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Computer vision applied to food and agricultural products

Visão computacional aplicada a alimentos e produtos agrícolas

Juliana Aparecida Fracarolli1*, Fernanda Fernandes Adimari Pavarin2, Wilson Castro3* and Jose Blasco4

ABSTRACT - Computer vision (CV) has been applied for years to automate many human activities. It is one of the
key technologies for the modernization of the agri-food industry towards the fourth industrial revolution (Industry
4.0). In the agricultural sector, CV systems are applied to automate or obtain information from many agricultural tasks
such as planting, cultivation, farm management, disease control, weed control or robotic harvesting. It is also widely
used in postharvest to automate and obtain objective information in processes such as quality control and evaluation,
damage detection, classification of fruits or vegetables in commercial categories or composition analysis. One of the
main advantages is the ability of this technology to obtain information in regions of the spectrum that are invisible to
the human eye. An example is the case of hyperspectral imaging systems. These systems generate a large amount of
data that needs to be processed efficiently, creating robust and repeatable statistical models that allow the technology
to be implemented at an industrial level. To achieve this, it is necessary to couple CV systems with advanced artificial
intelligence tools such as machine learning or deep learning. The objective of this work is to review the latest advances
in CV systems applied to food and agricultural products and processes.
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RESUMO - A visão computacional (CV) tem sido aplicada há anos para automatizar muitas atividades humanas. É uma
das tecnologias-chave para a modernização da indústria agroalimentar em direção à quarta revolução industrial (Indústria
4.0). No setor agrícola, sistemas CV são aplicados para automatizar ou obter informações de muitas tarefas agrícolas, como
plantio, cultivo, gerenciamento de fazenda, controle de doenças, controle de ervas daninhas ou colheita robótica. Também é
amplamente utilizado em pós-colheita para automatizar e obter informações objetivas em processos como controle de qualidade
e avaliação , detecção de danos, classifi cação de frutas ou vegetais em categorias comerciais ou análise de composição. Uma
das principais vantagens é a capacidade desta tecnologia de obter informações em regiões do espectro invisíveis ao olho
humano. Um exemplo é o caso de sistemas de imagens hiperespectrais. Esses sistemas geram uma grande quantidade de dados
que precisam ser processados de forma efi ciente, criando modelos estatísticos robustos e repetíveis que permitam a tecnologia
a ser implementada a nível industrial. Para isso, é necessário acoplar os sistemas de CV a ferramentas avançadas de inteligência
artifi cial, como aprendizado de máquina ou aprendizado profundo. O objetivo deste trabalho é revisar os últimos avanços em
sistemas de CV aplicados a alimentos e produtos e processos agrícolas.
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INTRODUCTION

The main objectives of future agriculture are to
increase productivity and food quality, reduce operations
costs, and optimize input use. Therefore, the development
of computer vision and its application in the development
of non-destructive methods, precision agriculture, etc.,
enables us to automate and accelerate fi eld, harvest,
and post-harvest operations, essentially creating a new
branch of Industry 4.0 called Agriculture 4.0. This type
of agriculture integrates data and information to monitor
fi eld activities by applying remote and proximal sensing
(PALLOTTINO et al., 2019).

Computer vision allows several activities. Recently
is being researched fruit count on orchards (although the
occlusion), disease plant detection, and defects detection in
fruits. CV also improves the robot’s capacity to determine
the fruit harvest point, and nowadays, CV is further used
to identify and estimate fruit weight supermarkets.

In addition, consumer interest in food quality and
safety is increasing, primarily owing to international food
trade, which requires rapid and non-destructive inspection
methods (OK et al., 2019). Similarly, the prediction of
quality parameters, identifi cation of adulteration and
variety, discrimination of origin, etc., are activities of
interest in the evaluation of agri-food products but are
currently based on offl ine and destructive techniques
(WANG; SUN; PU, 2017).

The development of sensors has enabled us to obtain
big data in a non-destructive manner, reducing analysis
costs and time. Several sensors that detect and monitor
electromagnetic waves combined with new techniques of
image processing, machine vision, and computer science
are used to build smart systems for Agriculture 4.0.

Based on this, this review presents state-of-the-art
computer vision systems for proximal sensing (food and
agricultural products close or in contact with sensors),
including the actual type of systems, processing, and
applications.

BASIS OF COMPUTER VISION

Computer vision systems, coupled with artifi cial
intelligence (AI), have become more critical to the use
of the Internet of Things and its recent applications in
the agriculture and food industry. These systems enable
machines to distinguish and understand the actual world;
AI is a tool that enables machines to perform tasks that
humans can do, combining observing, interpreting,
elucidating, and problem-solving simultaneously as the
machine interacts with the environment. This means

that machines can receive external inputs and adapt their
activities appropriately, becoming what are known as
smart machines (GOLLAPUDI, 2019).

Smart machines in agriculture reduce the farmer’s
costs because robots can operate without a break and
perform tasks such as plowing, sowing, fruit harvesting,
and pesticide spraying. Machines and equipment perform
operations using digital visual data such as images from
commercial cameras, graphical data, video, and heat
intensity maps; these constitute the computer vision’s core
input. The machines include smartphones, drones, closed-
circuit televisions, magnetic resonance imaging (MRI)
scanners, different sensors, and visual data sources such
as webcams, cameras, video recorders, and scanners.

The machine vision process involves image
detection and classifi cation, image segmentation,
object detection, face recognition or similarity learning,
optical character recognition, motion tracking, image
reconstruction, and image captioning, which describes an
image using text.

Computer vision is being applied to automotive
solutions, surveillance cameras, healthcare, biomedicine,
and the market. Agricultural applications include vision
in robots, sensors coupled in tractors, self-propelled
machines, fi eld machines (applied to fertilizer or
pesticide), plant disease detection, weed identifi cation,
seed recognition, obstacle detection, fruit counting and
picking, post-harvest machines (fruit selection), and
quality of agricultural and food products.

New vision systems originating from sensors
recently applied to research may constitute computer
vision. This article includes technology such as
multispectral and hyperspectral cameras, biospeckle,
terahertz (THz) cameras, and recent research involving
new sensors and new AI techniques. This review article
addresses computer vision applications involving non-
destructive techniques in determining quality parameters,
mechanical properties, composition, appearance,
identifi cation of defects and grading of fruits and
vegetables, three-dimensional (3D) reconstruction, plant
disease detection for smart farming, and advanced quality
control of fruit post-harvest.

An image is a two-dimensional (2D) matrix
composed of pixels containing the element located in the
image and surface information described by intensity values,
for example, color and texture in the visible spectrum.

The image processing can vary, but some steps are
similar: segmentation, feature extraction, and application
of a dimension reduction method such as principal
component analysis (PCA) to reduce classifi cation
information, and the employment of a classifi cation
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technique. Classifi cation techniques include statistical
techniques (STs), neural networks (NNs), support vector
machines (SVMs), and fuzzy logic (FL)  (MAHENDRAN;
AJAY VINO; ANANDAKUMAR, 2016). Machine
learning techniques, particularly deep learning, have been
used with signifi cant success in computer vision.

Furthermore, the recent improvements in deep
learning, such as image classifi cation, object detection,
tracking, and image manipulation, enable new explorations
of more complex and autonomous machine applications
such as self-driving vehicles, humanoids, and drones.

Acquisition Systems

A typical digital image is obtained by recording
radiant energy in the visible spectrum into a 2D array of
numbers. An example of image formation is the conversion
of visible light (absorbed, refl ected, and scattered) into
a camera’s electrical signals (ABDULLAH, 2016).
Here, the acquisition system consists of an illumination
source, a camera, a frame-grabber for analog-to-digital
conversion, a computer, and a monitor to visualize the
information.

Recently, the electromagnetic spectrum used
in research has been expanded to increase the range
of machine vision applications. Initially, only cameras
in the visible light range were used; in recent times,
research on camera systems that enable the observation
of various parts of the electromagnetic spectrum has
been conducted. Examples include camera systems such
as computed tomography (CT), MRI, nuclear magnetic
resonance (NMR), single-photon emission computed
tomography (SPECT), positron emission tomography
(PET), infrared and radio cameras (ABDULLAH, 2016),
multispectral and hyperspectral cameras, biospeckle, and
THz cameras.

Various cameras, ranging from the successful
charge-coupled device (CCD) cameras to those using
complementary metal–oxide–semiconductor (CMOS)
technology, have been used. Using a single-chip CCD,
monochrome imaging for sensing visible (Vis) or near-
infrared (NIR) electromagnetic waves can be obtained.
Color images can also be acquired using a single-chip
CCD by modifying the CCD device’s pixels for red,
green, and blue (RGB) color acquisition. A three-chip
CCD camera can be used for color image acquisition
(MAHENDRAN; AJAY VINO; ANANDAKUMAR,
2016).

CCD cameras are widely employed in the
analysis of food and agricultural products, facilitating
the acquisition of exterior characteristics of objects
such as color, shape, size, texture, and surface damage
(MAHAJAN; DAS; SARDANA, 2015).

Visible and NIR spectroscopy enables the
evaluation of the chemical composition and internal
structure of agricultural products. These systems are
frequently composed of an infrared source, a wavelength
isolator, a detector, and a data processor. The most
common sources are tungsten, halogen, and quartz–halogen
lamps. Ren et al., (2020) used a Vis-NIR spectrograph
with wavelengths ranging from 350 to 1100 nm with a
spectral resolution of 5 nm and two 150-W halogen lamps
to acquire hyperspectral data of tea.

X-ray CT is formed using an X-ray tube, a beam
collimator, and a detector. The images are formed after
high-energy photon penetration and attenuation of X-ray
radiation (CAKMAK, 2019).

The acquisition system for Raman spectroscopy is
based on an excitation source at a wavelength range from
visible to infrared, a wavelength separator, and a spotter
as a CCD.

COMPUTER VISION TECHNOLOGIES

Color imaging

Advances in artifi cial vision enable us to
obtain new knowledge and increase the effi ciency and
objectivity of inspection processes. This is because
of the increase in the camera capabilities that enable
obtaining higher resolution images (even in regions of
the spectrum that are invisible to the human eye), a high
capacity of computers to process data at high speed, and
the evolution of system storage and communications. The
automation level has increased exponentially in recent
years, while equipment prices have decreased, enabling
the creation of practical and complex applications, such
as those related to the inspection of agricultural products
(CUBERO et al., 2011).

Color cameras are the most widely used for
computer vision because they capture images similar to
those perceived by the human eye. The technology for
acquiring these images is relatively inexpensive and
very advanced, and some highly developed techniques
to process information from these types of images exist.
Color is an important quality characteristic for consumer
acceptance, either aesthetic or linked to functional
attributes and the stage of product development
(PATHARE; OPARA; AL-SAID, 2013). In nature, the
perceived color is primarily determined by different
types of pigments such as chlorophylls, carotenes,
xanthophylls, and anthocyanins, which offer information
on the type and state of the plants and their fruits (WALSH
et al., 2020). For example, color is used to estimate the
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ripeness or some internal quality parameters of fruits.
Nevertheless, as this is a subjective human perception,
tools to measure, quantify, and compare colors are
required. These are color spaces that are mathematical
models representing colors (DE-LA-TORRE et al.,
2019; PALLOTTINO et al., 2019). Frequently, the color
space selected in digital images is RGB, which is native
to cameras and computers. However, other color spaces,
such as CIELAB or hue, saturation, and value (HSV),
are also widely used as they attempt to represent human
perception (DE-LA-TORRE et al., 2019).

Le Nguyen et al. (2020), measured the quality of
sweet cherries by measuring the color of the surface as
color is closely related to parameters such as anthocyanin
concentration, sweetness, and fruit-specifi c fl avor. The
hue component was correlated with soluble solids content
(SSC), fi rmness, respiration rate, and weight loss, achieving
R2 values greater than 0.92 in all scenarios. The estimation
of the internal quality of pomegranates using the color of
the peel was investigated by Fashi et al. (2019). The aril
color and size could be predicted with an R2 of 0.94 using
artifi cial neural networks (ANNs). Huang et al. (2018),
evaluated the internal quality of mangoes by integrating
textural information obtained using a CCD camera with
color information provided by a colorimetric sensor array.
The changes along the time of these parameters were
related to hardness and total soluble solids (TSS) content.
Color indices are some of the most commonly used tools
to describe colors and quantify the color of fruits such
as citrus fruits or tomatoes. Hadimani and Mittal (2019)
compared the traditional citrus color index (CUBERO
et al., 2018; VIDAL et al., 2013) with the CIELAB
coordinates a* and b*, obtaining better results to describe
the color of mandarin cv. “Kinnow” fruit. They also
analyzed the relationship between the fruit’s exterior peel
color and its internal characteristics. Bello et al. (2020),
related color indices based on RGB coordinates to quality
parameters of tomatoes and maturity stages. In a similar
study, Costa et al. (2020), combined color information
in RGB, CIELAB, and HSV coordinates to predict the
physicochemical quality properties of coffee fruits cv.
“Robusta”. Cherry, immature, and over-ripe coffee fruits
were correctly classifi ed in 100% of the scenarios. One
of the principal applications of color measurement is
the estimation of the maturity stage. This property was
determined by Santos Pereira et al. (2018) for papaya by
analyzing twenty-one color features based on the RGB,
CIELAB, and HSV color spaces.

When images are acquired, they are processed
to obtain useful information. This task requires the
development of effi cient, robust, repeatable, rapid, and
accurate processing algorithms. The analysis of these
images provides information on the color, texture, or

external properties as well as defects of objects. Among
the essential steps of this process are segmentation, which
consists of dividing the images into regions of interest
(ROIs), and the extraction of characteristics to obtain the
desired information from the regions or objects found
(RUSS; NEAL, 2018). Segmentation can be performed
using different approaches. Some are based on locating
regions by searching textures, boundaries, or colors,
while others classify individual pixels by attending some
previous training.

Sharif et al. (2018), used a technique based on
the multiclass SVM for citrus disease classifi cation.
After segmentation, color, textural, and geometric
features were used to analyze images of oranges with a
variety of peel defects. Color and textural features were
also used by Zhang et al. (2020), to segment images of
apple orchards and detected apples with similar colors
to the leaves. Segmentation can be performed using a
supervised method, with which the user must input some
previous knowledge to the model, or an unsupervised
method, with which no user intervention is required. Tian
et al. (2019), developed an unsupervised segmentation
method based on the k-means technique to segment
diseased tomato plant leaves. Among the principal
features observed in fruit inspection, those related to the
quality perceived by consumers, such as size and color,
have been the most studied. Liu et al. (2019a), designed
a classifi er based on computer vision to grade tomatoes
based on their color, diameter, and shape using different
image processing algorithms. Volume is not as used as a
marketing decision but can be used as a weight estimator.
The volume of mangoes was estimated by Mon and
Zaraung (2020) from the length and obtained through
the processing of 2D images. Morphological features
from color images have also been extracted and used to
individually detect kiwis arranged in clusters. Here calyx
detection had an important function in separating and
identifying individual fruits (FU et al., 2019).

Because of the ease of imitating the human eye,
the development of rapid and effi cient algorithms, and the
processing power of computers, these systems have been
used to analyze agricultural products on inspection lines
in real-time, for instance, for mangoes (IBRAHIM et al.,
2016), peaches (LIet al., 2016), apples (UNAYet al., 2011),
mandarins (BLASCO et al., 2009b) and pomegranate
arils (BLASCO et al., 2009a). In these electronic sorters,
the fruit travels at a very high speed on a conveyor belt.
When the fruit passes under a camera, several images are
captured while the fruit rotates so that most of its surface
is captured. All systems must be synchronized to capture
the images in the exact moment and deliver the fruit by
the outlet corresponding to the category decided by the
inspection software (ALEIXOS et al., 2002).
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Hyperspectral Systems

As stated earlier, systems based on color images
are widely used in the industry to estimate the external
characteristics of products. However, some internal
damages or specifi c organoleptic characteristics are not
visible and cannot be detected using traditional systems.
Knowing the composition or internal properties of
fruits or anticipating internal damage increases the
added value and removes defective products from the
production chain, increasing the batch’s overall quality.
Properties such as soluble solids content, acidity, and
texture are some of the parameters used to determine
the maturity of fresh products. Among the optical
detection technologies, hyperspectral imaging (HSI)
has emerged as a potential tool for the non-destructive
analysis of the internal quality and safety of agri-food
products (LORENTE et al., 2012; LU et al., 2020). HSI
combines the advantages of spectroscopy to capture
chemical composition (CORTÉS et al., 2019; WALSH
et al., 2020) with the advantages of imaging to obtain
spatial information (Figure 1) (JIA et al., 2020).

The information captured by these systems is
organized in a 3D matrix (known as a hypercube): 2D
axes contain spectral information through the concepts of
the line (X) and sample (Y) and the third dimension (λ)
contains spectral information. Therefore, according to a
specifi c pixel (x, y), its corresponding vector of spectral
values can be obtained in the study’s wavelength range (LI
et al., 2014). Another critical advantage of HSI technology

Figure 1 - Spatial and spectral information in a hyperspectral image

is its ability to acquire information from spectral regions
that the human eye cannot see, such as ultraviolet, NIR,
and infrared, generating specifi c fi ngerprints according
to the composition or condition in evaluation (SIMKO;
JIMENEZ-BERNI; FURBANK, 2015).

The acquisition of the images is also slow,
depending on the hardware used. Multispectral systems
are more straightforward and faster implementations of
hyperspectral systems in which a relatively lower number
of bands are captured. Several technologies for capturing
hyperspectral images exist. Among the most used systems
are liquid crystal tunable fi lters (LCTFs) and image
spectrophotometers (GÓMEZ-SANCHIS et al., 2014).
An LCTF is an electronically controlled optical fi lter that
permits a selected wavelength to pass through and blocks
others. Thus, images in the entire spectral range can be
obtained by selecting different wavelengths. The main
advantages of LCTF-based systems are their higher spatial
resolution and image quality. In contrast, the process
of image acquisition is slow, and spectral resolution is
unsatisfactory. These systems were used by Munera et al.
(2021), and Munera et al. (2019a), to assess the internal
quality of loquats and pomegranates, respectively. Thus,
the internal components and some properties that are key
to the fruit’s marketing can be estimated. The residual
astringency of persimmon after a detergency treatment
was determined by Munera et al. (2017, 2019b); to
avoid possible fraud, Munera et al. (2018), discriminated
externally identical varieties of nectarine but with different
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internal qualities. Citrus fruits, particularly the detection
of non-visible rottenness caused by fungi (FOLCH-
FORTUNY et al., 2016), and the maturity of mangoes cv.
“Manila” has also been investigated using these systems
(VÉLEZ-RIVERA et al., 2014). The combination of
LCTF with structured-illumination refl ectance imaging
(SIRI) was created by Lu and Lu (2017) to detect defects
in apples.

An LCTF system combined with a pushbroom
imaging spectrometer was combined by Fan et al. (2018),
to detect external damages on blueberries. Pushbroom
imaging spectrophotometers acquire line-by-line spectral
data and require the object to move beneath a camera
while the image is being captured. In a camera with a
matrix CCD sensor, while the camera captures the
spatial information in one line of the CCD, the spectral
information is projected onto the corresponding column.
These systems are the most used, as they enable the
capturing of moving objects, and therefore, in-line
inspections. This system was used in the range 400–1000
and 900–1700 nm by Tsouvaltzis et al. (2020), to detect
chilling injuries in eggplants. Fernandes et al. (2015),
used an imaging spectrograph in the range of 380-1028
nm to determine anthocyanin content, sugar content, and
acidity in grape berries. This technology has also been
used to determine the internal quality of fruits such as
oranges (AREDO et al., 2019), plum (LI et al., 2018),
banana (XIE; CHU; HE, 2018), apples (TIAN et al.,
2018), strawberries (WENG et al., 2020), pears (YU; LU;
WU, 2018), kiwi (HU; SUN; BLASCO, 2017), tomato
(VAN ROY et al., 2017, 2018) and avocado (KÄMPER
et al., 2020).

However, because of the large amount of data
generated by these systems and the relatively long
acquisition time of hyperspectral images, these systems
have not yet been implemented in the industry to
conducted in-line controls of the quality of the products,
although the fi rst steps are already being conducted
(VÁSQUEZ et al., 2018).

NON-STANDARD TECHNIQUES OF
COMPUTER VISION SYSTEMS

Biospeckle

Biospeckle is a non-invasive technique that is
widely used to assess biological systems. This phenomenon
is based on the interference of coherent electromagnetic
waves after refl ection from a surface, on which it occurs
in a dynamic process. If this process occurs in a vegetal
or animal tissue, the organelle size, cellular structure, cell

growth, and division, biochemical reactions will affect the
observed results.

There are several types of research with
applications of biospeckle in different aspects of
knowledge, such as obtaining information on the
contamination of wastewater as an automatic analysis
(VIANA; PIRES; BRAGA, 2017), characterizing plant
tissue cultures (SCHOTT et al., 2020); monitoring
blood fl ow  (ZHANG et al., 2019), assessing seed quality
(SINGH et al., 2020; VIVAS et al., 2017), evaluating
the fermentation process (VIANA et al., 2017), and in
applications ranging from the health fi eld to agricultural
products (AMARAL et al., 2017; HUMEAU-HEURTIER
et al., 2012; YOUSSEF et al., 2019).

Different image processing techniques are used
to obtain information using biospeckle. Some algorithms
return numerical results, such as the moment of inertia
(MI) and absolute value difference (AVD) (ANSARI;
NIRALA, 2016a; CARDOSO; BRAGA, 2014). Graphical
results are also obtained, for example, laser speckle
contrast analysis (LASCA), motion history image (MHI),
generalized difference, and Fujii (RABAL; BRAGA,
2009).

This technique has been developed and combined
with AI for applications in agriculture and post-
harvesting, such as the identifi cation of chilling and
freezing disorders in oranges; identifi cation of bruising,
maturation, and ripening in fruits and vegetables; and
identifi cation of defects and damages in fruits (MINZ;
NIRALA, 2014; RAHMANIAN et al., 2020; WU; ZHU;
REN, 2020).

Minz and Nirala (2014) used biospeckle to measure
biological activity in apples, pears, and tomatoes, applying
generalized difference and parameterized Fujii. Amaral
et al. (2017), applied biospeckle to assess the sorption
behavior of freeze-dried passion fruit. Wu et al. (2020),
proposed a method for defect detection in apples based
on laser backscattering imaging and convolutional neural
networks (CNNs), and the method could effectively, non-
destructively, and automatically identify the defect regions
with a recognition rate of over 90%. Arefi et al. (2017),
used biospeckle combined with texture descriptors and
ANNs to assess mealiness in apple fruits.

In biospeckle applications, the acquisition system
is frequently composed of a laser source, lens, and
CCD camera, which are considered simple and low-cost
equipment (Figure 2).

The most commonly used laser is the He–Ne
laser with a wavelength of 630-635 nm and low power
(1-100 mW) (ANSARI et al., 2016; ANSARI; NIRALA,
2016b; CHATTERJEE; DISAWAL; PRAKASH, 2017a;
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Figure 2 - Biospeckle acquisition system

DENISOVAet al., 2013; GAO; RAO, 2019; GONZÁLEZ-
PEÑA et al., 2016; KUMARI; NIRALA, 2019). Laser
sources with wavelengths of 532 nm have also been
reported in the literature (CHATTERJEE; DISAWAL;
PRAKASH, 2017b; D’JONSILES et al., 2020).

Hardware and software for biospeckle technology
have been studied to improve image processing,
portability of the equipment, and new techniques for
obtaining information. Pieczywek et al. (2017), developed
a method for the real-time evaluation of biospeckle using
a live video stream with the Fujii method. Rivera and
Braga Jr. (2020) compared biospeckle data for three
different frequency bands of speckle signals and different
light intensities. Catalano et al. (2019), performed image
acquisition and created apps for image processing on a
smartphone for biospeckle analysis. Rivera et al. (2019),
created a new method to obtain biospeckle information
by employing sound to monitor biological systems.

Despite the wide range of research, Pandiselvam
et al. (2020), indicated the challenges in using the
biospeckle technique as the lack of a standard in
applications and a requirement for commercial
equipment for dedicated use; they also mentioned laser
penetration, which cannot be used to assess the internal
parts of agricultural products. Other limitations are the
interference of light and sound vibration, which limit
the use of the technique in the field.

Pieczywek et al. (2018), compared the biospeckle
technique using visual inspection, hyperspectral imaging,
and the chlorophyll fl uorescence detection method in the
early detection of bull’s eye rot in apples. They used three
different laser wavelengths: 473, 532, and 830 nm. To obtain

the information, they used the correlation coeffi cient, the
Fuji index, the moment of inertia, and frequency analysis.
Biospeckle exhibited a high level of performance in disease
detection compared with hyperspectral imaging and
chlorophyll fl uorescence. They concluded that biospeckle
has considerable potential as a diagnostic tool for detecting
apple diseases at an early stage of their development. In
comparison with visual inspection, hyperspectral imaging,
and chlorophyll fl uorescence, the authors indicated
the advantages of biospeckle: a more straightforward
experimental setup, low cost, and less time consuming
with data processing.

Terahertz (THz) Image Systems

The emerging THz technology uses the energy
present in the electromagnetic spectrum, from the
relatively unexplored range from 100 GHz to 30 THz (LIN;
SUN, 2020; LIU et al., 2016; WANG et al., 2019). It has
attracted interest owing to the following characteristics:
minor photon energy, deep penetration, and molecular
resonance responses host ample physical and chemical
information of biomolecular interactions; non-ionizing
radiation; and the principle that different materials have
different spectral fi ngerprints, which can be employed
for identifi cation, particularly for foods (JIANG; GE;
ZHANG, 2020; OK et al., 2014; REN et al., 2019).

THz technology applications can be categorized
into four main groups: sensing, imaging, spectroscopy,
and communication, characterized by their non-destructive
nature (REN et al., 2019). THz spectroscopy and imaging
have had an increasing interest in the application for food
quality and safety control, agricultural product analysis
and quality inspection, and the inspection of stored food
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(LIU et al., 2016; WANG; SUN; PU, 2017). However,
owing to the low effi ciency of THz energy sources and
detectors and, consequently, the diffi culty of building
effi cient instrumentation in this wavelength range, it was
ignored until the mid-1990s (GOWEN; O’SULLIVAN;
O’DONNELL, 2012).

THz technology can penetrate food materials deeper
than other optical sources can and does not promote molecular
motion such as rotation or vibration; similarly, it interacts
weakly with nonpolar materials such as Tefl on, polyethylene,
and polytetrafl uoroethylene. Both these properties make
the use of THz waves a promising technology for non-
invasive and non-destructive evaluation of food packaging
and manufactured products (GOWEN; O’SULLIVAN;
O’DONNELL, 2012; SHIN; CHOI; OK, 2018).

Equipment is the main obstacle for THz
universalization as the cost of THz technology is
higher than that of other imaging technologies such as
hyperspectral (UV-Vis or NIR range), RGB cameras,
and X-rays. However, the new developments in laser
technologies, integrated optics, and its application in THz
systems have made this technology more accessible for
low-cost systems with high performance (REN et al.,
2019; WANG; SUN; PU, 2017).

THz imaging systems using continuous waves
or pulsed systems are acquired by rastering, moving the
sample along the x and y dimensions, and recording the
THz signal for each spatial position. The scheme of a

THz image system is shown in Figure 3. Similarly, these
can operate in the transmission or refl ection modes and
in the time or spatial domains. However, this operation is
time-consuming depending on system characteristics and
the desired spatial resolution (GOWEN; O’SULLIVAN;
O’DONNELL, 2012; OK et al., 2019).

Different applications of THz image systems have
been tested for food and agricultural product analysis,
being used in the detection of foreign bodies (SHIN;
CHOI; OK, 2018), determination of compound (JIANG;
GE; ZHANG, 2020), pesticide, and antibiotic residues
in agri-food products, characterization of edible oils and
genetically modifi ed food, etc. (WANG et al., 2019).
Therefore, some studies on foodstuffs were conducted to
test the water content of plant leaves (REN et al., 2019);
the early detection of germinated wheat grains (JIANG
et al., 2016); detection of foreign bodies in noodle fl our
(LEE et al., 2012), chocolate (JÖRDENS; KOCH, 2008),
food powder (HERRMANN et al., 2002), crackers
and peanuts (HAN; PARK; CHUN, 2011); damages in
pecans (LI et al., 2014), sugar, and milk (SHIN; CHOI;
OK, 2018); detection of antibiotics in foodstuffs (REDO-
SANCHEZ et al., 2011), etc.

PROCESSING OF DATA FROM IMAGES

Ultimately, the spectral images are treated to
obtain spectral signatures corresponding to vegetative

Figure 3 - Schematic of a THz imaging system in the refl ection mode
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states, the concentration of compounds, and the presence
of microorganisms, etc. The extraction of these profi les
from a specifi c area of the image utilizes a segmentation
process or manual selection of the ROI.

The relationship between the obtained profi les and
the quality parameters is analyzed to extract features from the
profi les and develop prediction or classifi cation models. These
models, applied to new profi les, enable us to predict quality
parameter conditions or obtain chemical images if they are
applied to the entire image. The following subsections detail
the main techniques used to model relationships.

Data exploration

Information content in images can be summarized
into profi les, which commonly means a high number of
variables per point, many of which are possibly non-relevant.
Consequently, establishing if it will examine complete
information or reduce non-relevant variables is necessary,
reducing cost and time data analysis (OBLITAS et al., 2020).

Among the primary methods used, the PCA is
the most common. It creates new variables (principal
components) as a product between the eigenvector and
the spectral vector, attempting to represent most of the
variability in the data set using a small number of factors
(JIANG; QIAO; HE, 2016; MISHRA et al., 2019). Thus,
several studies used PCA for different aims, such as the
development of lightning correction in fruits (DONG et al.,
2014).

Another group of importance in data exploration is
those that perform variable selection as those grouped in
cluster analysis (CA). Hierarchical cluster analysis (HCA) is
one of the most used methods, and it explores the organization
of variables into inter-groups and creates a hierarchy through
dendrograms and nested cluster diagrams.

Finally, other less-used feature-extraction methods
are competitive adaptive reweighted sampling (CARS)
(FENG et al., 2019; XIAO et al., 2020), spectral mixture
analysis (SMA) (HARRIS; CHARNOCK; LUCAS,
2015), mutual information feature selection (MIFS),
max-relevance min-redundancy (MRMR), and sequential
forward selection (SFS) (CEN et al., 2016), among others.

Classifi cation techniques

Classifi cation problems involve determining a
mathematical model that can recognize samples belonging
to specifi c classes. In images, the aim is to recognize
objects or pixels with standard features and separate them
into different classes, thereby segmenting the image.

According to Oblitas et al. (2020), classifi cation
techniques can be grouped into three main categories:
based on distance (of pixels with similar features), such

as k-nearest neighbors (KNN); on probability (of a pixel
belonging to any class), such as linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), or unequal
class models (UNEQ); and on experience (knowledge
indicating a pixel belongs to any class), such as the ANN.
Moreover, classifi cation methods can be supervised when
previous knowledge on the problem is supplied to the
algorithm or unsupervised when the algorithm does not
require any intervention. Most classifi cation algorithms
used in agri-food inspection are supervised because they
must involve previous training steps. These are rapid, but
because of the vast variability present in these products,
they require frequent retraining.

According to Cai et al. (2018), LDA is one of the
most popular supervised methods for food analysis; it
estimates the multivariable probability density functions
for each class. LDA begins with the estimation of the
location and dispersion parameters. It was applied in
laboratory studies such as that developed by Rahman et al.
(2018), on vegetable tissue micrograph for microstructure
classifi cation, Shafi ee et al. (2016), on determining honey
adulteration, comparing different classifi ers and obtaining
LDA accuracy over 90%, or in remote sensing such
as in the study of Furlanetto et al. (2020) for vegetable
identifi cation.

Based on variable selection, different techniques
can be applied, such as partial least squares–discriminant
analysis (PLSR-DA) for object classifi cation in
hyperspectral images (ZHANG et al., 2018) and
discrimination of polyethylene fi lms (BONIFAZI;
CAPOBIANCO; SERRANTI, 2018).

Two techniques, specifi cally used in classifi cation
problems, are SVMs and ANNs, both of which are widely
used in the fi eld of pattern recognition for linear and non-linear
classifi cation scenarios (LI et al., 2020). Their applications
involve images in the RGB format (CASTRO et al., 2019;
JIANG et al., 2020a), multispectral imaging (YU et al., 2020),
and hyperspectral imaging (SHAFIEE et al., 2016).

Kang et al. (2020), compared LDA, SVMs, and
softmax regression to classify serogroups of Escherichia
coli. Liu et al. (2019b), evaluated least-squares support
vector machines (LS-SVMs), backpropagation neural
network (BPNNs), and random forest (RF) to predict the
content of afl atoxin in soybean oil.

Regression techniques

In food engineering, another type of analysis is
related to the prediction of the concentration of compounds
of interest in foods; regression methods are used for these
tasks. Similarly, for classifi cation, their behavior can be
linear or non-linear, and the models must manage this
characteristic (OBLITAS et al., 2020).
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Some commonly used methods are linear
regression (LR) and multilinear regression (MLR), which
uses predictor variables without transformation, principal
component regression (PCR), and partial least square
regression (PLSR), which uses a previous transformation
of variables into its principal components.

PLSR is one of the widely used chemometric
techniques, for instance, to extract data from hyperspectral
images, owing to its capacity to reduce dimensionality in
complex systems (JIA et al., 2020). The equation for this
technique can be summarized as Y = βX + e, where Y is
the matrix of the predicting variable, β is the matrix of
beta coeffi cients, X is the measured variable, and e is the
model error (VÁSQUEZ et al., 2018). Its applications have
ranged over a variety of image types such as multispectral
satellite images (MALLAH NOWKANDEH; NOROOZI;
HOMAEE, 2018), multispectral images of unmanned
vehicles (GUO et al., 2020), laboratory multispectral
imaging (YU et al., 2020), hyperspectral images (XU
et al., 2021), and thermal images (ELSAYED et al., 2017).

Although PLSR models can reduce dimensionality
based on B-values, thus reducing the effect of non-
relevant variables (KIALA; ODINDI; MUTANGA,
2017), some authors reported that PLSR models can be
improved. Procedures include removing some intervals,
using variants such as the interval PLSR (iPLSR)
(CHRISTENSEN et al., 2017), moving window PLSR
(mwPLSR) (RONGTONG et al., 2018), searching
combination moving window PLSR (RONGTONG et al.,
2018), synergy interval PLSR (SyPLSR) (GUAN et al.,
2019), genetic algorithm PLSR (gaPLSR) (GUAN et al.,
2019), and recursive PLSR (rPLSR) (ISLAM et al., 2018).

Advanced techniques (Machine learning)

Machine learning is a subdivision of computer
science applied for pattern recognition and computational
learning in AI (SWAMYNATHAN, 2019). It is based on
the training of neural networks that enables machines to
learn from a database and make predictions. The main
advantage of this learning is improved performance, as
it is exposed to new and larger databases. The categories
of machine learning are supervised, unsupervised, and
reinforcement learning.

Deep learning is a subfi eld of machine learning
whose algorithms aim to bring machine intelligence
closer to the human level, making them capable of
solving any problem in a specifi c subject. Deep learning
has been applied successfully to solve computer
vision, audio processing, and text mining problems
(SWAMYNATHAN, 2019). Examples of deep learning
are CNNs, which are advantageously applied in image
classifi cation.

Applications based on deep learning have
increased over the last decade owing to the signifi cant
advances in AI and the increase in computing power
since the arrival of graphic processor units). These
advances have been motivated by two reasons: the
increase in available data (the famous Big Data) and the
application of machine learning methods that are key
to companies such as Facebook, Google, or LinkedIn.
In recent years, a revolution in machine learning with
the emergence of deep learning algorithms has occurred.
Among them, deep convolutional neural networks
(DCNNs) are currently the state of the art in computer
vision applications. Until the emergence of deep neuronal
models, multilayer neuronal models with more than two
hidden layers were considered useless. In the 2000s,
no signifi cant research was conducted that used more
than two hidden layers. These models had two main
problems: a) the initialization of the parameters and b)
overfi tting. Therefore, the fruit inspection systems that
have been developed using these techniques have not
been implemented.

Currently, the emergence of deep multilayer and
DCNN models has solved these problems. DCNNs are
fl exible algorithms that have been used successfully in
the inspection problems of processed foods (KATO et al.,
2019) or fresh fruit (ASHRAF et al., 2019; GIEFER et al.,
2019; STEINBRENER; POSCH; LEITNER, 2019). All
references found are from 2018, which indicates the
novelty of the techniques. However, examples of the use
of DCNN in fresh fruit inspection using hyperspectral
images have not been found in the literature. This is
because the acquisition and labeling of images by an
expert can be very tedious. Algorithms based on deep
learning require many images for training. Its depth
implies many parameters, and, as with other models, this
fact involves many labeled samples; thus, the depth is
increased by the variability of fruits.

COMPUTER VISION APPLICATIONS IN
FOOD AND AGRICULTURAL PRODUCTS

Digital Image Systems applied to Agriculture 4.0

Recent studies presented digital images coupled
with machines and unmanned aerial vehicle (UAV)
devices to monitor crops in the fi eld, recognize crop
productivity, localize robotics, and enable the sustainable
use of natural resources such as water, agrochemicals,
and fertilizers.

Andújar et al. (2019), compared aerial imagery
with on-ground detection using an RGB-depth camera
and Microsoft Kinect v.2, and they observed that UAVs
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are affordable and can encompass a larger surface area for
vineyards.

Abdelghafour et al. (2019), applied a proximal
image to describe the canopy structure of plants for
precision viticulture. A foreground extraction was
performed based on color information, pixel-wise
feature extraction with texture captured with local
structure tensor, pixel-wise classifi cation, and spatial
regularization. This system with optical sensors enables
the analysis of agronomic data as an automated and
non-intrusive technique. Furthermore, the information
obtained on plant productivity is essential for precision
fertilization and irrigation.

Pinto de Aguiar et al. (2020), utilized feature
extraction on vineyards for robotics localization and
mapping to locate vine trunks on images. They used
low-power and low-cost equipment such as Google’s
USB Accelerator and NVIDIA’s Jetson Nano. Google’s
USB Accelerator is adaptable with TensorFlow Lite,
used in mobile and portable equipment, and can perform
image classifi cation, object detection, and semantic
segmentation. A small version of You Only Look Once
(YOLO) was used to identify vine trunks in real-time.
YOLO is used to detect objects in full images and,
when applied to a webcam, can detect moving objects
(REDMON et al., 2016).

Plant Disease Detection for Smart Farming

The integration of digital images, several sensors,
the Internet of Things, deep learning, robust algorithms,
UAVs, and smartphones is increasingly enabling the
detection of diseases in plants in the fi eld. The inclusion of
different types of data enables smarter systems to perform
fi eld operations.

Ashok et al. (2020), proposed a 98% accuracy
method to detect disorders in tomato plant leaves through
image processing. Detecting plant leaf diseases in advance
is essential to leveraging production and avoiding crop
losses. The initial step was pre-processing using a Gaussian
fi lter, and then feature extraction using the discrete wavelet
transform with the use of coeffi cients with sub-bands and
the grey level co-occurrence matrix (GLCM) computed
correlation. A CNN algorithm was used to extract features
that mapped the pixel values and evaluated it using the
trained dataset image.

Kulkarni (2018) proposed training a CNN model
to identify the type of crop and detect diseases in a
public dataset composed of normal and damaged crop
leaves. MobileNet and InceptionV3 models were used,
and accuracies of 99.62% and 99.74% for crop type
and 99.04% and 99.45% accuracy for crop disease were
obtained, respectively.

 Militante et al. (2019), used deep learning
techniques to identify and recognize sugarcane diseases.
The study consisted of training and testing a deep learning
model, including a 13.842 sugarcane image dataset of
disease-infected and healthy leaves. The model could
detect healthy and unhealthy leaves, classify diseased
leaves, and achieve a 95% accuracy with 60 epochs. The
methodology consisted of capturing an image dataset
using a camera, pre-processing the images, obtaining
features from the resized images, and using fully connected
layers for classifi cation; for feature extraction, it used
convolutional and pooling layers. The main advantage of
these techniques is the ability to extract information from
large amounts of heterogeneous data. Thus, they are useful
for processing hyperspectral images. In this context, Polder
et al. (2019), used fully convolutional networks (FCNs) to
detect potato virus Y (PVY) in the fi eld. They arranged the
camera in a measurement box installed in front of a tractor
that drove through row potato fi elds at a constant speed
to capture images. The FCN performed well in predicting
the PVY-infected plants despite limited training data. The
detection of infected plants was between 75% and 92%
(recall values).

Castelao Tetila et al. (2017), proposed a system
using simple linear iterative clustering for segmentation
to identify plant leaves and describe the features of
foliar characteristics, including color, texture, shape, and
gradient via UAV images.

Using highly robust algorithms, Zhao et al. (2020),
solved the automatic identifi cation of crop diseases using
images obtained from the fi eld using deep learning.
They used the Internet of Things to collect contextual
information as useful features in a modern recognition
system to identify crop diseases. Contextual features
such as the season, geographic location, temperature, and
humidity, were fused with visual features in a state-of-the-
art crop disease recognition method.

For automatic tractor piloting, a control system
based on binocular vision was developed. This system
enabled the machine to identify the path and was an
excellent in-fi eld operation. Zhang et al. (2018), applied
this system to cotton fi eld management.

To reduce chemical inputs in vineyard crops,
Kerkech et al. (2020), created a method for disease
detection in the vine fi eld, applying deep learning on UAV
images. The method used two sensors and combined visible
and infrared images. This information was inputted into a
fully convolutional neural network to allocate each pixel
into shadow, ground, healthy, and symptom. As a result,
the technique obtained over 92% of disease detection
in grapevines and 87% in leaves, which is a promising
application for computer vision.
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Rahaman et al. (2019), created a smartphone app
to obtain and process images of grapevines to detect
nutritional disorders using an SVM.

3D Reconstruction

The 3D reconstruction of agricultural products
and food has facilitated the automation and application
of autonomous machinery activities in the fi eld. With this
technique, reconstructing, identifying, and estimating the
volume of fruits, parts of plants, weeds, insects, and pests
is possible. Robots and agricultural machines can also
identify paths and obstacles in the fi eld.

In robotics, the most commonly used methods to
convert distances into 3D points are the time-of-fl ight
systems and triangulation techniques. The time of fl ight
measures when a signal reaches a surface and returns to the
emitter and an example is the laser measurement system.
In triangulation techniques, the distances are estimated by
attaching parts of a scene with two different views. The
two views must be calibrated to determine the distance
(LIU; LEE; CHAHL, 2017).

Algorithms that describe 3D features can be
divided into two classes: global feature-based and local
feature-based. The fi rst uses a set of features with the
geometric properties of an integral 3D object. The second
uses features with characteristics of the local region
points. The local feature-based method can use a local
reference frame. It can also use a histogram or statistics of
a normal or curvature to model a feature descriptor (LIU;
LEE; CHAHL, 2017).

Gao et al. (2019), studied 3D reconstruction of
watermelon using a multimedia traceability system. Using
sequential pictures captured around a watermelon from
different angles, they matched feature points using a scale-
invariant feature transform algorithm to generate a sparse
and dense point cloud using the motion method and multi-

Sample Objective Type of Image Analysis Technique Source

Tomato Lycopene content Fluorescence RGB ratios (KONAGAYA et al., 2020)

Palm fruit Oil content and color Laser-light backscattering PCA-PLSR (MOHD ALI; HASHIM; ABDUL HAMID, 2020)

Ground meat Discrimination between species RGB Hyperspectral PLSR (NOLASCO-PEREZ et al., 2019)

Dried shiitake mushroom Measurement of water fractions Multispectral PLSR/BPNN LS-SVM (YOUNAS et al., 2020)

Apple Assessment of fi rmness and color HSI PLSR (EKRAMIRAD et al., 2017)

Mango Measurement of fi rmness and TSS HSI PLSR (RUNGPICHAYAPICHET et al., 2017)

Tomato Measurement of fi rmness HSI PLS (RAHMAN et al., 2018)

Pear Quality attributes MRI - (SUCHANEK et al., 2017)

loquat fruit Cell wall composition Raman - (HUANG et al., 2019)

PCA = Principal component analysis; PLSR = Partial least square regression; LS-SVM = Least-squares support-vector machine; BPNN = Backpropagation
neural network; PLS = Partial least squares

Table 1 - Computer vision systems and their applications in the inspection of food quality

view stereo method, respectively. Texture mapping and
model meshing were conducted using the Poisson surface
reconstruction approach. The 3D reconstruction provided
parameters such as shape, color, texture, geometric size,
and volume. This experiment demonstrated that 3D
reconstruction can be used to calculate size and volume
with a relative error of approximately 1%, indicating that
the volume measurement can be used to detect fruits with
atypical densities and pull them out from the traceability
system in the production line.

Tao and Zhou (2017) created an automatic system
for robot perception in the 3D space, giving trajectory
calculation and strategic planning to pick only the fruit
in the fi eld.

Determination of Quality Parameters: Mechanical
Properties, Composition, and Appearance

Computer vision systems have been used over
the last two decades in several studies to predict quality
parameters and, based on this, to classify foodstuffs for
collecting, processing, and storage (LU et al., 2020). The
main quality parameters for agri-food products include
fl avor, TSS, titratable acidity, sugar content, color,
appearance, and fi rmness. To assess these parameters,
a variety of systems have been used as traditional RGB
images, multispectral, hyperspectral, terahertz, Raman
images, or those that produce intensity images such as
fl uorescence images, laser-light backscattering, and X-
ray images. Table 1 summarizes some of the recent works
related to the quality parameters of food, using different
non-destructive optical technologies.

Cakmak (2019) presented a review of non-
destructive techniques for the quality assessment of
agricultural products. They argued that Raman and surface-
enhanced Raman spectroscopy (SERS) is an essential
technique for evaluating agri-food chemical properties.
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MSI, HSI system, and NIR spectroscopy determine
TSS, moisture content, titratable acidity, sugar content,
and fi rmness of fruits and vegetables. Moreover, NIR
spectroscopy has also been used in in-fi eld and portable
equipment.

Identifi cation of Defects in Fruits and Vegetables

The primary aim of detecting defects in vegetables
is to provide high-quality products for the customer
and ensure reasonable prices for the market. The most
frequently found defects are mechanical damage,
morphological disorders, internal defects, pathological
disorders, and physiological disorders, which may
be visible or latent and internal (NTURAMBIRWE;
OPARA, 2020).

Bruising is a typical damage that occurs during
harvest and post-harvest manipulation. Its detection in
fruits is primarily performed using manual inspection,
which is time-consuming and mistake-prone. Traditional
computer vision has been used for bruise detection, but
with limited applications. To increase computer vision
capacity to identify bruises in vegetables, Du et al. (2020),
proposed combining new imaging techniques, such as
biospeckle, fl uorescence imaging, structural illumination
refl ectance imaging, hyperspectral/multispectral imaging,
X-ray imaging, MRI, and thermal imaging with computer
vision. The vision system can also incorporate deep
learning methods, ANNs, and CNNs. For future research,
the authors proposed that studies should focus on reducing
equipment cost and miniaturization.

Some essential and recent research papers on the
identifi cation of fruit damage are described below.

Andrushia and Trephena (2019) created a
computer vision technique to automatically diagnose
surface diseases on mango fruits, adopting an artificial-
bee-colony-optimized feature set. The processing
phases consist of removing the background, extracting
the color, shape, and texture features, a metaheuristic
approach to select the features, and the classification
into good and diseased fruits.

Marino et al. (2020), proposed potato defect
classifi cation using an unsupervised deep-domain-
adaptation method based on adversarial training.

Chithra and Henila (2020) proposed a new
algorithm to obtain images of the defective area of apple
fruits in the sorting task. This task is essential to increase
the speed and quantity of the sorting process, aiding the
farmers to separate healthy fruit accurately and reduce
costs in post-harvest operations. The image processing
included rapid global thresholding, a discrete wavelet
transformation to obtain statistical and texture features, a

naive Bayesian classifi cation model, a k-means clustering
to segment the damaged area, and an algorithm to calculate
the area and perform sorting decisions.

Athiraja and Vijayakumar (2020) identifi ed banana
diseases at a much earlier stage using computer vision
and machine learning. They performed pre-processing
techniques and image standardization; color, shape, and
texture features were used for feature extraction; fi nally,
they used classifi cation techniques.

Nturambirwe and Opara (2020) presented a review
of the novel machine learning approaches applied to diverse
sensors to identify damages to agricultural products. They
argued that despite the high potential of vision systems
to detect internal and external defects in horticultural
products, some limitations exist, such as the speed of data
processing and acquisition for some techniques, technical
limitations, and expense for some types of equipment. They
also indicated limitations related to the object interaction
with the sensor, such as low contrast in X-ray images in
fruit soft tissue and the limitation in infrared penetration
in opaque and broad skin fruit. As a recommendation for
future research, the authors indicated the standardization
of confi rmed effi cacious procedures and made them
feasible for broad applications. Deep learning algorithms
enable feature extraction and the accurate detection of
mechanical damage in the early development stages.
However, the research on deep learning applications
should be expanded to other upcoming techniques such as
thermography, radiography, and magnetic resonance.

Vegetables Identifi cation and Classifi cation

Many research papers on the recognition of
agricultural product recognition and classifi cation
are available. This section addresses recent research,
processing methods, and the machine learning applied.

Rojas-Aranda et al. (2020), presented an image
classifi cation method based on CNNs applied to three
classes of fruits, inside and outside plastic bags. The input
features were RGB color, RGB histogram, and RGB
centroid from K-means clustering.

Anurekha and Sankaran (2020) performed mango
classifi cation by employing a genetic-based ANN
combined with the fuzzy inference system. The image
processing consisted initially of removing noisy images
from the input dataset. Subsequently, feature extraction
and feature selection were performed using a genetic
algorithm. The output feature trained the neural network,
and the system was used for classifi cation and grading
with an accuracy of 99.18%.

Belan et al. (2016), presented an automatic system
for the classifi cation of common beans in Brazil, utilizing
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skin color by applying a multilayer perceptron neural
network.

Siswantoro et al. (2020), employed MPEG-7
descriptors and classifi ers (naive Bayesian, k-nearest
neighbor, linear discriminant analysis, and decision
tree) to distinguish fruits from Indonesia with 97.80%
accuracy. With MPEG-7 descriptors, color and texture
descriptors are obtained directly from the pixels without
pre-processing or segmentation, and this system can be
used both in general stores and food corporations.

Classifi cation of Ripening Stages

The selection of fruits according to the
ripening stages enables post-harvest activities to be
conducted automatically, accelerating the production
and packaging stages, and reducing repetitive human
activities. Thus, some studies reported the application
of computer vision for the classification of fruit
ripening stages.

Mazen and Nashat (2019) used an automatic
computer vision system to determine the ripening stages
of bananas by employing an ANN-based framework and
features based on color, skin spots, and Tamura statistical
texture. Comparing the results with other methods (SVM,
naive Bayes, KNN, decision tree, and discriminant
analysis classifi ers), the considered system exhibited the
highest recognition rate (97.75%).

Jiang et al. (2020b), developed an identifi cation
method for tomato maturity by combining color and
physicochemical indices. The color was obtained by a
modifi ed K-means clustering image processing program,
and traditional techniques evaluated the physicochemical
parameters such as fi rmness, soluble solid content, and
sensory evaluation. A developed multinomial logistic
regression with kernel clustering analyzed the data with
accuracies of 84.58 and 90.42%.

CONCLUSION AND FUTURE
PERSPECTIVES

1. The current interest in using computer vision systems
in agriculture requires obtaining and processing
images faster using new algorithms for pre-processing,
feature extraction, advances in machine learning, and
modeling relationships, always with more robust and
intelligent vision systems. Here, a tendency to reduce
the requirement for processing is the use of smaller and
cheaper hardware;

2. According to each type of application, the sensors will
also evolve to be more robust, smaller, and cheaper. In the

various machines for in-fi eld activities, post-harvest, and
sorting machines, there is a tendency to combine several
sensors to compose equipment. This combination makes
machines easier and faster to manipulate and appropriate
for several applications. Thus, the combination of data
from several sensors enables machines to be more
autonomous and intelligent. Machines for harvesting,
sowing, and pesticides can use vision data combined
with global positioning system information and weather
data to perform their tasks. Fruit sorting machines can
combine sensor data at different wavelengths of the
electromagnetic spectrum to more accurately detect
information such as chemical components, ripeness,
and damage to fruits and vegetables. Similarly, non-
destructive techniques may detect the surface and
inside of the products, including improving 3D vision
techniques that enable reconstructing fruits even with
occlusion;

3. Finally, please note that new developments in data
science and AI have a decisive effect on computer
vision and, thereby, on Agriculture 4.0. Machines are
increasingly able to obtain complete information on
materials in a non-invasive and non-destructive manner
and facilitate the reduction in costs and labor to obtain
and analyze food.
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