge”, it is also possible that there are several
users classifying images for use with ML algorithms.

Each diagram node (Figure 1) has a series of
software components, with the most diverse built-in
functionalities, which are divided into DRR subsystems,
DGGC subsystems, and DM application subsystems. All
of these subsystems were implemented in Java and Python
and run on Android and Raspbian environments.

Figure 1 - System installation diagram showing the devices involved in each of the nodes and how they interact with each other
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To obtain patterns in the images, the characteristics
that were considered, namely, the aspect (mode, mean,
and standard deviation of the image converted into gray
scale), dimension (area and perimeter), and inertial data
(24 moments of the image and 7 invariant moments, as
described by Hu (2012)).

The generation of the image to be classifi ed
followed the procedures below:

Obtain an image within the RGB color space;

Obtain the mode of the image;

Obtain the standard deviation of the image
converted into grayscale;

Convert the image into the HSV color space;

Segment the image by color within the HSV
color space centered on the mode, with the minimum
and maximum thresholds equivalent to the standard
deviation:

a. Minimum threshold = Mode − Standard
deviation;

Maximum threshold = Mode + Standard
deviation.

Detect the edges using Canny edge detection;

Obtain the center of mass of the image;

Obtain the dimensional average of the image;

Draw a circle with a diameter proportional to 10%
of the segmented image area;

Insert a cross at the point corresponding to the
center of gravity of the image with a size proportional to
10% of the diameter of the circle.

For the generation of classifi ers, the following
procedures are applied:

Loading of pre-classifi ed samples;

Superclass 1 Class 1 Superclass 2 Class 2 Superclass 3 Class 3
Weed Sugarcane Tree
Tree Weed Vehicle

Ground Ground Edifi cation

Rural Area
Heaven

Sugarcane crops
Heaven

Urban Area
Sky

Person Tree Person
Vehicle Edifi cation Weed

Edifi cation Vehicle Ground
Agriculture Person

Table 1 - Classes and superclasses used for the classifi cation of a given image

Training of the classifi ers, based on the K-nearest
neighbors (KNN), support vector machine (SVM), logistic
regression (RL), naive Bayes (NB), decision tree (DT),
random forest (RF), and multilayer perceptron (MLP)
algorithms;

Evaluation of the accuracy of each classifi er by
means of the cross-validation method, with the division
equivalent to the number of classes existing in the iteration
and by the “accuracy_score” function of the “scikitlearn”
framework;

Determine the accuracy of the classifi er by
averaging the accuracy results;

Determine the standard deviation of the accuracy;

Storage of the classifi er in the fi le.

The constantly changing sunlight and
overlapping of the research object are two factors that
significantly influence the image recognition, adding
complexities such as color, brightness, and shape
(GONZALEZ; WOODS, 2010). Because the way the
images are captured by the camera directly affects
the performance of the system (KANG; OH, 2018), it
was considered that the characteristics extracted from
the image will be used for the previous classification
by a supervisor, and therefore preference was given
to the reduction of the system response time and
simplification of the capture method, to the detriment
of the application of more robust pre-processing and
feature extraction techniques, such as those applied by
Hao et al. (2019), which achieved an accuracy above
94%.

The generation of a new classifi er was defi ned
to be conducted for every 50 new samples pre-classifi ed
by the supervisor. This is due to the hypothesis that the
methodology used for the classifi cation of the images
is capable of allowing an accuracy proportional to the
quantity, and to the balance of the samples used to generate
the classifi ers.
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The classifi cation of an image follows the
procedures below:

Extraction of image characteristics;

Choosing which classifi er presented the best
accuracy for classifying the superclass;

Estimation of the superclass that best represents
the image;

Choice of which classifi er presents the best
accuracy to classify the class;

Estimation of which class best represents the
marked area of the image;

Estimation of the accuracy delivered by the system
using simple averages (Equation 1) below.

                                                                                       (1)

Where acc is the estimated accuracy, accsupc is
the accuracy of the superclass classifi er, accsubc is the
accuracy of the class classifi er, and pp is the result of the
“predict_proba” function abstracted from the “scikitlearn”
framework. Thus, each of the classifi ers received values
by referring to the parameters presented in Table 2 and
as output values relative to those presented in Table 1.
The classifi ers SVM, RL, and NB used the standard
confi guration specifi ed by the framework. The classifi ers
KNN, DT, RF, and MLP were structured as listed below,
with the missing parameters maintaining their values
standardized by the framework:

K-Nearest Neighbors (KNN): The neighborhood
used is determined at run time with its value being an odd
number, from 1 to the number of possible classes for a
sample.

Decision Tree (DT): This was parameterized to use
the entropy method and establish the nodes of the tree.

Random Forest (RF): The number of trees used
is defi ned at runtime, and its value can vary between 1
and 40. It has also been parameterized to use the entropy
function and establish the nodes of each tree.

Multilayer Perceptron (MLP): The best
confi guration for the MLP to be used by the algorithm was
achieved through trial and error, and it was shown that, to
reach the best classifi cation result, it was convenient to
use 1000 iterations, with a learning rate of 0.000010 and 4
hidden layers with 400 neurons each.

To verify whether the algorithms are learning as
the samples are inserted, a process was created at the
DGGC that adds 50 samples to each iteration in a cyclic
generation function and extracts those values related to

accuracy under this determined quantity of data. This
quantity was stipulated at random, and aims to allow the
generation of data that describe the evolution, or not, of
the accuracy of the algorithms.

In the accuracy verifi cation process, cross-
validation was used with the number of divisions
equivalent to the number of classes present in each
iteration, and scrambled the samples in each of them
(LISKI et al., 2020). The choice of this method for
checking the accuracy is due to the number of samples in
each iteration being different and unbalanced.

The DRR was implemented on a Raspberry Pi
(RPI) computer, and the connection between it and each of
the modules is through the general-purpose input/output
(GPIO) pins.

To avoid exposing the hardware to any damage
with regard to, mainly, the accidental disconnection of
a cable, a plastic structure was wrapped around it while
maintaining the accessibility to the buttons, pan-tilt
structure, camera, infrared refl ector, power bank, HDMI
terminal, and terminals for powering the RPI and charging
the sealed 12V battery. In addition, holes were created to
allow access to the memory card, RJ45, and USB terminals.
These holes were closed with plastic plates screwed into
the fairing of the robot (Figure 2).

To capture the images, the DRR was attached
to a 2008 Volkswagen Fox by pressing it into the
side window of the left side door (driver’s side). In
an interesting Thus, the parts used by the infrared
reflector and camera are on the outside of the vehicle,
and the remaining parts, such as the buttons and the
light-emitting diode (LED) indicator, remain on the
inside. The distance between the ground, at a flat
location, and the camera of the device remained at
approximately 1.35 m, and a variation of up to 0.15 m
may have occurred because of existing irregularities in
the terrain when capturing the image.

The DGGC was implemented on a Raspberry Pi
model 3B + computer and was confi gured to store the
data necessary for the generation of knowledge and its
management. A HAT module with a 3.7 V lithium battery
and 3800 mAh, capable of managing the energy supply
and guaranteeing an operating autonomy of up to 3 h, was
used without power from the power outlet. This strategy
was applied to mitigate the corruption of data stored on
the RPI memory card owing to fl uctuations and power
outages. To help reduce the temperature in the RPI, a
heatsink with a cooler tower type was added.

The DRR is made up of software that runs as
a service of the Raspbian operating system, which is
capable of allowing, at runtime, settings to be made
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regarding the DGGC addressing, communication port
numbers, security passwords, form of image capture,
and task performance, as shown in Table 3 (CARDOSO,
2020). The confi guration data required for the device to
function are stored in a text fi le on the device itself in
encrypted form using the MD5 technique (LANDGE;
SATOPAY, 2018).

To allow an analysis of the time spent by the DRR
to conduct all processes related to computer vision, using
the images captured by the camera to the recognition

Table 2 - Fields and respective types of data used for training and testing the algorithms

Number Field Type Variation
1 Red Mode Integer 0 – 255
2 Green Mode Integer 0 – 255
3 Blue Mode Integer 0 – 255
4 Red Mean Float 0 – 255
5 Green Mean Float 0 – 255
6 Blue Mean Float 0 – 255
7 Gray mean Float 0 – 255
8 Red standard deviation Float 0 – 255
9 Green standard deviation Float 0 – 255

10 Blue standard deviation Float 0 – 255
11 Gray standard deviation Float 0 – 255
12 hu1 Float ∞
13 hu2 Float ∞
14 hu3 Float ∞
15 hu4 Float ∞
16 hu5 Float ∞
17 hu6 Float ∞
18 hu7 Float ∞

of patterns with the generation of new images with
information regarding the classifi cation, a method was
added to this subsystem that receives the time elapsed
between these two milestones and stores it in a text fi le.

Similar to the DRR, the DGGC is composed of
software initialized as a service of the Raspbian operating
system. These are responsible for the execution of tasks,
such as data storage, provisioning of HTTP services, the
extraction of image characteristics, and the generation of
classifi ers using machine learning techniques.

Figure 2 - Robot with plastic structure for protection
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Postgree is used as the database management
system and is structured within the relational paradigm,
enabling security restrictions. The data stored there
include images, characteristics, users, classes, and
classifications. To allow a manipulation of the data
stored in the database by the systems involved, all
developed within the paradigm of object-oriented
programming (OOP), the SQLAlchemy framework is
used to map the records stored in the objects and vice
versa (CARDOSO, 2020).

For information protection reasons, all data
transfer between devices connected to the DGGC takes
place through HTTP services, such as GET, POST, PUT,
and DELETE, with authentication requirements and
in accordance with the Representational State Transfer
architecture (CARDOSO, 2020).

To ensure that the database can be restored and
thus guarantee the security and integrity of the data, a
shell script was created allowing the data stored to be
periodically backed up. Likewise, a shell script was
created to purge these backups to mitigate the probability

Table 3 - DRR subsystems

Subsystems Function

Robot startup This loads the other subsystems needed for the device to
function.

Control
This shuts down and restarts the system, captures images

and video clips, and moves the robot and positions the
camera.

Monitoring

This monitors the operating time, low-voltage alert, date
and time (hour and minute) when the last data storage

took place, and the global positioning, and if necessary,
activates the control subsystem to prevent a device

shutdown.

Archiving

This verifi es at 60-s intervals new fi les stored in the
image and video directories, and when connected to the
Internet, transfers the fi les to the database located at the

DGGC.

Communication

Whenever available, this makes a validated password
connection with the DGGC and DM and allows image

data, classifi ers, real-time supervision, and device control
to be exchanged.

Vision

This captures images using the camera, extracts their
characteristics and submits them to the classifi er

algorithm. From the recognition of the image superclass
and the associated item with the center of mass of the

segmented image, a new image is generated and is
available to be sent to the supervisory system installed
in the DRR, with information regarding the superclass,

class, and estimated accuracy, according to (1).

of overloading the capacity of the data storage unit,
intended for this purpose.

An application called “eraci” was developed
running on the Android operating system. Its
functionalities are related to data management, image
pre-classifi cation, and DRR supervision. In this way, this
application mitigates the risks related to the protection
of image data and pre-classifi cations carried out by an
unauthorized person. This application receives a marked
image of the web services subsystem, where the user can
apply its exclusion or classifi cation. In addition to these
features, it is composed of a local supervisory subsystem
capable of real-time viewing regarding how the image is
being classifi ed by the DRR, in addition to enabling the
positioning of the camera, as needed.

The pre-classifi cation of the images takes place
by the user connected to the system through the “eraci”
application installed in the DM, along a call to be
made to the web service subsystem in the DGGC. This
service sends the applicant a marked image, obtained at
random.
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RESULTS AND DISCUSSION

The development of the system under the
distributed systems architecture made it possible to
establish, through the “eraci” application installed in
the DM, the possible classes to which an image can
belong. In this way, the classes were organized into
superclasses and classes, with the purpose of allowing a
given class to belong to a superclass that best represents
a group of images (Table 1). These superclasses allowed
the grouping of classes categorically into rural area,
sugarcane crops, and urban area.

 Through the DRR, it was possible, between
September 4, 2019 and January 24, 2020, to capture 36,979
images, among which images of sugarcane were captured
at different stages of development. Between December
20, 2019 and February 25, 2020, 2,200 images were pre-
classifi ed, and distributed at rates of 44% (urban area),
43% (sugarcane crops), and 13% (rural area). With the data
generated using the cross-validation accuracy verifi cation
process, graphs were generated that showed the relation
between the number of samples and the accuracy of the
classifi cation algorithms (Figures 3-9).

As can be seen in the graphs (Figures 3-9), the
minimum quantity for regularity (MQR) occurs along
with the lowest accuracy delivered by the respective
algorithm or global minimum, and remains in constant
growth, with the occurrence of fl uctuations, in which the
minimum iteration does not present an accuracy of less
than that presented in the MQR.

Based on the hypothesis that the use of a random
classifi cation methodology would provide (100/7	∼	14%)
and (100/8	∼	12%) chances for a correct classifi cation to
be carried out. It was considered that, to ensure that the
algorithm recognizes patterns and make decisions based
on the algorithms, the accuracy must be greater than
14% for the urban area and greater than 12% for the rural
and sugarcane crop areas. It is reasonable to expect that
these levels of accuracy will increase as the number of
samples increases, along with the trend of quantitative
equilibrium.

From the data resulting from the estimation of
accuracy, it was found that, initially, owing to the low
variability of the categories, the accuracy of the classifi ers
proved to be greater. However, as the number of categories
increased, there was a greater diffi culty in applying the
classifi cations, resulting in a lower accuracy delivered by
the algorithms. The analysis of the graphs also showed
a constant increase in accuracy from a certain amount
of data, with oscillations proportional to the increase in
categories, and in a marked way, to the oscillations, when
using the KNN and RF algorithms according to the number

of neighbors and trees used, respectively. For this reason,
greater importance was given to discovering the amount
of pre-classifi ed data, for which the algorithms begin to
show signifi cant accuracy.

For this purpose, information for each categorical
group was gathered in Tables 4-8, i.e., information
regarding the point on the graph where positive and regular
growth of the accuracy occurs. It was verifi ed that this
point is equivalent to the global minimum of the function,
which relates the accuracy to the quantity of the samples,
and is called the MQR.

When the MQR is analyzed in terms of the
classifi cation of superclass, it should be noted that the
MLP classifi er reaches this point with 1,250 samples, with
an accuracy close to 74% and an approximate standard
deviation of 0.084 (Table 4). From this point on, variations
in accuracy occur. In the 2,200 samples, the approximate
accuracy is 79% with a standard deviation of 0.007.

For this purpose, information on each categorical
group was gathered in Tables 4-8, including information
regarding the point on the graph where positive and
regular growth in accuracy occurs. It was verifi ed that
this point, i.e., the MQR, is equivalent to the global
minimum of the function, which relates the accuracy
with the number of samples.

When the MQR is analyzed in terms of the
classifi cation of the superclass, it should be noted that the
MLP classifi er reaches this point with 1,250 samples, with
an accuracy of close to 74% and an approximate standard
deviation of 0.084 (Table 4). From this point on, variations
in accuracy occur. In all 2,200 samples, the approximate
accuracy is 79% with a standard deviation of 0.007.

When the MQR is observed in terms of the
classifi cation of the classes belonging to the sugarcane
group, this point is reached by the RF classifi er, with
approximately 36% accuracy and a standard deviation of
0.063. When all samples are considered, its accuracy is
close to 69% with a standard deviation of 0.029. Table
5 shows that, although the MLP is not the classifi er that
reaches this point fi rst, it reaches it with 185 samples with
better accuracy than that delivered by the RF. A negative
point regarding the MLP for this result is that it presents
a standard deviation with a higher value, thus showing
greater uncertainty regarding the forecasts.

When the analysis is conducted in terms of the
classifi cation of the classes belonging to the rural area
cluster, it has to start at the beginning, with an MQR equal
to 10 (Table 6). At this value, the KNN, MLP, and NB
classifi ers start the classifi cation on a regular basis. The
accuracy presented by the NB classifi er is disregarded
because it is unable to conduct the classifi cation at this
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Figure 3 - Relation between quantity of samples and accuracy of the KNN algorithm. (a) superclass and (b) sugarcane crops, (c) rural
area, and (d) urban area classes

Figure 4 - Relation between number of samples and accuracy of the RF algorithm: (a) superclass and (b) sugarcane crop, (c) rural area,
and (d) urban area classes
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Figure 5 - Relation between number of samples and accuracy of the DT algorithm: (a) superclass and (b) sugarcane crop, (c) rural area,
and (d) urban area classes

Figure 6 - Relation between number of samples and accuracy of the NB algorithm: (a) superclass and (b) sugarcane crop, (c) rural area,
and (d) urban area classes
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point; however, it shows, along with the other classifi ers,
an evolution in its accuracy (Figure 6c).

Considering the accuracy delivered by these three
algorithms, KNN and MLP (Figure 3c and Figure 9c)
show a similar positive evolution, with an accuracy of
12.5%   and a standard deviation of approximately 0.21
(Figure 6). Although this accuracy is not the desired
level because it is equivalent to the accuracy obtained
when using any means of random classifi cation, it shows
a signifi cant improvement, with fl uctuations and the
minimum value during each iteration reaching greater
than 12.5%.

The accuracies of the NB, KNN, and MLP
algorithms for all 234 samples were 35% (standard
deviation of 0.091), 39% (standard deviation of 0.066),
and 39% (standard deviation of 0.087), respectively.

The NB classifi er was the fi rst to achieve the
RMS for classifying the urban area cluster classes with
249 samples (Table 7). The accuracy at this point was
approximately 38%, and the standard deviation was
approximately 0.064. When all samples were used,
the accuracy was 45% and the standard deviation was
0.0379.

Figure 7 - Relation between number of samples and accuracy of the RL algorithm: (a) superclass and (b) sugarcane crop class, (c) rural
area, and (d) urban area classes

One of the reasons for the oscillation in accuracy
throughout the process of increasing the samples for
training is the imbalance in relation to the number of
categories during each process (RUSTOGI; PRASAD,
2019). This fact allows the algorithms to become
extremely good at recognizing patterns related to a certain
category, and poor at others having fewer samples.

Through an analysis of these data, it is possible
to state based on the residual mean square that the
methods applied to conduct the classifi cation of the
images have a tendency to achieve a better accuracy.
Thus, the accuracy delivered by the algorithms tends to
increase proportionally with the increase in the number
of pre-classifi ed records.

Owing to the variation in accuracy delivered by the
algorithms, it can be stated that the strategy of checking
at runtime which algorithm delivers the highest accuracy
for the classifi cation is valid because, in this way, the
classifi er that best suits the number of pre-classifi ed data
is always used for training.

Using the data from the fi le generated by the
proposed method and applied to a computer vision
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Figure 8 - Relation between the number of data and the accuracy of the SVM algorithm: (a) superclass and (b) sugarcane crop, (c) rural
area, and (d) urban area classes

Figure 9 - Relation between number of data and accuracy of the MLP algorithm: (a) superclass and (b) sugarcane crop, (c) rural area,
and (d) urban area classes
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Table 4 - Residual mean square related to classifi ers for the classifi cation of superclass

Table 5 - Residual mean square related to the classifi ers for the classifi cation of the sugarcane crop classes

Classifi er QMR Accuracy Standard deviation
DT 1800 68,72222222 0,007737993

KNN 2000 66,90078384 0,011677682
MLP 1250 74,0803511 0,084252265
NB 2150 55,53425846 0,011706561
RF 2050 59,90313346 0,011707259
RL 1650 73,87878788 0,013388316

SVM 1600 62,99735556 0,036370276

Classifi er QMR Accuracy Standard deviation
DT 161 38,53276353 0,085595626

KNN 161 40,26590693 0,134091588
MLP 185 42,6344086 0,108922396
NB 220 39,96496496 0,0708332
RF 134 36,52832675 0,063101137
RL 134 46,31093544 0,108465841

SVM 185 42,16845878 0,067352286

Table 6 - Residual mean square when classifying rural area classes

Classifi er QMR Accuracy Standard deviation
DT 26 22,61904762 0,132030197

KNN 10 12,5 0,216506351
MLP 10 12,5 0,216506351
NB 10 0 0
RF 117 18,64035088 0,087667748
RL 26 11,30952381 0,120673422

SVM 147 26,58333333 0,109196349

Table 7 - Residual mean square when classifying urban area classes

Classifi er QMR Accuracy Standard deviation

DT 967 51,49975718 0,039464116

KNN 926 54,52869711 0,034832129

MLP 966 52,27743271 0,058860741

NB 249 38,90824623 0,064327257

RF 969 47,79605347 0,050603489

RL 915 53,67145396 0,045285085

SVM 915 51,48922142 0,060668246
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Figure 10 - Processing time required to apply all procedures for extracting the characteristics and recognizing patterns in the image
captured in real time using the DRR over a period of 1.585 s

subsystem, a graphic was generated that allows an analysis
of the values  (Figure 10).

An analysis of the data that served as the basis
for the generation of the response time graph (Figure 10)
showed that the time spent for processing the data, from
capturing the image to recognizing the patterns within
the image, varies by approximately 0.0757 and 1.6956
s, which gives the device an average processing time of
0.196 s, with a standard deviation of 0.0992 s.

The trend line of the graph, shown by the red
dashed line, shows that the response time tends to be
close to 0.2 s, which ensures that the system can be used
to conduct real-time classifi cations. However, the results
suggest that it can be used in production only when the
speed of the vehicle, to which the DRR is attached, is
controlled by the DRR itself, which should allow the
classifi cation of a new image only after a classifi cation
has been completed.

CONCLUSION

1. ERACI was made using open source resources, with
software available for free and low-cost computer-based
hardware focused primarily on computer education.

Its development demonstrated that the Raspberry Pi
computer can be expanded for the development of more
robust projects, serving not only as a prototyping plate,
but also as a processing unit for robotic systems aimed
at productive sectors, and is thus an alternative low-cost
computing resource;

2. The system made it possible to carry out the acquisition
and storage of the images captured in a database in an
automated and intelligent manner, because it is able to
detect when a possible connection occurs between the
DRR capturing the image and the DGGC storing the
image in the database;

3. Another aspect desired for the system is the ability
to generate knowledge through computer vision
algorithms, in addition to being able to manage this
knowledge. These objectives were achieved through
the DGGC module, which conducts the extraction of
the characteristics and the generation of knowledge
in a cyclical and automatic manner. In addition, it
provides web services for the management and
sharing of generated knowledge;

4. Pattern recognition in images was achieved through
the DRR, which is able to capture images, send them
to the DGGC, obtain the classifiers through access
to a service published by the DGGC, and conduct
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the pattern recognition in real time, along with the
ability to choose which classifier to use at runtime
because it takes into account that one classifier may
be more accurate than another in view of the number
of samples and their variability;

5. Finally, that ERACI achieved the objectives initially
proposed, and the system can be improved through
the application of more robust algorithms for the
recognition of patterns and through the implementation
of a robotic structure capable of enabling autonomous
locomotion. These desired characteristics can be
implemented in future projects.
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