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ABSTRACT - Multicollinearity must be diagnosed in multivariate analyses. Among the indicators, the condition number can be

used to quantify the degree of multicollinearity. Hence, this study sought to determine the number of measurements (trials) necessary

to estimate the number of condition in linear correlation matrices between rye traits. Five uniformity trials were carried out with

‘BRS Progresso’ rye, and eight morphological traits and eight productive traits were evaluated, forming two groups. In each group of

traits, six cases (combinations of traits) were planned and the multicollinearity diagnosis was performed. Repeatability analyses were

performed using the following methods: analysis of variance, principal component analysis, and structural analysis, and the number

of measurements (trials) was determined for diff erent levels of precision. A higher condition number of repeatability coeffi  cients was

obtained by the principal component methods (based on correlation and variance and covariance matrices) and structural analysis based

on the variance and covariance matrix. A greater number of measurements (trials) is necessary to estimate the number of conditions in

productive traits compared to morphological ones. One trial is enough to effi  ciently estimate the condition number with a minimum

accuracy of 80% in morphological and productive traits of rye, whereas at least three trials are required for 95% accuracy.
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INTRODUCTION

Multivariate analysis techniques allow
researchers to better understand the phenomena of
multiple measures of studied individuals. More reliable
parameter estimates are obtained when assumptions are
met, and in multivariate analyses, multicollinearity must
be investigated (HAIR et al., 2009). It can be understood
as the linear relationship between traits, and when present
at high levels, performance and parameter prediction
decrease in most linear methods due to information sharing
between the characteristics (DORMANN et al., 2013). In
most multivariate techniques, multicollinearity increases
the variance of the estimated parameters (FIGUEIREDO
FILHO et al., 2011), resulting in parameter estimates
of low reliability (HAIR et al., 2009), overestimated
statistics and excessive false positives (GOODHUE;
LEWIS; THOMPSON, 2017), or even an inadequate
interpretation of the results (ALVES; CARGNELUTTI
FILHO; BURIN, 2017; DORMANN et al., 2013;
TOEBE; CARGNELUTTI FILHO, 2013).

The repeatability coeffi  cient (rc) has been used to
verify the correlation between measurements in the same
individual and determine the number of measurements
(ABEYWARDENA, 1972; CRUZ; REGAZZI;
CARNEIRO, 2012). The repeatability analysis and
determining the number of measurements have been
performed in crops such as Tanzania grass (Panicum
maximum Jacq.) (CARGNELUTTI FILHO et al., 2004;
FERNANDES et al., 2017), elephant grass (Pennisetum spp.)
(CAVALCANTE et al., 2012; SOUZA et al., 2017), wheat
(Triticum aestivum) (PAGLIOSA et al., 2014), palisade
grass (Urochloa brizantha) (TORRES et al., 2015), cabbage
(Brassica oleracea var. acephala) (AZEVEDO et al., 2016),
strawberry (Fragaria x ananassa) (DIEL et al., 2020),
and soybean (Glycine max) (DUARTE; FERREIRA;
SILVA, 2022). Given the above, this study sought to
determine the number of measurements (trials) required
to estimate the condition number in linear correlation
matrices between rye traits.

MATERIALS AND METHODS

Five uniformity trials (without applying treatments)
were conducted with rye (Secale cereale L.); the cultivar
utilized was ‘BRS Progresso’, which is intended for
grain production (EMBRAPA, 2013). The experimental area
belongs to the Department of Plant Science of the Federal
University of Santa Maria (29º42’S, 53º49’W; 95 m altitude).
The region climate is classified as humid subtropical
Cfa with hot summers and no defined dry season,
according to Köppen (ALVARES et al., 2013). The soil

of the region is classified as Typical Dystrophic Bruno-
gray Argisol (Argissolo Bruno-Acinzentado distrófico
típico) (SANTOS et al., 2018).

Conventional soil preparation was performed
throughout the experimental area by harrowing.
Soil fertility was corrected by applying 500 kg ha-1

of fertilizer with the 5-20-20 formulation (NPK),
corresponding to 25 kg ha-1 of N, 100 kg ha-1 of P2O5,
and 100 kg ha-1 of K2O.

Sowings in trials T1, T2, T3, T4, and T5 were
performed on 03/05/2016, 25/05/2016, 07/06/2016,
22/06/2016, and 04/07/2016, respectively. Seeding
was performed by broadcast seeding in a 320 m² area
(20 × 16 m) in the fi rst sowing season (T1). In contrast,
in the other seasons, it was performed in a 375 m²
area (25 × 15 m) at a density of 455 seeds m-2. Cover
fertilization was performed when the plants were between
the stages with three (V3) and four (V4) developed leaves
using 25 kg ha-1 of N. The other cultural treatments and
management recommendations were carried out as needed
for rye (BAIER, 1994).

Then, 100 plants were randomly collected and
evaluated in each uniformity trial (sowing season), except
in T4 (fourth season), in which 90 plants were evaluated,
totaling 490 plants. The evaluations were performed
on the stems of each plant collected (the primary stem
and secondary stem or tiller), obtaining values for eight
morphological and eight productive traits. In total, 1,136
stalks were evaluated (i.e., 193, 370, 242, 169, and 162
in T1, T2, T3, T4, and T5, respectively). The values were
obtained by counting the number of nodes, spikelets, and
spike grains-1; measuring the length of the stem, stalk, and
spike (cm); and, weighing the fresh and dry mass of the
stem, stalk, spike (grain and straw mass), and grain (g).

The following morphological traits were evaluated
in each plant: 1) plant height (cm) obtained by the mean
distance between the base of the plant to the last spikelet
of all the stalks of the plant; 2) stem length (cm) obtained
by the mean distance between the base of the plant until
the fl ag leaf node of all the stalks of the plant; 3) peduncle
length (cm) obtained by the mean distance between the
fl ag leaf node and the spike insertion in the peduncle of
all the stalks of the plant; 4) fresh mass of the aerial part
(g) obtained by the mean mass of the aerial part of all the
stalks of the plant; 5) total fresh mass of the aerial part
(g) obtained by the sum of the mass of the aerial part of
all the stalks of the plant; 6) the ratio between the mean
of the fresh masses of stalk + leaves + peduncle on the
total fresh mass of the aerial part; 7) the number of stalks
obtained by the sum of the main stem + the number of tillers;
and 8) number of nodes per stem obtained by dividing the
number of nodes of the plant by the number of stalks.
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Figure 1 - Representation of a rye (Secale cereale L.) plant and details of the evaluated parts

The following productive traits were evaluated
in each plant: 1) spike length (cm) obtained by the
mean length of the spikes on the plant; 2) grain mass
(g) obtained by summing the grain mass of all spikes on
the plant; 3) 100-grain mass (g); 4) the number of grains
obtained by summing the number of grains on all spikes
on the plant; 5) the number of spike grains-1 obtained by
dividing the number of grains on the plant by the number
of spikes on the plant; 6) the number of spikelets obtained
by summing the number of spikelets in all spikes on the
plant; 7) number of spike spikelets-1 obtained by dividing
the number of spikelets on the plant by the number of
spikes on the plant; and 8) the ratio of the mass of grains
per stem to the total fresh mass of the aerial part.

Six cases were planned for each trait group
(morphological and productive) and were formed by
combinations of eight traits (p = 8 traits) taken by pi
in pi (C(p,pi)  with i  =  2,  3,  4,  5,  6,  and  7  traits).  That
is, in each trait group, in the fi rst case identifi ed as
case 2, 28 combinations of eight traits were taken as
two by two (C(p,pi) =  C(8,2) = 28 combinations). In the
following cases, by adding one trait, combinations with
three (C(8,3)), four (C(8,4)), and so forth were obtained
until the last case with seven combined traits (C(8,7)).
Therefore, 28, 56, 70, 56, 28, and 8 combinations were
obtained for the cases containing 2, 3, 4, 5, 6, and 7
traits, respectively. A total of 492 combinations were
obtained, with 246 combinations belonging to the
cases for the morphological trait group and another 246
combinations belonging to the cases for the productive
trait group.

Next, the condition number (CN) estimates were
obtained for each combination within each case, trait
group, and trial. The CN was obtained by the ratio
of the largest (λmax) and lowest eigenvalue (λmin) of
Pearson’s linear correlation matrix between the traits
(CRUZ; REGAZZI; CARNEIRO, 2012; GUJARATI;
PORTER, 2011). As a rule of thumb, the CN indicator
divides  mu l t i co l l i n ea r i t y  i n t o  c l a sse s :  wea k
(CN  ≤  100) ; moderate to strong (100 < CN ≤ 1,000);
and severe (CN > 1,000) (MONTGOMERY et al., 2012).

Repeatability analysis for CN was performed
in each case (combined traits) and trait group
(morphological and productive), totaling 12
repeatability analyses (six cases × two trait groups).
The diff erent combinations of traits within each case and
trait group were considered to be the observed “subjects”
and the trials (sowing seasons) the “repeated measures”.

Considering the example of estimating the repeatability
coeffi  cient (rc) of CN in case 2 and the morphological trait
group, the 140 CN estimates (28 combinations of eight traits
taken two by two × fi ve trials) were considered, forming a
matrix of 28 rows (combinations) and 5 columns (trials).
The same number of estimates was obtained for the productive
trait group because it also presents eight traits. Therefore, for
each character group, 140, 280, 350, 280, 140, and 40 CN
estimates were obtained for the cases with 2, 3, 4, 5, 6, and 7
combined traits, respectively.

For  each  of  the  cases  with  2,  3,  4,  5,  6,  and  7
combined traits and trait groups (morphological and
productive), the rc and coeffi  cient of determination
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(R²) were estimated by analysis of variance (ANOVA),
principal components based on the correlation matrix
(PCR), principal components based on variance and
covariance matrix (PCS), structural analysis based on the
theoretical eigenvalue of the correlation matrix (SAR),
and structural analysis determined based on the theoretical
eigenvalue of the variance and covariance matrix (SAS)
(CRUZ; REGAZZI; CARNEIRO, 2012).

In the ANOVA method, the model was considered:

ijjiij ECmCN +++=                                                                                                                    (1)

Where: CNij is the estimate of the condition number
referring to the i-th combination and the j-th trial; m is the
general mean; Ci is the eff ect of the i-th combination under
the infl uence of the trial; Ej is the eff ect of the trial at the j-th
measurement; and εij is the experimental error established
by the eff ects of the j-th trial in the i-th combination.

The mean rc and R² of the cases were compared
between trait groups (morphological and productive)
within each method by the Student’s t-test for independent
samples at a 5% signifi cance level.

For each case, method, and trait group, the
number of measurements or trials (ηm) to estimate
the condition number with different determination
coefficients (R² = 0.80, 0.85, 0.90, 0.95, and 0.99)
were determined using the equation below (CRUZ;
REGAZZI; CARNEIRO, 2012):

( )
( ) rcR

rcR
m 2

2

1
1

-
-=                                                                        (2)

where: ηm is the number of measurements (trials), rc is
the repeatability coeffi  cient, and R2 is the coeffi  cient of
determination (R² = 0.80, 0.85, 0.90, 0.95, and 0.99).
The means of ηm of the cases were compared between
the trait groups (morphological and productive)
within each method and R² by the Student’s t-test for
independent samples at a 5% significance level. The
analyses were performed using Microsoft Excel® and
R software (R CORE TEAM, 2021).

RESULTS AND DISCUSSION

The number of combined traits provided
different estimates for the condition number (CN),
with the highest values in cases with the highest
number of combined traits (Table 1). In combinations
with two traits (case 2), weak multicollinearity was
observed, with means of 2.61 (1.0 ≤ CN ≤ 16.6) and 5.85
(1.0 ≤ CN ≤ 78.3) in the morphological and productive trait
groups, respectively. In case 7, nevertheless, the CN means
were roughly 163 and 80 times higher than the means in
case 2, with values of 426.78 (75.6 ≤ CN ≤ 1,067.5)
and 468.25 (144.7 ≤ CN ≤ 1,170.8), respectively. The

percentage of combinations with CN ≤ 100 decreased
toward the cases with a higher number of combined traits.
An extreme case was observed in case 7 (seven traits
combined) and the productive trait group, with no
combination with CN ≤ 100.

Regardless of the trait group, we observed that, on
average, the CN increased as more traits were used in the
multicollinearity diagnosis. Additionally, the amplitudes
were larger in the cases with more combined traits. This
may be related to using all possible combinations in
each case. The greater the number of traits present in the
group under analysis, the greater the chance of strongly
related traits. In an extreme case, high CN (CN ≥ 144.7)
was verifi ed in all combinations of productive traits in
case 7. Multicollinearity can be understood as the linear
relationship between traits and information sharing
(DORMANN et al., 2013). The high magnitude of the
correlation between traits can be used to indicate the
presence of high multicollinearity levels, and researchers
must pay more attention to when correlations are above
|r| ≥ 0.7 (DORMANN et al., 2013).

Estimates of CN >  100  are  classified  as
moderate to strong or severe multicollinearity
(MONTGOMERY et al., 2012). In such cases, trait
elimination has been used as a measure to reduce the
degree of multicollinearity, and this practice has been
reported elsewhere with maize (Zea mays) (ALVES et al.,
2016a, 2016b; OLIVOTO et al., 2017; TOEBE et al., 2017;
TOEBE; CARGNELUTTI FILHO, 2013), showy crotalaria
(Crotalaria spectabilis) (TOEBE et al., 2017), and black
oats (Avena strigosa S.) (MEIRA et al., 2019).

Based on fi ve trials, repeatability coeffi  cients
(rc) equal to or greater than 0.707 were observed for
CN estimation, with a minimum accuracy of 92.4% in
predicting its real value (R² = 0.924), regardless of the
number of combined traits (cases), trait group, and method
of repeatability (Table 2). A high value of R² indicates that
the mathematical model used to determine repeatability
was effi  cient (CAVALCANTE et al., 2012).

Regardless of the method and trait group, the mean R²
of the cases ranged between 0.959 and 0.997. These high
R² values indicate that all methods accurately estimated
rc. Differences between the mean R² of the cases among
the trait groups were verified by the Student’s t-test for
independent samples at a 5% significance level when
the repeatability analysis was performed using PCR,
PCS, and SAR. Hence, these methods gave us higher
accuracy to estimate CN repeatability observed in
morphological traits compared to productive ones. No
studies of repeatability analysis have been found for
the rye crop nor for estimating CN. Similar high values
and magnitudes of R² for the same trait were observed
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Table 1 - Minimum, mean, median, m aximum, and range (maximum-minimum) of the condition number and percentage of
combinations with weak multicollinearity (PCWM) in combinations of morphological and productive traits (cases) in five trials
of ‘BRS Progresso’ rye (Secale cereale L.)

¹Case: number of traits combined. ²NCT: number of combinations in each case and trial. ³No. of Comb. = number of combinations in each case × number
of trials. 4Percentage of combinations with weak multicollinearity (PCWM): CN ≤ 100 (MONTGOMERY et al., 2012)

Case¹ NCT² No. of Trials No. of Comb.³ Minimum Mean Median Maximum Range PCWM (%)4

------------------------------ Morphological traits ------------------------------
2 28 5 140 1.0 2.61 1.45 16.6 15.6 100.00
3 56 5 280 1.1 11.07 3.20 377.1 376.0 98.21
4 70 5 350 1.5 37.30 6.43 853.0 851.6 92.00
5 56 5 280 2.7 100.20 22.52 965.2 962.5 76.79
6 28 5 140 3.6 223.81 94.05 1043.7 1,040.1 50.71
7 8 5 40 75.6 426.78 352.37 1067.5 991.9 20.00

-------------------------------- Productive traits ---------------------------------
2 28 5 140 1.0 5.85 2.25 78.3 77.3 100.00
3 56 5 280 1.5 18.95 6.61 170.3 168.9 97.14
4 70 5 350 2.6 50.57 27.67 519.5 516.9 85.43
5 56 5 280 7.1 120.00 69.54 723.0 716.0 49.29
6 28 5 140 23.6 251.10 198.46 1008.5 984.9 24.29
7 8 5 40 144.7 468.25 384.32 1170.8 1,026.2 0.00

Tabl e 2 - Coeffi  cients of repeatability (rc) and determination (R²) for the condition number (CN) obtained in diff erent cases,  trait groups
(morphological [MORP] and productive [PROD]), and by diff erent methods based on fi ve trials of ‘BRS Progresso’ rye (Secale cereale L.)

¹Case: number of combined traits. 2Repeatability analysis methods: ANOVA: analysis of variance; PCR: principal components based on the correlation
matrix; PCS: principal components based on variance and the covariance matrix; SAR: structural analysis based on the correlation matrix; SAS:
structural analysis based on variance and the covariance matrix. ³rc and R² means with distinct letters in the row (comparison between groups of
morphological and productive traits within each method) diff er from each other at a 5% signifi cance by the Student’s t-test for independent samples
with 10 degrees of freedom (exception for R² by the PCS method with 6.21 degrees of freedom)

Case1
ANOVA2 PCR PCS SAR SAS

MORP PROD MORP PROD MORP PROD MORP PROD MORP PROD
rc - repeatability coeffi  cient

2 0.923 0.817 0.948 0.885 0.954 0.872 0.948 0.882 0.923 0.817
3 0.859 0.849 0.983 0.879 0.991 0.873 0.983 0.877 0.859 0.849
4 0.838 0.885 0.979 0.917 0.988 0.914 0.979 0.916 0.838 0.885
5 0.825 0.880 0.980 0.933 0.989 0.932 0.980 0.933 0.825 0.880
6 0.812 0.831 0.983 0.937 0.992 0.942 0.983 0.937 0.812 0.831
7 0.792 0.707 0.988 0.961 0.994 0.969 0.988 0.961 0.792 0.707
Mean 0.842 a3 0.828 a 0.977 a 0.918 b 0.985 a 0.917 b 0.977 a 0.918 b 0.842 a 0.828 a

R² - coeffi  cient of determination
2 0.984 0.957 0.989 0.975 0.991 0.972 0.989 0.974 0.984 0.957
3 0.968 0.966 0.997 0.973 0.998 0.972 0.997 0.973 0.968 0.966
4 0.963 0.975 0.996 0.982 0.998 0.981 0.996 0.982 0.963 0.975
5 0.959 0.973 0.996 0.986 0.998 0.986 0.996 0.986 0.959 0.973
6 0.956 0.961 0.997 0.987 0.998 0.988 0.997 0.987 0.956 0.961
7 0.950 0.924 0.998 0.992 0.999 0.994 0.998 0.992 0.950 0.924
Mean 0.963 a 0.959 a 0.996 a 0.982 b 0.997 a 0.982 b 0.996 a 0.982 b 0.963 a 0.959 a
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among the methods used in repeatability analysis. As
an example, similar magnitudes of R² values were
observed in the repeatability analysis of plant height
in Tanzania grass (0.919 ≤ R² ≤ 0.970) (CARGNELUTTI
FILHO et al., 2004), cabbage (0.994 ≤ R²  ≤ 0.998)
(AZEVEDO et al., 2016), dry mass of the aerial part in
elephant grass (0.96 ≤R² ≤0.97) (CAVALCANTE et al., 2012)
and 0.734 ≤ R² ≤ 0.798 (SOUZA et al., 2017), and soybean
(0.942 ≤ R² ≤ 0.944) (DUARTE; FERREIRA; SILVA, 2022).

When analyzing the rc estimates between cases in
each trait group and method, no pattern was observed with
the decreasing or increasing number of combined traits.
However, lower rc magnitudes were only observed when
estimated by ANOVA and SAS and in case 7. Similar to
what was observed with the mean R², higher rc means were
observed in the group of morphological traits compared to
the group of productive traits according to the Student’s
t-test for independent samples at a 5% signifi cance level
when rc was obtained by PCR, PCS, and SAR.

In summary, the highest repeatability coeffi  cients
of condition number were estimated by principal
component methods (based on the correlation and
variance and covariance matrices – PCR and PCS,
respectively) and structural analysis based on the variance
and covariance matrix (SAS). The average estimates of the
repeatability coeffi  cient do not diff er between the groups
of morphological and productive characters by analysis of
variance (ANOVA) and structural analysis based on the
matrix of variances and covariances (SAS), but with a
higher mean for the group of morphological traits when the
coeffi  cient is estimated by the principal components based
on the correlation matrix (PCR), principal components
based on variance and covariance matrix (PCS), and
structural analysis based on the theoretical eigenvalue of
the correlation matrix (SAR).

The present study obtained the highest repeatability
values for CN estimation using principal component
methods (PCR and PCS) and structural analysis based on
the correlation matrix (SAR). These methods seem suitable
for rc estimation for CN in rye traits. High repeatability
estimates indicate that with a relatively small number of
measurements, it is possible to estimate the true value
of a given trait (CARGNELUTTI FILHO et al., 2004).
This is because the higher the rc estimate, the greater the
predictability that values very close to the estimates of
previous events will occur in subsequent measurements
(CRUZ; REGAZZI; CARNEIRO, 2012).

Lower rc estimates by ANOVA were also observed
in studies with agronomic traits of soybean (DUARTE;
FERREIRA; SILVA, 2022; MATSUO et al., 2012), elephant
grass (CAVALCANTE et al., 2012; SOUZA et al., 2017),
palisade grass (TORRES et al., 2015), cabbage (AZEVEDO
et al., 2016), and strawberry (DIEL et al., 2020). By using
the principal component methods (PCR and PCS), the highest
magnitudes of rc were verifi ed in studies with agronomic
characteristics in Tanzania grass (CARGNELUTTI FILHO
et al., 2004), wheat (PAGLIOSA et al., 2014), palisade grass
(TORRES et al., 2015), and strawberries (DIEL et al., 2020).

The minimum number of measurements or
trials (ηm) for CN estimation varied according to the
method, the case (number of traits combined), the level
of precision (R² - coeffi  cient of determination), and the
trait group (morphological and productive) (Table 3). By
comparing the ηm mean of cases between morphological
and productive traits in each method and R², we observed
the signifi cant superiority of ηm in the group of productive
traits using the PCR, PCS, and SAR methods in all R²
(R² = 0.80, 0.85, 0.90, 0.95, and 0.99) according to
the Student’s t-test for independent samples at a 5%
significance level.

Table 3 - Nu mber of trials (measurements) associated with diff erent coeffi  cients of determination (R² = 0.80, 0.85, 0.90, 0.95, and 0.99)
for estimating condition number (CN) on combinations of traits (morphological and productive) in rye (Secale cereale L.)

Case¹
Morphological traits Productive traits

---------------------------------------------- Coeffi  cient of determination (R²) ---------------------------------------------
0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99

----------------------------------------------- ANOVA - Analysis of variance -----------------------------------------------
2 0.3 0.5 0.8 1.6 8.3 0.9 1.3 2.0 4.3 22.2
3 0.7 0.9 1.5 3.1 16.3 0.7 1.0 1.6 3.4 17.6
4 0.8 1.1 1.7 3.7 19.1 0.5 0.7 1.2 2.5 12.9
5 0.8 1.2 1.9 4.0 21.0 0.5 0.8 1.2 2.6 13.5
6 0.9 1.3 2.1 4.4 22.9 0.8 1.1 1.8 3.9 20.1
7 1.1 1.5 2.4 5.0 26.0 1.7 2.3 3.7 7.9 40.9
Mean 0.76 a² 1.08 a 1.72 a 3.63 a 18.92 a 0.86 a 1.21 a 1.93 a 4.07 a 21.21 a
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¹Case: number of combined traits. 2Means of the number of trials (measurements) with diff erent letters in the row (comparison between groups of
morphological and productive traits within each method and level of accuracy - R²) diff er at a 5% signifi cance level according to the Student’s t-test for
independent samples with 10 degrees of freedom (except in the PCS method with 6.15 degrees of freedom)

------------------------------ PCR - Principal components based on the correlation matrix ------------------------------
2 0.2 0.3 0.5 1.0 5.4 0.5 0.7 1.2 2.5 12.9
3 0.1 0.1 0.2 0.3 1.7 0.6 0.8 1.2 2.6 13.7
4 0.1 0.1 0.2 0.4 2.1 0.4 0.5 0.8 1.7 9.0
5 0.1 0.1 0.2 0.4 2.0 0.3 0.4 0.6 1.4 7.1
6 0.1 0.1 0.2 0.3 1.7 0.3 0.4 0.6 1.3 6.7
7 0.0 0.1 0.1 0.2 1.2 0.2 0.2 0.4 0.8 4.0
Mean 0.10 b 0.13 b 0.21 b 0.45 b 2.35 b 0.36 a 0.51 a 0.81 a 1.71 a 8.90 a

------------------------------ PCS – Principal components based on the covariance matrix ------------------------------
2 0.2 0.3 0.4 0.9 4.7 0.6 0.8 1.3 2.8 14.5
3 0.0 0.1 0.1 0.2 0.9 0.6 0.8 1.3 2.8 14.4
4 0.0 0.1 0.1 0.2 1.2 0.4 0.5 0.8 1.8 9.3
5 0.0 0.1 0.1 0.2 1.1 0.3 0.4 0.7 1.4 7.2
6 0.0 0.0 0.1 0.2 0.8 0.2 0.3 0.6 1.2 6.1
7 0.0 0.0 0.1 0.1 0.6 0.1 0.2 0.3 0.6 3.1
Mean 0.07 b 0.09 b 0.14 b 0.30 b 1.56 b 0.37 a 0.52 a 0.83 a 1.75 a 9.10 a

------------------------------- SAR – Structural analysis based on the correlation matrix --------------------------------
2 0.2 0.3 0.5 1.0 5.5 0.5 0.8 1.2 2.5 13.2
3 0.1 0.1 0.2 0.3 1.7 0.6 0.8 1.3 2.7 13.9
4 0.1 0.1 0.2 0.4 2.1 0.4 0.5 0.8 1.7 9.1
5 0.1 0.1 0.2 0.4 2.0 0.3 0.4 0.6 1.4 7.1
6 0.1 0.1 0.2 0.3 1.7 0.3 0.4 0.6 1.3 6.7
7 0.0 0.1 0.1 0.2 1.2 0.2 0.2 0.4 0.8 4.0
Mean 0.10 b 0.13 b 0.21 b 0.45 b 2.36 b 0.36 a 0.51 a 0.82 a 1.73 a 9.00 a

-------------------------------- SAS - Structural analysis based on the covariance matrix --------------------------------
2 0.3 0.5 0.8 1.6 8.3 0.9 1.3 2.0 4.3 22.2
3 0.7 0.9 1.5 3.1 16.3 0.7 1.0 1.6 3.4 17.6
4 0.8 1.1 1.7 3.7 19.1 0.5 0.7 1.2 2.5 12.9
5 0.8 1.2 1.9 4.0 21.0 0.5 0.8 1.2 2.6 13.5
6 0.9 1.3 2.1 4.4 22.9 0.8 1.1 1.8 3.9 20.1
7 1.1 1.5 2.4 5.0 26.0 1.7 2.3 3.7 7.9 40.9
Mean 0.76 a 1.08 a 1.72 a 3.63 a 18.92 a 0.86 a 1.21 a 1.93 a 4.07 a 21.21 a

Continuation Table 3

Regardless of the method, case, and character group,
one trial (ηm =1 trial) is enough to estimate the CN with
at least 80% accuracy except in combinations with seven
traits (case 7) when the rc was estimated by the ANOVA or
SAS methods. The lowest ηm values were observed for the
cases, methods, and trait groups with the highest rc because
the coeffi  cient is used to determine ηm (Equation 2) and,
therefore, the lowest ηm were estimated by the PCR, PCS,
and SAR methods. The principal component methods

(PCR and PCS) have been used in repeatability analysis
because, in most cases, higher rc and high accuracy are
observed. In these methods, the cyclic behavior of the
trait is considered, containing the eigenvector elements
of the same sign and similar magnitudes, expressing the
tendency of the genotypes (in this study, the combinations)
to maintain their positions in successive measurements,
thereby being recommended in repeatability estimation
because of the higher accuracy (ABEYWARDENA, 1972).
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Given the recommendation to use principal
component methods and the high rc and R² values
obtained in this study, the principal component methods
were used in inferences for the number of trials (ηm)
to estimate CN. It should be emphasized that, in this
study, the estimates of ηm were similar to each other by
the PCR, PCS, and SAR methods (Table 3).

Using the PCR, PCS, and SAR implies that a single
assay is enough to estimate CN in morphological traits with
at least 95% accuracy. In productive traits and the same
level of accuracy (minimum R² of 0.95), up to three assays
are needed depending on the number of traits. The number
of trials obtained in this study is lower than those reported
in other crops as necessary to evaluate agronomic traits.
Three to 12 evaluation cycles were found to be necessary
(CAVALCANTE et al., 2012) and 11 to 49 measurements
in elephant grass genotypes (SOUZA et al., 2017), two
evaluations in wheat (PAGLIOSA et al., 2014), and two
to 18 measurements in soybean (MATSUO et al., 2012),
with 95% accuracy.

Fewer trials can be used, although the researcher
must give up accuracy. Therefore, a single trial to estimate
CN with 80% accuracy can be used in almost all cases
and trait groups. The exception occurs in cases with seven
morphological and productive traits and when the rc of the
CN is determined by ANOVA and SAS methods.

It is up to the researcher to choose the adequate
number of measurements (trials), considering the
availability of material, manpower, and the desired
precision. When defi ning the number of trials, the results of
previous experiments and studies of sample size, plot size,
relationships between traits, multicollinearity diagnosis,
and other information about the crop must be considered.

Using a greater number of traits may result in
greater predictability in CN estimation. On the other
hand, it may result in lower precision in the estimates
of the parameters of multivariate analysis because
the researcher must be aware that the use of a higher
number of traits will also lead to a higher degree
of multicollinearity, requiring some procedure to
reduce CN to values below 100. In most multivariate
techniques, parameter estimates become unreliable in
the presence of multicollinearity (HAIR et al., 2009)
or there is a misinterpretation of the results (ALVES;
CARGNELUTTI FILHO; BURIN, 2017; DORMANN
et al., 2013; TOEBE; CARGNELUTTI FILHO, 2013);
this is because the information is shared among
the traits, consequently increasing the variance of the
estimated parameters (FIGUEIREDO FILHO et al., 2011).

A larger number of trials is needed to estimate
CN in productive traits compared to the group of
morphological traits, although using diff erent numbers of

trials is not practical. Thus, in conducting experiments in
rye or any other crop, a single number of trials facilitates
the planning and experimental conduct. Adopting the
highest ηm value enables minimum precision to be
obtained, regardless of the trait group.

For the morphological and productive traits of
‘BRS Progresso’ rye, a single trial is enough to estimate
the CN with 80% accuracy except for the case with
seven combined traits and when repeatability analysis is
performed using ANOVA and SAS methods. When one
seeks to obtain higher accuracy values, at least three trials
are required to estimate CN with 95% accuracy, regardless
of the number of traits and trait group.

CONCLUSIONS

1. Fewer trials are needed for the cases with a higher
number of combined traits. However, the larger the
number of traits, the larger the condition number
estimate will also be;

2. One trial is enough to estimate the condition number
with at least 80% accuracy in morphological and
productive traits of rye. At least three trials are
necessary for 95% accuracy.
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