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Abstract: Proteomic techniques have become popular in medicine 
and dentistry because of their widespread use in analyzing bodily 
fluids such as blood, saliva, urine, and gingival crevicular fluids as well 
as hard tissues such as enamel, dentine, and cementum. This review 
is a guide to proteomic techniques in general dentistry, summarizing 
techniques and their clinical application in understanding and 
diagnosing diseases and their use in identifying biomarkers of 
various diseases.

Keywords: Proteomics; Mass Spectrometry; Diagnosis; 
Electrophoresis,  Polyacrylamide Gel; Saliva.

Introduction

Working with proteins, specifically with proteins from saliva, has been 
the focus of many research groups around the world during the last decade. 
Although the area is of widespread interest, many health professionals 
remain unaware of this technique or its applications. Here, therefore, we 
review the literature on the subject to update professionals in the field.

Proteomics—the study of the “proteome”—is widely used to analyze 
bodily fluids including blood, saliva, urine, sperm, gingival crevicular 
fluids, cervical-vaginal fluid and hard tissues such as enamel, dentine, 
and cementum, and is popular in both medicine and dentistry. With 
technological advances, and the utility of saliva as an indicator of systemic 
health that can be easily sampled using non-invasive methods,1 with 
approximately 64% of human oral tissues studied to date.2

This review introduces use of proteomic analysis of saliva samples to 
general dentistry, summarizing its methodology, and clinical applications 
in studying disease.

What are proteins?
Proteins are diverse, genome-encoded biological macromolecules found 

in all cells. Proteins are covalently linked linear chains of combinations of 20 
amino acids. Amino acids are the alphabet from which protein sequences are 
written; each amino acid has a side chain with distinct chemical properties,3,4 
meaning that different proteins made of different amino acid sequences 
have different properties. The number of possible combinations of amino 
acids explains how proteins can be the building blocks of all organisms 
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on earth, forming diverse components including 
enzymes, hormones, antibodies, transporters, spider 
webs, muscle fibers, and milk proteins3. This vast 
functional range, from a combination of simple 
building blocks, was captured by Sir Francis Crick: 
“The most significant thing about proteins is that they can 
do almost anything”. “Although proteins can act in so many 
ways, the way in which they are synthesized is probably 
uniform and rather simple, and this fits in with the modern 
view that gene action, being based on the nucleic acids, 
is also likely to be uniform and rather simple”.5

Siqueira and Dawes6 believe that understanding 
protein function in the context of cells and bodily 
fluids is essential. Tools such as proteomic analysis 
are now contributing to our knowledge of this topic.

What is the proteome, and proteomics?
The concept of the “proteome” to describe a 

mixture of proteins was proposed by Wilkins et al.7 
and Wasinger et al.,8 with the name being a contraction 
of the “PROteins” encoded by a given ”genOME”, cell, 
or tissue type.7,8 A proteome has some differences 
from a genome7 because it also takes into account 
post-transcriptional and post-translational process 
such as complex formation and covalent modification.9

Interestingly, the proteome changes under different 
conditions, such as physiological changes, or different 
stages of the cell cycle.7,9 Proteomics profiling is 
the study of protein transcriptional profiles and 
interactions across all expressed proteins,10 across 
cells, organisms, and even ecosystems, offering 
essential insights to understanding the function of 
proteins—and their roles in health.1

This review focuses on the use of mass 
spectrometry-based proteomics and can be divided 
into two fundamental strategies that provide different 
information on the proteome: bottom-up proteomics 
reports proteome composition, while top-down 
proteomics reports protein interactions and structure. 
In bottom-up proteomics, proteolytic digestion 
using trypsin yields protein fragments that can 
be identified using mass spectrometry, enabling 
inference of the proteins in the undigested sample (for 
example, shotgun gel-free proteomics).11,12 Top-down 
proteomics uses mass spectrometry to analyze intact 
proteins, using direct protein fragmentation in gas-

phase for insights into protein structure and complex 
formation; major examples are: High-Performance 
Liquid Chromatography-Mass Spectrometry 
(HPLC-MS), tandem mass-spectrometry (MS/MS) 
and matrix-assisted laser desorption/ionization 
time-of-flight MS/MS (MALDI-TOF MS/MS).13

Bottom-up proteomics is the most common 
approach. Bottom-up proteomics identifies proteins 
in a proteome by cross-referencing the masses 
of proteolytically-cleaved proteins measured by 
MS/MS to a pre-computed proteomic database. 
MS/MS is often preceded by separation using 
one-dimensional (1-D) or two-dimensional (2-D) gel 
electrophoresis, band excision, and in-gel digestion,14 
described in more detail below.

These fundamental proteomics strategies can 
be used for characterizing the proteome of a 
secretory gland, or whole saliva, and are capable 
of evaluating variation to distinguish normal and 
pathological proteomes toward identifying possible 
diseases biomarkers. Here we review sample 
purification, and describe ionization, mass analysis, 
and detection within the mass spectrometer for 
salivary proteomic analysis. 

Protein purification techniques
To understand protein structure and function, 

it is first necessary to purify the protein. Various 
tools contribute to the purification process, including 
absorbance colorimetry, liquid chromatography, 
native and denaturing one-dimensional (1-D) and 
two-dimensional (2-D) gel electrophoresis, and 
western blotting.

Absorbance color imetry measures l ight 
absorbance of a solute at specific wavelengths, 
allowing inference of the concentration of solute. 
Absorbance measurements enable the researcher 
to keep track of protein concentrations during the 
purification process

The core technique in protein purification is 
liquid chromatography, that separates proteins 
according to various properties, complementing 
later electrophoretic separation. Different types of 
liquid chromatography separate proteins as they 
pass through a column based on different protein 
properties. Anionic or cationic ion-exchange columns 
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specifically bind proteins based on charge; bound 
proteins are subsequently eluted by changing the 
ionic strength of the elution buffer. Size exclusion 
(also referred to as gel-filtration) columns separate 
proteins based on size, larger proteins are eluted first, 
while migration of smaller proteins is retarded by the 
column matrix. The matrix of affinity chromatography 
columns is decorated with chemical moieties; only 
specific proteins—usually due to genetic fusion of 
a moiety-binding affinity tag—bind these moieties, 
meaning that after washing other proteins from 
the column, an almost-pure sample of the tagged 
protein can be eluted from the column by adding 
a competing soluble chemical to the elution buffer. 
Liquid chromatography is usually performed using a 
High-Performance Liquid Chromatography (HPLC) 
pump device.3 Individual liquid chromatography steps 
can be limited by co-elution of many different proteins, 
usually necessitating use of different consecutive 
techniques before acquisition of a pure protein sample.

Whether separated by chromatography, proteins 
are usually subsequently separated by native or 
denaturing gel electrophoresis in conjunction 
with western blotting to detect specific proteins 
using antibodies.

Protein separation and characterization by 
polyacrylamide gel electrophoresis (PAGE)

Polyacrylamide gel electrophoresis (PAGE) 
visualizes intact proteins, including isoforms of 
the same protein, at different positions on the gel.13

Either 1-D or 2-D PAGE can be used to separate 
components of the protein sample. One-dimensional 
PAGE separates proteins by molecular weight. 
Two-dimensional PAGE first separates proteins in 
1-D by their isoelectric point (pI) using an immobilized 
pH gradient (IPG) strip that focuses each protein 
to the pH at which the protein has zero net charge; 
in the second dimension, the IPG strip is laid across 
the top of a polyacrylamide gel for electrophoretic 
separation by size, as in 1-D gel electrophoresis.15,16,17

The protocol chosen for 2-D PAGE should 
optimally solubilize all proteins analyzed, remove 
contamination, prevent protein aggregation during 
focusing, and avoid chemical modification of the 
sample. Proteins are denatured and solubilized 

using high concentrations of urea; thiourea can be 
added to further increase the solution’s solubilization 
ability. Reducing agents are typically added to reduce 
disulfide bonds, although the most commonly used 
reducing agent, dithiothreitol (DTT), is responsible 
for “point streaking” artefacts in 2-D gels, depending 
on the sample,18 which must be considered during 
protocol development.

Due to its ability to resolve approximately 5,000 
different proteins, depending on the size of gel,18,19 
2-D PAGE continues to be widely used to study 
the proteome, and can successfully characterize 
post-translational modifications and mutant proteins.

Protein separation according to molecular weight 
is based on pore sizes within the polyacrylamide gel. 
Those pores can be modified to optimally separate 
proteins of interest by changing the acrylamide 
percentage when making the gel.

Sodium dodecyl sulfate (SDS)-PAGE is a type of 1-D 
PAGE that enables separation of proteins based purely 
on their molecular weight. SDS-PAGE involves addition 
of SDS when making the gel, and heat-denaturing the 
protein sample (i.e., unfolding their native structural 
conformation) by disrupting non-covalent bonds. 
Negatively-charged SDS molecules coat the unfolded 
protein in proportion to the protein’s molecular weight; 
thus protein SDS-PAGE separation is not influenced 
by protein structure, and is directly proportional to 
protein molecular weight alone.

Proteins are visual ized in the gel a f ter 
electrophoresis by staining. Coomassie blue is the 
best-known protein staining technique. Because 
Coomassie blue‘s detection limit is around 100 ng, 
however, small proteins, even when abundant, are 
difficult to visualize. In cases involving low proteins 
concentrations, high-sensitivity silver staining, 
capable of detecting less than 1 ng protein, can be 
used.18 Silver staining methods using aldehyde-based 
fixatives/sensitizers, however, prevent subsequent 
protein analysis by mass spectrometry (MS) due to 
protein cross-linkage.19

SDS-PAGE is an analytical technique incapable 
of direct identification of the separated proteins. 
Proteins(s) of interest can be identified by specific 
antibodies in a western blot, or by gel extraction, 
proteolysis, and MS or MS/MS analysis.
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Protein separation and characterization by 
native gels

Although SDS-PAGE is the most common form 
of PAGE protein separation, native PAGE of the 
natively-folded protein can also be performed without 
SDS.20 Because native PAGE separates proteins according 
to both their charge and hydrodynamic size, it provides 
complementary information to an SDS-PAGE gel. 
Because native PAGE is a kind of 1-D electrophoresis 
that separates proteins by charge, protein pI and 
electrophoresis pH will influence protein mobility.

Protein identification by western Blot
Western blotting using a specific antibody can 

locate a specific protein in a gel. Proteins are first 
separated by PAGE, the gel transferred onto a 
membrane, incubated with a specific antibody, and 
antibody location visualized.3,21 In the western blot 
analysis, the passage of gel electrophoresis is included 
to solve the cross-reactivity problem of the antibodies.22 

The amount of protein in a sample that will 
be study by this technique can be quantified for 
comparison between groups.

Methodology 

Protein Ionization techniques
For proteomic analysis, as many proteins as 

possible in the sample must be identified using 

mass spectrometry. Mass spectrometry requires 
that proteins in solution or solid state are ionized 
in gas phase for injection and acceleration in 
an electric or magnetic field for analysis. The 
two main ionization methods that minimize 
sample fragmentation are MALDI (Figure 1A) 
and ESI23 (Figure 1B). ESI is used for aqueous 
solutions, in which a syringe containing the 
sample is forced through a hypodermic needle 
connected to a high-voltage power supply. The 
high voltage induces an intense electric field 
at the needle tip that disperses the sample into 
a fine spray of charged droplets; the solvent 
subsequently evaporates in a warmed chamber, 
leaving desolvated sample ions.24,25 MALDI, on the 
other hand, involves embedding the sample in 
an organic matrix that is sublimed by pulses of 
a ultraviolet (UV) laser, forming gaseous peptide 
or protein ions for MS analysis.25,26

Mass analysis of proteins
After ionization by MALDI or ESI, ion mass-

to-charge (m/z) ratios are measured by the mass 
spectrometer. Protein mass analysis is performed 
either “in space” or “in time”, enabling recording 
over a wide range of masses.20,23 In space m/z 
measurements are performed sequentially through 
the travel of ions into an instrument such as triple 
quadruple (TQ), quadrupole/time-of-flight (Q-TOF), 

Figure 1. A: Ionization methods - MALDI: the peptides are crystallizing into an organic matrix and are ionization by laser; B: 
Ionization methods - ESI: The aqueous solution containing the analyte is forced through a capillary needle which upon evaporation 
of the solute generates ionized form.
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or time-of-flight/time-of-flight (TOF-TOF). In time 
analyses use the same analyzer, such as quadrupole 
ion trap (Q-IT).26

The most widely used instruments for peptide 
mass analysis are time-of-flight (TOF) analyzers. The 
ion is accelerated with speed inversely proportional to 
mass by the potential difference between electrodes 
in a vacuum tube; the time of detection is therefore 
proportional to m/z. The time of flight can be used 
to calculate the m/z value, and a plot of m/z versus 
intensity (ion count), or MS spectrum, generated for 
interpretation on a workstation.27,28 Each m/z peak 
in the MS spectrum is subsequently annotated by 
cross-referencing to a database such as MASCOT29 
or SEQUEST.

Tandem Mass Spectrometry (MS/MS) for 
protein identification

Tandem Mass Spectrometry, popularly known 
such as MS/MS, is a technique that can deduce 
protein sequences based on patterns of protein 
fragmentation in a collision chamber located 
between two mass spectrometers30. Sample ions 
are introduced into the first mass spectrometer as 
described above, separated by charge, and selected 
m/z ions directed to the collision chamber for 
fragmentation by collision with neutral atoms or 
molecules. Resulting peptide fragments are directed 
to the second mass spectrometer for m/z analysis. 
The tandem mass spectra represent the peptides 
derived from successive fragmentations, and, can 
be used to deduce the precise sequence of amino 
acids in the sample26 (Figure 2).

Data analysis to identify proteins
Integral to MS spectrum annotation is cross-

referencing observed m/z peaks with established 
databases. The most popular databases, MASCOT 
and SEQUEST,31,32 are used to determine which 
peptide sequence in a protein database corresponds 
to each m/z peak.32 SEQUEST, the first major 
database-based search algorithm established 
in 1994, uses cross-correlation to analyze the 
similarity between experimental and theoretical 
mass spectra. The other major software, MASCOT, 
introduced in 1999, is based on a probability-based 
score.26,33 MASCOT is universally used by research 
facilities around the world and uses a probabilistic 
scoring algorithm for protein identification that was 
adapted from the MOWSE algorithm.34 MASCOT is 
freely available but acquiring a license introduces 
additional features.29,35 For the best match of the 
protein sequence, MASCOT employs the widely 
used significance level of 0.05.

The SEQUEST database is typically used when 
trypsin is used for protein digestion, and peptides 
are separated by liquid chromatography before 
proceeding to MS/MS. This procedure producing 
several MS/MS spectra and the SEQUEST database 
was the first software to fulfill this need.9,36

Salivary proteome databases
Approximately 60% (11,716) of all human proteins 

(19,613) are expressed in the salivary gland, and of 
these, the expression of 85 is elevated compared 
with other tissue types37 as demonstrated by 
recent development of the Human Protein Atlas 

Figure 2. Tandem Mass Spectrometry steps
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portal (www.proteinatlas.org), an interactive, 
frequently-updated database that catalogues 
proteins predicted to be expressed based on 
RNA level.38

Work on salivary proteomics and bioinformatic 
analysis tools has developed significantly in recent 
years, enabling cataloging of proteins found in 
saliva, relationship of the salivary proteome to other 
proteomes, and highlighting different proteome 
profiles for different salivary glands. A 2009 study 
that focused on fractionating the salivary proteome 
identified 2340 salivary proteins, of which 20% 
matched plasma proteome proteins;39 a subsequent 
review by Amado et al.40 in 2013 listed more than 
3,000 different salivary proteins. Interestingly, this 
database identified proteins expressed at elevated 
levels in salivary glands and created a map of 
differential salivary gland protein expression from 
ductal epithelial cells, and serous or mucinous cells. 
According to the Human Protein Atlas, and confirmed 
using antibody based profiling and proteogenomics,38 
four examples of proteins more expressed in serous 
salivary glands are CA6, CST2 and PIP and AMY1B. 
One example of a protein specific for mucinous 
salivary glands is MUC7, and one example expressed 
in salivary ducts is SLC5A5.

Another important information to better 
understand the finds in mass-spectrometry is the 
database for updated information about protein 
sequence, functions, and annotation data is The 
Universal Protein Resource - UniProt (https://www.
uniprot.org). The UniProt databases are a combination 
of the UniProt Knowledgebase (UniProtKB), UniProt 
Reference Clusters (UniRef), and the UniProt Archive 
(UniParc). UniProt emerged as a collaborative online 
platform between the European Bioinformatics 
Institute (EMBL-EBI), the SIB (Swiss Institute of 
Bioinformatics) and the Protein Information Resource 
(PIR), that are together responsible for database 
curation, software development and support.

Secreted salivary proteins
Around 400 salivary proteins have been identified 

by gel electrophoresis1,40–42; the most abundant are 
mucins, proline rich proteins (PRPs), statherin, 
histatins, amylase, and lysozyme:

a.	 Five types of mucins identified in the oral cavity 
are MUC5B, MUC7, MUC19, MUC1, and MUC4, 
each composed of a unique domain structure 
that influences its properties.43 Salivary mucins 
are produced in submandibular, sublingual, 
and minor salivary mucous glands to bind 
and retain antibacterial proteins in the oral 
cavity to prevent T-cell and epithelial cell 
infections.13,43,44,45

b.	 PRPs, encoded by PRB1, are expressed in the 
serous gland, and are subdivided into acidic 
(aPRPs), basic (bPRPs) and basic-glycosylated 
(gPRPs).11,46 The main function of aPRPs is bind 
and maintain the concentration of calcium 
in saliva.

c.	 Statherin maintains a supersaturated level 
of calcium in the saliva by preventing its 
precipitation. Statherin helps remineralization 
of teeth.13,47 Its concentration is not influenced 
to circadian rhythms, that could be very 
interesting, one time that the period of 
collection did not interfere in the result.

d.	 Histatins are antibacterial and antifungal 
proteins that are among the most abundant 
salivary proteins; histatins 1,3 and 5 were first 
described by Oppenheim et al.48 in 1988 who 
linked their presence to anti-fungal activity 
against Candida albicans. Consistent with this 
first study, Siqueira et al.49 found histatins 
within the acquired enamel pellicle that may 
protect against acid damage; in vitro studies 
by Moffa et al.50 suggest that a histatin 5 coat 
on epithelial cell surfaces reduces C. albicans 
colonization; and Siqueira et al.51 used a 
proteomic approach to identify 43 complexes of 
histatin 1 with other salivary proteins, finding 
that the killing activity of a histatin 1/amylase 
complex is better than histatin 1 alone, 
for example.

e.	 Salivary amylase, the most abundant secreted 
protein in parotid saliva, catalyzes hydrolysis 
of starch into sugars.52,53 There are five human 
amylase isoenzymes and three are found in 
saliva can be assigned to family A and family 
B, based on differences in post-translational 
glycosylation content.53 Glycosylated Family 
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A has molecular weight of 62 kDa whereas 
nonglycosylated Family B has a molecular 
weight of 56kDa.54 Due to its abundance 
in saliva, amylase may plan an additional 
role in maintaining oral mucosa. A recent 
proteomics study analyzing the interactome 
of amylase in whole saliva55 confirmed that 
amylase interacts with mucins, although 
histatins were not detected likely due to their 
short lifespan in whole saliva. These findings 
suggested that amylase both protects and 
functionally modulates its partners in addition 
to digesting carbohydrates.

Clinical applications of salivary proteomics
Proteomic approaches were initially used to 

characterize all proteins in a given cell. As the 
technique developed, however, the goal shifted to 
detect differences in proteomes related to disease. 
The proteomic approach allowed control the gene 
transcriptions through the interconnection of the 
extracellular microenvironment that characterizes 
the information flow over protein pathways. Future 
progress will enable understanding the course of 
the disease and identification of disease biomarkers, 
enabling early detection, and targeted, patient-
tailored therapy.

Clinical research using proteomics is growing. 
A review by Colantonio et al.56 on clinical application 
of proteomics in 2004 found 192 articles; In an update 
at 2018 made for this review, our group found 14,425 
articles, been with the rose of publication in this 
area. This update confirmed the impressions of 
Colantonio et al.56 in 2004, who wrote “These numbers 
suggest that the application of clinical proteomic research 
is growing rapidly in the field of biomarker discovery”.

Saliva as a potential source of disease 
biomarkers

Many diseases could be better understood by 
advances in proteomics. Saliva is an excellent medium 
in which to detect disease biomarkers because it is 
easy and painless to collect, and contains proteins 
rich in information about diseases process.

Saliva is an important fluid that lubricates oral 
mucosa and ingested food, protects and maintains 

tissue integrity, neutralizes acids from bacteria 
and food, and cleans the oral cavity (Figure 3).14,47,57 
Whole saliva derives from major salivary glands 
comprising two parotid, two submandibular, and 
two sublingual glands; minor salivary glands; and 
crevicular fluid, in total producing between 600 and 
12,000 mL/day.58. Saliva is an exocrine secretion that 
can be divided into mucous and serous components. 
The parotid gland secretes only serous component, the 
submandibular gland secretes a mixture of mucous 
and serous components, while the sublingual and 
minor glands secrete only mucous components.57,59

Use of saliva is attractive for monitoring health 
and disease because its collection, is non-invasive, 
easy, and painless, and does not require special 
training. Recent advances in proteomics enables it 
to qualitatively and quantitatively determine the 
protein composition of saliva.58 Indeed, In the last 
decade, advances in saliva research have identified 
many proteins as potential systemic biomarkers for 
endocrine function, stress and psychological state, 
exposure to infectious agents, use or metabolism of 
drugs or other xenobiotics, and cancers.59

Siqueira and Dawes6 illustrated how saliva is better 
than plasma for detection of biomarkers: while the 22 
most abundant proteins in plasma make up 99% of the 
total plasma protein content, making identification of 
the remainder of the 2676 serum proteins a challenge, 
the 20 most abundant salivary proteins make up only 
40% of the total salivary protein content, facilitating 
ease of detection of biomarkers from the remaining 
60% of proteins.

More studied are needed to compare healthy and 
diseased salivary proteomes. While Khurshid et al.1 
demonstrated that approximately “30% of proteomic 
studies of saliva explored the proteome during oral 
pathological conditions such as caries, periodontitis, 
gingivitis, dental abscess, endodontic lesions, and oral 
carcinomas”, there are few studies of the salivary 
proteome under normal conditions that would 
provide a gold standard reference for other studies, 
principally of oral disease conditions.

Most studies have used whole saliva instead of 
specific glandular secretions to discover possible 
oral biomarkers. Because whole saliva is composed 
of glandular secretions (95.6%) mixed with gingival 
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fluid (2.4%), microorganisms (1%), and epithelial host 
cells (1%), samples may contain additional proteins 
from, for example, gingival inflammation discharge. 
Isolated glandular secretions obtained through 
cannulation of major gland ducts may prove better 
for biomarker detection, avoiding the influence of 
the other whole saliva components.6

Nevertheless, many studies reports use of oral 
fluids such as whole saliva for early detection and 
monitoring of diseases. We used the terms “saliva” and 

“proteomic” to search PubMed and Google Scholar 
for such studies, summarizing 16 highly-cited articles 
according to citations in Google Scholar in Table 1. 
The number of publications per year for “saliva” and 
“proteomic” (based on https://www.ncbi.nlm.nih.
gov/pubmed/) is shown in Figure 4.

Many authors believe that comprehensive 
characterization of human saliva is an important step 
toward the clinical application of salivary proteomics 
for the diagnosis and prognosis of diseases.
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Table 1. Highly-cited articles on disease detection using salivary proteomics.

Year Author Salivary proteomics application Results

2007 Hu et al.14 Detection of oral cancer and Sjögren 
syndrome

Slight advantage over serum in detection

2007 Giusti et al.60 Detection of Sjögren syndrome Proteomics may be useful in diagnosis of connective tissue disorders 

2008 Hu et al.61 Detection of oral cancer Promising approach to searching for oral cancer biomarkers

2009 Wu et al.62 Detection of gastric cancer Promising approach for early clinical diagnosis of gastric cancer

2009 Wu et al.63 Profile of generalized aggressive 
periodontitis

Proteome analysis may contribute to understanding the etiology of 
aggressive periodontitis

2009 Yan et al.64 Systematic comparison of the human saliva 
and plasma proteomes

High similarity between saliva and plasma proteomes

2010 de Jong et al.65 Detection of oral cancer Promising detection method for oral cancer

2010 Wu et al.66 Potential biomarkers in saliva for oral 
squamous cell carcinoma

Salivary screening can be the best option for primary screening of 
high-risk cases of oral cancer

2010 Gonçalves et al.67 Analysis of chronic periodontitis patients
Proteome analysis may contribute to the improvement of 

periodontal diagnosis

2011 Castagnola et al.59 Potential applications of human saliva as a 
diagnostic fluid

A proteomic analysis approach may be useful in diagnosis of head 
and neck cancers, breast and gastric cancers, salivary gland function 

and disease, Sjögren syndrome, systemic sclerosis, dental and 
gingival pathology, systemic, psychiatric, and neurological diseases

2011 Xiao et al.68 Biomarkers discovery in human saliva
Found salivary proteomic biomarkers for oral cancer, Sjögren 

syndrome and breast cancer

2012 Xiao et al.69 Detection of lung cancer
Proteomic biomarkers are present in human saliva when people 

develop lung cancer

2012 Ambatipudi et al.70 Detection of primary Sjögren syndrome
Proteome analysis improved and provided early diagnosis of 

primary Sjögren syndrome

2013 Amado et al.40 Overview of the major achievements in 
saliva proteomics

Identified protein markers for chronic periodontitis, gingivitis, head 
and neck squamous cell carcinoma, non-invasive breast cancer, 
rheumatoid arthritis, periodontitis, aggressive periodontitis, dental 

caries, Sjögren syndrome, lung cancer, type 2 diabetes in the elderly, 
orthodontic treatment, pre-malignant and malignant lesions, gastric 
cancer, periodontitis with obesity, oral leukoplakia, type 1 diabetes,

2013 Martins et al.71 Systematic review of salivary proteins as 
biomarkers for dental caries

Lack of sufficient evidence to establish salivary proteins as a 
biomarker for this disease

2017 Zuanazzi et al.72 Postnatal identification of Zika virus 
peptides from saliva

Possibility of non-invasive sampling of saliva for subsequent large-
scale screening for Zika virus infection

Figure 4. Publications numbers increase according to advantages in proteomics technique, increasing the possibility of discovering 
new diseases biomarkers. The rose in number was at 2012 with 75 new published studies in saliva area.
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Conclusion

In this review we have highlighted how salivary 
proteomic analysis has broad practical promise and 
application for easy and painless diagnosis of diseases. 
The review also outlined to the general dentist a 
step-by-step summary of how salivary proteomics 
can be used for diagnosis, and search for biomarkers. 
Despite salivary proteomics being a relatively new 

area of research, recent advances, and the increase 
in published studies, demonstrate the great potential 
of saliva as a diagnostic fluid.
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