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Net primary productivity of soybean using different data sources and
estimation methods1

Produtividade primária líquida da soja utilizando diferentes fontes de dados e métodos
de estimativa

Grazieli Rodigheri2*, Denise Cybis Fontana2, Genei Antonio Dalmago3, Laura Pigatto Schaparini4, Juliano
Schirmbeck5, José Maurício Cunha Fernandes3

ABSTRACT - Net primary productivity (NPP) can be used to quantify the relative role of climate and human activities in
vegetation dynamics. Given its importance, many NPP estimation models have been developed, but some of the required data
is still limited. Therefore, this study aimed to estimate the potential and actual NPP by testing different approaches regarding
the data source and estimation methods and evaluate the human appropriation of NPP (HANPP) in a soybean field cultivated
in southern Brazil. For this, data were obtained from field-measured NPP in soybean cultivation in Carazinho, Rio Grande do
Sul, Brazil, and compared to the potential and actual NPP estimations using the CASA model and data from ERA-Interim.
Subsequently, land use changes due to agricultural activities were evaluated from the potential and actual NPP through HANPP.
No significant difference was observed associated with the used data sources, showing that the ERA-Interim reanalysis weather
data can be employed for this purpose. The actual NPP estimations by the CASA model were consistent with a high association
with the data measured in the field. HANPP, through only one annual soybean cultivation, represented 29% of the potential NPP
in the region. It indicates the potential to increase intensification with annual crops in the region.
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RESUMO - A Produtividade Primária Líquida (NPP) pode ser utilizada para quantificar o papel relativo do clima e das atividades
humanas na dinâmica da vegetação. Dada sua importância, muitos modelos de estimativa de NPP foram desenvolvidos, mas
parte dos dados requeridos, ainda são limitados. Diante disso, este trabalho teve como objetivo estimar a NPP potencial e real
testando diferentes abordagens quanto a fonte dos dados e métodos de estimativa, assim como, avaliar a apropriação humana da
NPP em uma lavoura de soja cultivada no Sul do Brasil. Para isso, foram obtidos dados de NPP medida a campo em cultivo de
soja em Carazinho, no Rio Grande do Sul, e comparados às estimativas de NPP potencial e NPP real, utilizando o modelo CASA
e dados do ERA-Interim. Posteriormente, com a NPP potencial e real foram avaliadas as mudanças causadas pelo uso da terra
em função das atividades agrícolas, através da Apropriação Humana da NPP (HANPP).  Verificou-se que não houve diferença
significativa associadas às fontes de dados utilizadas, evidenciando que os dados meteorológicos de reanálise do ERA-Interim
podem ser utilizados para esse fim. As estimativas da NPP real pelo modelo CASA foram consistentes com elevada associação
aos dados medidos a campo. A HANPP por meio de apenas um cultivo anual de soja, representou 29% do potencial de NPP na
região. Isso indica que há potencial para elevar a intensificação com cultivos anuais na região.
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INTRODUCTION

The net primary productivity (NPP) of
ecosystems is an important tool to identify the magnitude
and causes of gaps in agricultural production. It has
become especially important given the projected need
for a 50% increase in food production by 2050 to feed
the growing population (FAO, 2017). NPP refers to the
amount of carbon fixed through photosynthesis by a
plant community per unit of time and space (GAO et al.,
2013; PEI et al., 2013; TAELMAN et al., 2016; ZHU
et al., 2017). NPP is an indicator of vegetation growth,
ecosystem health (CHEN et al., 2019; RUNNING et al.,
2004; TAELMAN et al., 2016), and soil degradation
(ZHOU et al., 2017). This information can provide
valuable guidance for the management of agroecosystems
(YIN et al., 2020), especially to identify the potential for
intensifi cation in cultivated areas.

Two parameters are important in the study of
ecosystem productivity: the natural potential NPP (NPPp),
which represents the potential growth conditions of
natural vegetation in the absence of human interference
(SOUZA; MALHI, 2017; KRAUSMANN et al., 2013;
LOREL et al., 2019), and the actual NPP (NPPa), which
represents the actual situation of vegetation productivity,
which can be controlled by the climate and also human
activities (SOUZA; MALHI, 2017). The most obvious
anthropogenic infl uence is related to changes in land use
and types of cover, which alter the natural environment
(RUNNING et al., 2004). In this context, the concept of
human appropriation of NPP (HANPP) emerges, which is
an important parameter, and refers to the proportion of the
annual production of natural plant biomass appropriated by
human activities (HABERL; ERB; KRAUSMANN, 2014).
HANPP can be determined by relation between the NPPp
and the NPPa (LI et al., 2018; ZHOU et al., 2017).

The Carnegie-Ames-Stanford Approach (CASA)
model, developed by Potter et al. (1993), stands out
among the NPP simulation models most widely used in
the last decades. The main modifi cation that the model
has undergone is the incorporation of remote sensing
(RS) data (BAO et al., 2016; PEI et al., 2013), seeking
to increase the ability to study ecosystems with higher
precision and detail, less cost, and visualization of remote
locations (LEES et al., 2018).

A major challenge for applying NPP estimation
models is the availability of measured weather data both
in time scale and in spatial density, given the limitations
(BATTISTI; BENDER; SENTELHAS, 2019). For this
reason, data from products of reanalysis become important,
as they can serve as complementary or even substitutes for the
measured data but require local validations. The ERA-Interim,
produced by the European Centre for Medium-Range Weather

Forecasts (ECMWF), is among the most recent atmospheric
reanalyses that offer weather data with global coverage.
The products available include a variety of surface and
upper air parameters (DEE et al., 2011), and these data can
help to improve global NPP estimations.

The improvement of NPP estimation methods
can assist in quantifying the individual effects of
human factors and climate variations (LI et al., 2016),
identifying where and how these factors affect the
dynamics of agricultural cultivations. This study aimed
to evaluate different approaches regarding the data
source and methods for estimating potential and actual
NPP and evaluate the human appropriation of NPP in a
soybean fi eld cultivated in southern Brazil.

MATERIAL AND METHODS

General fl owchart of the study

The main data and development stages applied in this
study are described in the following fl owchart (Figure 1).

Study area

The study area is located in the municipality of
Carazinho, in the north of the State of Rio Grande do
Sul, Brazil (28°13′43.89″ S and 52°54′15.93″ W, with
an elevation of 560 m). It is a commercial property that
cultivates soybean and develops research in partnership
with the Brazilian Agricultural Research Corporation
(Embrapa Wheat). The property Capão Grande is located
in a region of intense agricultural activity in Rio Grande
do Sul, whose main crop is soybean.

According to the climate classifi cation of Köppen
(1936), the regional climate is Cfa, that is, a subtropical
climate predominantly temperate, mesothermal, and
humid, with a mean air temperature of the hottest month
above 22 °C. It has a well-defi ned winter and summer
season, without a dry season, but with high interannual
and spatial variability, especially in the summer.

Weather data

The weather data were obtained from two
sources: (i) weather station (WS) of the Brazilian
National Institute of Meteorology (INMET), located
in Passo Fundo (28°13′37.09″ S and 52°24′12.44″ W,
with an elevation of 670 m), representing the regional
climate condition; and (ii) ERA-Interim (ERA)
reanalysis data, for the geographic coordinate of the
property, made available by ECMWF and extracted
through scripts using the interactive data language
(IDL). WS and ERA data were obtained to simulate
local measurements and extrapolation to the region,
respectively.



Rev. Ciênc. Agron., v. 53, e20217868, 2022 3

Net primary productivity of soybean using different data sources and estimation methods

Figure 1 - General fl owchart of the study with the main developed stages

The weather elements used for both data sources
consisted of rainfall (mm), air temperature (°C), relative
humidity (%), wind speed (m s−1), and global solar radiation
(MJ m−2 day−1). Subsequently, the meteorological water
balance (WB) (THORNTHWAITE; MATHER, 1955) and
potential evapotranspiration (ETP) were calculated using
the Penman-Monteith method (ALLEN et al., 1998),
with the available water storage capacity (AWC) defi ned
as 75 mm, as observed by Cunha et al. (2001).

Field data

The soybean cultivar DM 5958 RSF IPRO was
used in the fi eld experiment, with sowing on 11/13/2017
and harvest on 4/3/2018. The components of the
incident (PARinc), transmitted (PARt), and refl ected
photosynthetically active radiation (PARref) of the crop
were measured during the experimental period. PARinc
was measured by an SQ-110 sensor (Apogee Instruments,
Logan, UT, USA). PARt and PARref were measured using

manufactured sensors of one meter in length with fi ve
cells of amorphous silicon arranged in parallel and spaced
at 20 cm (CHARTIER et al., 1989). PARt was measured
at 5 cm above the ground using fi ve sensors, while PARref
was measured with six sensors installed at 1.5 m above the
ground, with the sensors facing the canopy. The sensors
were connected to an AM16 32B channel multiplexer,
which was coupled to a CR 1000 datalogger, both from
Campbell Scientifi c, Inc. The datalogger was programmed
to perform continuous readings throughout the soybean
cycle every 30 seconds and the means were stored every 15
minutes. The absorbed PAR (APAR) (MJ m−2 day−1) was
determined from these data by Equation (1) and later
totaled for the month, according Dalmago et al. (2018):
APAR = PARinc - PARt - PARref                                                                                     (1)

The fraction of PAR absorbed by vegetation
(FPAR) was calculated by Equation (2).

                                                                                                              (2)
incPAR

APARFPAR =
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In addition, the normalized difference vegetation
index (NDVI), proposed by Rouse et al. (1973), was used
to adjust functions to estimate FPAR as a function of
NDVI. NDVI was obtained with the incident (Decagon
SRS-NDVI Hemispherical) and refl ected radiation
sensors (Decagon SRS-NDVI with Vision Limiter) in
the red (0.6 to 0.7 µm) and near-infrared (NIR) spectrum
(0.805 a 0.815 µm). These spectral sensors were installed
on a mast in the center of the experimental area at a height
of 1 m above the top of the canopy, being adjustable
throughout the soybean cycle. Data were collected at three
different points of the crop at 15-minute intervals, using only
the mean data of 10:15, 10:30, 10:45 am, corresponding to the
data obtained during Landsat satellite passages.

The dry matter (DM) accumulated by the soybean
crop was determined weekly from plant emergence to the
end of the crop cycle. For this, four replicates of a linear
meter of plants were collected in sections of rows in the
central transect of the area reserved for evaluations. The
green biomass was placed in paper packaging and taken to
an oven to dry the plant material at a temperature of 70 °C
until constant mass. The DM was weighed and expressed
in  g  m−2. Four 9-m2 biomass samples were taken after
physiological maturation to determine grain productivity.
The grains from each plot were separated from impurities
and weighed. Grain productivity was corrected at 13%
moisture and expressed in kg ha−1.

All biological data were transformed into a
carbon unit using a conversion factor of 0.40 (PILLON;
MIELNICZUK; MARTIN NETO, 2004).

NPPp estimation

The Thornthwaite Memorial model (LIETH,
1975) was used in the estimation of the natural potential
NPP (NPPp) as an exponential function of actual
evapotranspiration, according to Equations (3) to (5):

                                                                                      (3)

                                                                                                  (4)

                                                                                                   (5)

where NPPp is the annual natural potential NPP
expressed in g m−2 year−1, e is the basis of the natural
logarithm, 3,000 is a constant and refers to the maximum
NPP achieved in different environments on Earth, v is the
actual evapotranspiration (ETA) (mm), L is the mean annual
potential evapotranspiration (ETP) (mm), r is the total annual
rainfall, and t is the mean annual air temperature (°C).

The ETA for the proposed model (Equation 3) was
obtained using two approaches. Equations (4) and (5) were
used in the fi rst approach, being defi ned as the original
Thornthwaite Memorial ETA (ETATo). In the second
approach, ETA was obtained as a variable derived from

the water balance, being defi ned as the WB Thornthwaite
Memorial ETA (ETATWB).

Two sources of input weather data were evaluated
for each method of obtaining ETA: WS and ERA. In
this sense, NPPp estimations for the different methods of
obtaining ETA and the different data sources were called
NPPp_ETATWB_ERA, NPPp_ETATWB_WS, NPPp_ETATo_ERA, and NPPp_

ETATo_WS and obtained for 10 years (2009 to 2018).

The NPPp estimations were statistically analyzed
using the Student’s t-test, considering 10 years as
replications to compare the databases and the ETA
estimation methods at a 5% probability error.

Changes in NPPp estimations were performed
by comparing the annual pattern of these estimations
as a function of variations in the weather conditions of
annual air temperature and rainfall from 2009 to 2018. For
this, the used rainfall air temperature data were obtained
through the mean between WS and ERA.

NPPa estimation

The  actual  NPP  (NPPa) was estimated using the
CASA model, which considers NPP as a variant of the
radiation use effi ciency (RUE) model, originally proposed
by Monteith (1972). For that, the APAR data used in the
model were obtained through two different approaches.
In the fi rst approach, the APAR data obtained from fi eld
measurements were used, being named APARfi eld. In the
second approach, APAR was obtained through global
solar radiation data derived from ERA (RGERA) and NDVI
and FPAR data were measured in the fi eld, according to
Equations (6) and (7), being called APARNDVI.

                                                                                    (6)

                                                                                       (7)

where FPAR results from the adjustment of a linear
regression between FPAR and NDVI measured in the
fi eld, with an R2 of 0.98. The 0.5 coeffi cient represents
the proportion of the total solar radiation available for
vegetation (PEI et al., 2013; ZHU et al., 2017).

In the CASA model, NPPa (g C m−2 year−1) is the
product of APAR (MJ m−2) by RUE (g C MJ−1) adapted
from Potter et al. (1993), according to Equation (8).

                                                                                                (8)

where indices i and ii associate NPPa and APAR,
respectively, to the way of obtaining: NPPa_fi eld obtained
using APARfi eld and NPPa_NDVI obtained using APARNDVI.

RUE was estimated from a maximum conversion
effi ciency constant (RUEmax), adjusted to limiting factors
(Equation 9), such as air temperature and water condition
of the environment (BAO et al., 2016; ZHOU et al., 2017).
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                                                                                        (9)

The constant RUEmax was obtained from the
slope, resulting from the linear relationship between
DM and APARNDVI.  The  terms  TƐ1 and  TƐ2 denote
coefficients of thermal stress, which were calculated
using the mean monthly air temperature (T) (°C) for
TƐ1 and optimal temperature for plant growth (Topt)
(°C) for TƐ2, which is the mean air temperature during
the month of maximum NDVI (POTTER et al., 1993),
both obtained from the ERA data. The term WƐ is the
coefficient of water stress, being calculated by the ratio
between ETATWB and ETP, obtained through the ERA
data. More information on mathematical functions can
be found in Potter et al. (1993) and Yu et al. (2011).

The validation of the estimated NPPa_fi eld and
NPPa_NDVI data though the CASA model used DM
data measured in the experiment, considering them as
observed NPPa data (NPPa_observed).

The data and estimations of NPPa_field, NPPa_NDVI,
and NPPa_observed were obtained only for the period of the
field experiment but counted as being annual values,
which could represent conditions of only one cycle in
the year for the region.

Estimation of human appropriation of NPP
The HANPP estimation in carbon units (C)

is the sum of two subcategories: HANPPluc and
HANPPharv (KRAUSMANN et al., 2013). HANPPharv is
the amount of carbon harvested by humans as biomass
(KRAUSMANN et al., 2013; LOREL et al., 2019),
obtained from grain productivity and measured at
the end of the soybean cycle. It represented the part
harvested and used by humans. In addition, HANPPluc
refers to the result of land-use changes induced by
humans (KRAUSMANN et al., 2013; LOREL et al., 2019),
calculated by the difference between the mean of the
annual estimations of NPPp_ETATWB_ERA (NPPp_ETATWB_ERA_m)
and NPPa_observed (Equation 10).

                                                                              (10)

Only NPPp_ETATWB_ERA estimation was used
because no difference was observed between the used

data sources after analyzing the NPPp_ETATWB_ERA, NPPp_

ETATWB_WS, NPPp_ETATo_ERA, and NPPp_ETATo_WS estimations.
Thus, the estimation using the ERA data was selected,
as they are spatialized data with a higher sampling
frequency than conventional networks. In addition, the
estimates obtained using the ETATWB method was used
because, unlike the ETATo method, this method takes
into account weather elements such as global solar
radiation, relative air humidity, and wind speed, better
characterizing the evaporative flow of the region.

RESULTS AND DISCUSSION

NPPp estimations

The highest variability in the NPPp_ETATWB_ERA,
NPPp_ETATWB_WS, NPPp_ETATo_ERA, and NPPp_ETATo_WS
estimations in each year was associated with the
method of calculating ETA, either using ETATo or
ETATWB. Moreover, the input data sources in the WS
and ERA models generated similar results for the same
method.

The interaction between the different estimations
had no significant difference between the data sources
WS and ERA, evidencing the accuracy of the ERA
data compared to WS (p > 0.05) (Table 1). It indicates
that ERA reanalysis data can be used to estimate
NPPp from different locations in southern Brazil. The
observed result is mainly important to improve NPPp
estimations in regions that have a shortage or lack of
weather stations, which represents a potential source
of uncertainty. Moreover, reanalysis data provide a
multivariate, spatially complete, and coherent record
of global atmospheric circulation (DEE et al., 2011).
As a dataset, reanalysis offers a number of significant
advantages over surface station observations: a
complete, long-term time-series, without discontinuity
(KUBIK et al., 2013), besides providing repeatability,
systematic collection and information on their spatial
distribution.

WTTRUERUE ´´´= 21max

observedamERAETATWBpluc NPPNPPHANPP ____ -=

Data source ETA calculation method
ETATo ETATWB

WS 871.48 ± 57.56 790.93 ± 32.06
ERA 856.05 ± 54.68 802.66 ± 12.67

Table 1 - Evaluation of the potential NPP (NPPp) for the data sources of ERA-Interim (ERA) and weather station (WS) and the NPPp

calculation methods using the actual evapotranspiration (ETA), original (ETATo) and water balance (ETATWB) Thornthwaite Memorial

Mean values of analysis performed for the 10 agricultural years ± standard deviation. Data source p-value = 0.9156 and calculation method p-value = 3.672e−05
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A signifi cant difference was observed between the
ETR calculation methods in the mean NPPp estimation by
the Thornthwaite Memorial model (p < 0.05). In general,
the ETATWB method generated mean values 7.5% lower
than obtained using the ETATo method. These differences
are probably associated with the fact that the ETATo method
considers only the effects of rainfall and air temperature
in the NPPp estimation, ignoring other climate factors
(YIN et al., 2020), while the ETATWB method takes into
account five weather elements (air humidity, rainfall,
air temperature, wind speed, and solar radiation) in the
NPPp estimation. The ETATWB method can characterize
better the evaporative flow of a given region because
it uses more weather elements and, therefore, the NPPp
estimations tend to be more accurate.

It is also observed in the annual variability of the
NPPp_ETATWB_ERA, NPPp_ETATWB_WS, NPPp_ETATo_ERA, and NPPp_

ETATo_WS estimations, in which the NPPp data estimated by
the ETATo method showed results far superior to those
estimated by the ETATWB method. On the other hand,
both sources of input data in the model (WS and ERA)
produced very similar annual NPPp profi les (Figure 2),
with a similar pattern in most years, except for small
variations that occurred mainly in 2009, 2010, and 2016.

The analysis of the rainfall and air temperature
pattern showed that the NPPp_ETATWB_ERA, NPPp_ETATWB_

WS, NPPp_ETATo_ERA,  and  NPPp_ETATo_WS estimations were
very similar to the water regime of the study period
(Figures 2 and 3). A high variation was observed in the
annual rainfall regime in the region, with the highest
water restriction in 2012, the same year as the lowest

Figure 2 - Potential net primary productivity (NPPp) calculated
with the actual evapotranspiration estimated by the original (ETATo)
and water balance Thornthwaite Memorial model (ETATWB), both
with weather data obtained from the INMET Automatic Weather
Station (WS) and ERA-Interim (ERA) reanalysis data Figure 3 - Total annual rainfall and mean air temperature for

the 2009 to 2018 agricultural years. Carazinho, RS, Brazil

NPPp estimations, mainly when using the ETATo method
(Figure 2). Other authors have also reported similar
results, such as Zhang et al. (2020), who observed that the
humidity levels, resulting from rainfall, were determinant
in the potential NPP for the ETATo model, controlling NPPp
variations in a direct relationship with rainfall.

It is widely known that rainfall is an important
factor that regulates NPPp and its variation, especially
in dry regions (CHEN et al., 2014; PIAO et al., 2012).
The decrease in rainfall can lead to a reduction in
photosynthetic activity and biomass production by
plants (GESSNER et al., 2013), inhibiting their growth.
Another important factor is that soil water content is a
key element, directly related to rainfall and NPPp. Thus,
an increase in rainfall can increase soil water content and
benefi t vegetation growth (CHEN et al, 2019).

Climate variability may directly infl uence vegetation
growth, as changes in air temperature and rainfall can
determine the hydrothermal conditions of vegetation growth,
especially for dry ecosystems (LI et al., 2015). Changes
occurred mainly for rainfall in the present study, resulting
in impacts that were perceptible by NPPp oscillations in
the analyzed period.

The NPPp estimations were not significantly
influenced by rainfall variations when using the ETA
calculated by ETATWB (Figure 2). It probably occurred
because the ETATWB method characterizes better the
weather conditions, as previously mentioned.

NPPa estimations

The main difference between the NPPa_field and
NPPa_NDVI estimations found by using the CASA model
regarding NPPa_observed consisted of the magnitude
of the model values, while the monthly time profile
was quite similar for the different approaches. The
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CASA model underestimated NPPa_observed by more
than 40 g C m−2 (20%) especially at the stage of
full soybean development. The soybean NPPa_observed
reached approximately 203 g C m−2 month−1 during
the maximum crop growth, but the estimations of the
CASA model for NPPa_fi eld and NPPa_NDVI reached only 163
and 149 g C m−2 month−1, respectively (Figure 4).

The correlation between the results of NPPa_

observed and  the  NPPa_fi eld and  NPPa_NDVI estimations was
high (r = 0.92 and 0.95), indicating a very consistent
correspondence between the estimations performed
by the CASA model with the data observed in the fi eld
(Table 2). The correlation found in the present study was
higher than that obtained in similar studies. Chen et al.
(2019) evaluated the performance of the CASA model
to simulate NPPa compared to the measurement in the
fi eld and obtained an R2 of 0.74 (p < 0.001). The authors
concluded that the NPPa estimated by the CASA model
was reliable and could be applied in future stages and
analyses. Other authors have also obtained satisfactory
results using the CASA model to estimate NPPa. Yan et al.
(2019) observed good agreement between the calculated
and measured NPPa values, with Pearson correlation
coeffi cient r = 0.786 (p < 0.001), and concluded that the
results indicate that the NPPa of arable lands in China was

Σ NPPa (g C m−2) r RMSE
NPPa_fi eld 435.5 0.92 35.3
NPPa_NDVI 372.9 0.95 39.9

Table 2 - Total NPPa obtained with data from APARfi eld (NPPa_fi eld) and APARNDVI (NPPa_NDVI), correlation coeffi cient (r) and root-mean-square
error of the estimates (RMSE) of NPPa_fi eld and NPPa_NDVI obtained by the CASA model relative to the NPPa observed in the fi eld (NPPa_observed)**

** The total NPPa_observed was equal to 510.4 g C m−2

Figure 4 - Time profi le (a) and dispersion (b) between the net primary productivity observed in the fi eld (NPPa_observed) and estimated
using data from APARfi eld (NPPa_fi eld) and APARNDVI (NPPa_NDVI) for soybean cultivation

calculated with precision. Li et al. (2016), comparing the
observed NPP and the CASA simulation results, showed
good agreement between both (R2 = 0.750, p < 0.01). The
authors concluded the simulation accuracy of the model
was satisfactory for the needs of the study.

The comparison between the NPPa_fi eld, NPPa_

NDVI, and NPPa_observed estimations and the results of other
researchers who used similar approaches showed similar
patterns. Gao et al. (2013) studied the vegetation NPPa
on the Tibetan plateau and reported that the validation of
the modeled NPPa was approximately 35% lower than the
measured NPPa. In the present study, the difference between
the NPPa_fi eld and NPPa_NDVI estimations and NPPa_observed for
soybean was 15 and 27%, respectively. Piana and Civeira
(2017) simulated the soybean NPPa for regions of the Pampa
biome in Argentina, between 1993 and 2005, and found
average values of 210 g C m−2 year−1 (2.1 ± 0.1 t ha−1 year−1).
On the other hand, Civeira (2016) studied the NPPa of several
crops in the periurban areas (south, north and west) of Buenos
Aires City, Argentina, and found maximum values of 320 g
C m−2 year−1 (3.2 t ha−1 year−1) for soybean.

Given the consistency of the results, the
proposed approach, employing data from reanalysis
and satellite images, highlights one of the great

(b)
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advantages of using the CASA model, which is the
possibility of representing spatial variations of NPPa
in producing regions, whose degree of detail depends
only on the spatial resolution of the selected remote
sensor. Maps depicting the spatial variability of NPPa
in different regions of the globe have been observed in
several studies (BAEZA; PARUELO, 2018; LIANG et al.,
2015; LIU et al., 2019; YIN et al., 2020).

HANPP quantifi cation

According to the NPPa_ETATWB_ERA_m and  NPPa_

observed estimations, HANPPluc, derived only from land
use and coverage by human activities, reached 29%. It
shows that, when only one annual cultivation is carried
out, about one-third of the potential primary production
of the ecosystem was appropriated by human activities
associated with grain cultivation in the area (Figure 5).
Thus, a HANPP luc of 29% also indicates a potential
for vegetation that can still be exploited in the area
by introducing other annual crops or increasing the
productivity of crops already existing there. However,
the long-term sustainability of this agroecosystem
must be considered whatever measures are proposed to
harness this existing potential.

The HANPPluc estimations based on NPPa_fi eld and
NPPa_NDVI estimations by the CASA model were higher
than the HANPPluc calculated from the NPPa_observed,
reaching up to half of the NPPp_ETATWB_ERA_m (46 and 54%,
respectively). Haberl et al. (2007) evaluated HANPP for
different activities and found that most appropriation was
associated with agricultural production. These authors
also identifi ed in Austria that approximately 50% of global
HANPP was related to arable lands.

Figure 5 - Potential net primary productivity estimation using
the ETATWB method and ERA data (NPPp_ETATWB_ERA_m), NPPa
observed in the field (NPPa_observed), human appropriation of
NPP by land use (HANPPluc), and harvested NPP (HANPPharv)
based on Haberl, Erb, and Krausmann (2014)

Baeza and Paruelo (2018) studied the HANPP
variation in the Rio de la Plata (RPG) fi elds in southern
South America, including the Pampas in Argentina and
fi elds in Uruguay and southern Brazil for two agricultural
cultivations from 2001/2002 to 2012/2013 and identifi ed an
increase in the total HANPP, which was related to an increase
in the vegetation fraction harvested by humans (HANPPharv)
in the same period. However, these authors also observed
a marked decrease of HANPPluc in 2012/2013, reaching
negative values in some regions of RPG. This pattern of
decrease resulted not only from the reduction in NPPp but
also due to increased productivity and expansion of the
double growing season, that is, two annual cultivations.

Annual production in much of Brazil is made up of
more than one agricultural cultivation. In general, winter
cereals such as wheat, oat, barley, and pastures such as
ryegrass and canola are also grown in the study region
(July to October). These crops, grown in the same area as
soybean in succession, contribute to increasing the NPPa
produced throughout the year, making losses related to
land-use change (inappropriate NPPa) lower than those
observed. The NPPa may be higher than the environment
NPPp under these conditions of two or more annual crops.

The appropriation of NPPa_observed as a function of
crop removal (HANPPharv) leaves in the field only the
harvested material not used for human consumption
and available in the agroecosystem. Thus, land-use
changes, through the introduction and harvest of
agricultural cultivations, increase the share of primary
production destined for human consumption, decreasing
the fraction available for other functions of the ecosystem
(DEFRIES; FOLEY; ASNER, 2004). In this context,
agricultural practices that aim to maintain continuous
soil coverage, minimum disturbances, and crop rotation
(SOARES et al., 2020) are required to minimize the effects
of human appropriation due to the harvest of biomass.

The HANPP evaluation has great importance,
as it allows relating the potential productivity of
an ecosystem in the absence of human interferences
(HABERL; ERB; KRAUSMANN, 2014), with the current
agricultural production of the formed agroecosystem
due to land-use changes (KRAUSMANN et al., 2013).
The  analysis  of  parameters  such  as  NPPp, NPPa, and
HANPP, estimated by theoretical models, can be used
not only to indicate the relative contribution of natural
and anthropogenic factors (LI et al., 2018) but also to
direct regulation (FENG et al., 2017) and agricultural
intensification in current and future scenarios. In this
sense, more studies should be conducted to evaluate
the effects of human activities and climate variations
on the NPP of agroecosystems. Production gaps need
to be filled considering the long-term sustainability
of agroecosystems aiming at adequate management
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of environmental resources necessary to maintain
agricultural production, minimizing the environmental
impacts associated with these activities (TAELMAN et al.,
2016; WEINZETTEL; VAČKÁŘŎ; MEDKOVÁ, 2019).

CONCLUSIONS

1. Estimations of natural potential NPP show sensitivity to
the method of obtaining ETA and refl ect the infl uence of
interannual variations in weather conditions on the growth
potential of vegetation in the absence of human interference;

2. The ERA-Interim reanalysis weather data can be used
as input data in the Thornthwaite Memorial model
for estimating the potential NPP and in the CASA
model for estimating the actual NPP, considering the
similarity of the data measured on the surface, with
the advantage of allowing higher spatial detailing
of the models compared to that possible using
interpolated data from surface weather stations;

3. The CASA model generates accurate estimates of
the actual NPP, providing a means to evaluate the
dynamics of carbon fi xation through photosynthesis
throughout the production cycle of crops;

4. The study of human appropriation of NPP is effi cient in
identifying losses or gains in biological productivity in an
ecosystem that has been modifi ed by human activities. The
evaluation of HANPPluc and HANPPharv allows identifying
losses or gains related to different human actions, such as
land use and cover changes and biomass harvesting.
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