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Abstract. This paper deals with a mechanical model describing the evolution of damage in

elastic and viscoelastic materials. The state variables are macroscopic deformations and a micro-

scopic phase parameter, which is related to the quantity of damaged material. The equilibrium

equations are recovered by refining the principle of virtual powers including also microscopic

forces. After proving an existence and uniqueness result for a regularized problem, we investigate

the behavior of solutions, in the case when a vanishing sequence of external forces is applied. By

use of a rigorous asymptotics analysis, we show that macroscopic deformations can disappear at

the limit, but their damaging effect remains in the equation describing the evolution of damage at

a microscopic level. Moreover, it is proved that the balance of the energy is satisfied at the limit.
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1 Introduction

These notes are concerning with a mechanical model describing the evolution of

damage in elastic and viscoelastic bodies (cf. [4, 8]). It is known that the me-

chanical process of damage results from microscopic motions in the structure,

as it is caused by microfractures and microcavities resulting in the decreasing of
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314 MICROSCOPIC EFFECTS ON VANISHING MACROSCOPIC MOTIONS

the material stiffness. Consequently, to provide a good macroscopic predictive

theory one has to account for macroscopic effects of microscopic motions. In

particular, the model is written in terms of a damage quantity within the frame-

work of continuum mechanics and we derive the constitutive equations by two

functionals, the free energy and the pseudo-potential of dissipation (cf. [11]),
which are responsible for the equilibrium and the evolution of the system, respec-

tively. The constitutive equations are coupled with equations of motion resulting

from the principle of virtual power. The main idea in this modeling procedure

consists in refining the power of interior forces by including also the effects of

microscopic movements, which are clearly related to the damage rate. We recall

that, when compared to experimental results, the model can predict the behavior

of concrete structure correctly and, accounting for the gradient of damage, the

structure size effect, too, which is particularly important in civil engineering (cf.

[12]).
Concerning the analytical investigation of the above model, as far as we know,

only some partial results have been obtained. The difficulty is mainly due to

the degeneracy of the elastic coefficient in the macroscopic equilibrium equa-

tion. This is combined in the equations of microscopic motions, with the pres-

ence of subdifferential operators and quadratic nonlinearity for deformations. In

[6, 7] a simplified version of the problem is investigated in the one-dimensional

case, regularizing the subdifferentials. In particular, local in time existence and

uniqueness results are proved both for the quasi-static situation and in the case

when macroscopic accelerations are retained in the principle of virtual powers.

Finally, we recall a recent paper [3] dealing with the complete 3D problem, but

describing the evolution of damage only during the time interval in which the

material is not completely damaged. A local in time existence result is stated.

However, these notes do not focus on the problem of existence of solutions,

but mainly investigate relations between macroscopic and microscopic motions

during the damaging process. Indeed, as the modeling method is based on the

separation between the description of macroscopic and microscopic levels, it is

natural to wonder which are the microscopic effects of vanishing macroscopic

motions. Concerning this subject, in a recent paper [5], it is presented an example

of vanishing macroscopic motions which retain at the limit a damaging effect
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in the microscopic equation. Now, we aim to show that the above behavior can

be proved in a more general situation. The main idea consists in approximating

the system to get a global existence and uniqueness result, and then applying a

vanishing sequence of exterior forces in such a way that the resulting macroscopic

motions become smaller and smaller. By use of a rigorous asymptotics analysis

we show that at the limit the macroscopic motions become microscopic, in the

sense that the macroscopic motions vanish but their effects remain as a source

of damage, which is clearly related to microscopic motions. Moreover, we show

that the balance of the energy is satisfied at the limit.

2 The model

In this section, we briefly recall the model and write the corresponding PDE’s

system. Concerning the mechanical aspects, we do not enter the details and

refer, e.g. to [4]. Nonetheless, for the sake of completeness, let us point out the

main ingredients of the modeling procedure. Assuming that the temperature is

constant, the state variables are the strain tensor ε(u) (u is the vector of small

displacements), a phase parameter χ denoting the quantity of damaged material,

and the gradient ∇χ accounting for local microscopic interactions. Concerning

the phase parameter χ , we prescribe the constraint

χ ∈ [0, 1], (2.1)

letting χ = 1 correspond to the undamaged structure and χ = 0 to the completely

damaged material. Next, the dissipation due to damage is reasonably described

by the dissipative variables χt , ∇χt related to microscopic velocities, where the

subscript t denotes the time derivative. After introducing the free energy func-

tional and a pseudo-potential of dissipation, e.g. as in [4, 8], we can explicitly

write in terms of the unknowns (u, χ) the constitutive laws for microscopic and

macroscopic stresses. Finally, we state the balance law for momentum, both for

microscopic and macroscopic motions. More precisely, we consider a concrete

structure located in a bounded smooth domain � ⊂ R3 with boundary ∂� =: �.

We look at the damage evolution during a finite time interval [0, T ] and denote

by Q := � × [0, T ]. Hence, the principle of virtual power, in which we include

also microscopic forces, leads to the following inclusion governing the evolution
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of the phase parameter

cχt − k�χ + ∂I[0,1](χ) � w − 1

2
|ε(u)|2 , (2.2)

whose ingredients will be specified in a moment, and to the equilibrium equation

for macroscopic deformations, written in the quasi-static case

div (χε(u)) + f = 0. (2.3)

The positive constants c, k, and w in (2.2) denote the viscosity of damage, a

local interaction coefficient, and the cohesion energy, respectively. The term

∂I[0,1] is the subdifferential of the indicator function I[0,1] and it accounts for the

required constraint on χ prescribed by (2.1). Indeed, the domain ∂I[0,1] is the

interval [0, 1], and we have ∂I[0,1](y) = 0 if y ∈ (0, 1), ∂I[0,1](0) = (−∞, 0],
and ∂I[0,1](1) = [0, +∞). In (2.3), f denotes a volumic force applied to the

structure. Nonetheless, in the following we consider a regularized version of

the above equation, which is obtained by adding a viscosity contribution for

macroscopic displacements and deformations, and an higher order nonlinear

elastic term in the stress. More precisely, we substitute (2.3) by

ut − div (ε(ut )) − div (|ε(u)|2 ε(u) + χε(u)) = f . (2.4)

Remark 2.1. Let us not that from a mechanical point of view (2.4) is associated

with a viscous phenomenon, by the presence of the velocity terms ut and ε(ut ).

Remark 2.2. Let us stress that equations (2.2) and (2.3) or (2.4) are coupled:

the macroscopic motion, i.e., displacement u, influences the microscopic motion

schematised by χ and governed by equation (2.2). Conversely, microscopic

motion when resulting from a damage source, i.e., a right hand side in (2.2)

influences macroscopic motion u governed by equation (2.3) or (2.4).

Remark 2.3. We point out that the regularizing (2.3) by (2.4) turns out to be

useful to control the right hand side of (2.2). Indeed, as the elasticity coefficient

χ in (2.3) degenerates once the material is completely damaged, i.e. χ = 0,

the right hand side of (2.2) could not be controlled. In terms of mechanics, the
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regularization (2.4) controls the strain localisation which may occur in damage

phenomena and preserves the uniqueness of solutions.

Now, we have to prescribe suitable initial and boundary conditions. Assuming,

for the sake of simplicity, that at the initial time t = 0 the material is completely

undamaged, we prescribe

χ(0) = 1 a.e. in �. (2.5)

Next, we assume that no energy is provided from the outside (cf. [4])
∂nχ = 0 a.e. in � × (0, T ). (2.6)

Finally, we fix an initial condition on the vector of displacements u

u(0) = 0, (2.7)

and, letting n be the outward normal unit vector to the boundary, we give a

Neumann condition on the stress

(ε(ut ) + |ε(u)|2 ε(u) + χε(u))n = 0 on �. (2.8)

from which it follows that the applied traction on the boundary is 0.

In the following, we are interested to consider the behavior of the solutions

(χ, u) to an initial and boundary values problem associated with (2.2), (2.4), in

the case when a vanishing sequence of external forces fτ is applied, i.e. fτ ↘ 0
as τ tends to 0. Hence, letting (uτ , χτ ) be the corresponding solutions, we can

exploit an a priori estimates - passage to the limit procedure to perform the

required asymptotics analysis as τ ↘ 0. Thus, at a first step, we aim to find

existence and uniqueness of solutions to the system for any fixed τ > 0 and, on

a second step, prove boundedness properties on these solutions which allow us

to pass to the limit as τ ↘ 0.

Here is the outline of the paper. In Section 3, we introduce the abstract for-

mulation of the regularized system and state the main existence and uniqueness

theorem (cf. Theorem 3.1). Hence, in Section 4, under suitable assumptions on

the convergence of a sequence of applied forces fτ , we perform an asymptotics

analysis of the solutions as τ ↘ 0 (cf. Theorem 4.1). Finally, in Section 5, we

investigate the balance of the energy at the limit τ = 0.
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3 The abstract problem

In this section, we first introduce the abstract version of the regularized damage

system (2.2), (2.4) combined with initial and boundary conditions (2.5)-(2.6),

(2.7)-(2.8). We prove that the resulting problem admits a unique solution and

then, in the next sections, we investigate the asymptotics behavior of the solution

as the external efforts applied to the structure vanish. Let us first introduce a

suitable abstract setting. In regards of simplicity, but without loss of generality,

in the following we take u as a scalar quantity u. In addition, fix c = k = 1 in

(2.2). Hence, we start by considering the Hilbert triplet (cf. [10])

V ↪→ H ↪→ V ′,

where

V := H 1(�) and H := L2(�),

H being identified as usual with its dual space. Notice that we use the same

notation ‖·‖X both for the norm in a functional space X and in X3. Hence, let

W := W 1,4(�).

Finally, we introduce the following abstract operators

A : V → V ′
V ′ 〈Au, v〉V =

3∑
i=1

∫
�

DiuDiv =
∫

�

∇u · ∇v u, v ∈ V, (3.1)

A : W → W ′
W ′ 〈Au, v〉W =

3∑
i=1

∫
�

|Diu|2 DiuDiv u, v ∈ W, (3.2)

B : (L4/3(�))3 → W ′
W ′ 〈Bu, v〉W =

3∑
i=1

∫
�

uiDiv =
∫

�

u · ∇v,

u ∈ (L4/3(�))3, v ∈ W,

(3.3)

where Di stands for the usual partial derivative operator with respect to the vari-

able xi , i = 1, 2, 3. In particular, let us observe that (3.1) corresponds to the

laplacian operator with associated Neumann homogeneous boundary condition
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(cf. (2.6)) in the duality pairing between V ′ and V . Analogously, (3.2) corre-

sponds to the abstract formulation of the 4-laplacian operator with associated

homogeneous boundary assumption. Now, we can make precise the abstract

problem we are dealing with and state a corresponding existence and uniqueness

result.

Problem Pa : Find (u, χ) such that

u(0) = 0, χ(0) = 1 a.e. in �, (3.4)

and fulfilling for a.a. t in (0, T )

ut + Aut +Au + B(χ∇u) = f in W ′, (3.5)

χt + Aχ + ξ = w − 1

2
|∇u|2 in H, (3.6)

where ξ ∈ L2(0, T ; H) is such that ξ ∈ ∂I[0,1](χ) a.e. in Q.

The following proposition holds.

Theorem 3.1. Let

f ∈ L2(0, T ; V ′) ∩ L1(0, T ; H). (3.7)

Then, Problem Pa admits a unique solution (u, χ) with regularity

u ∈ H 1(0, T ; V ) ∩ L∞(0, T ; H 2(�)), (3.8)

χ ∈ H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)). (3.9)

Proof. To prove the existence of a solution to Problem Pa stated by Theorem

3.1, we mainly exploit a fixed point argument and refer to well known results

on evolution nonlinear equations. In regard of simplicity, we do not enter the

details of the demonstration, but just sketch the main idea and give some useful

references. We aim to apply the Schauder theorem to a suitable operator we are

going to construct as it follows. We start by letting

û ∈ X, X := {u ∈ L4(0, T ; W) with ‖u‖L4(0,T ;W) ≤ R}, (3.10)
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where R will be fixed later, and substitute ∇u in (3.6) by ∇û. Thus, after observ-

ing that by the Hölder inequality the right hand side of (3.6) is in L2(Q), we can

apply well-known results on evolution equations associated with maximal mono-

tone operators (cf. e.g. [2]). We infer that there exists a unique corresponding

solution

χ := E(̂u) ∈ H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)),

χ ∈ [0, 1] a.e. in Q.
(3.11)

Moreover, one can prove that the following estimate

‖χ‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H 2(�)) ≤ c, (3.12)

holds for a suitable constant c depending on �, T , w, and R, but not on the

choice of û in (3.10). Let us briefly outline the procedure and prove some formal

a priori estimates on the solution. We test (3.6) by χt and integrate over (0, t).

After an application of the Young inequality

ab ≤ 1

2δ
a2 + δ

2
b2, a, b ∈ R, δ > 0, (3.13)

and integrating by parts in time, we have (cf. (3.4))

‖χt‖2
L2(0,t;H)

+ ‖∇χ(t)‖2
H +

∫
�

I[0,1](χ(t))

≤ c

(
1 +

∫ t

0

∫
�

|∇û|4
)

≤ c.

(3.14)

In particular, let us point out that in deducing (3.14), one can formally proceed

as follows ∫ t

0

∫
�

ξχt =
∫ t

0

∫
�

d

dt
I[0,1](χ) =

∫
�

I[0,1](t), (3.15)

∫ t

0

∫
�

|∇û|2 χt ≤ 1

2

∫ t

0

∫
�

|χt |2 + 1

2

∫ t

0

∫
�

|∇û|4 . (3.16)

Then, we test (3.6) by Aχ and recall that, by monotonicity of the subdifferential

operator and the chain rule, it follows∫ t

0

∫
�

ξAχ ≥ 0. (3.17)
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Thus, by similarly proceeding as in (3.14) we get

‖Aχ‖L2(0,t;H) ≤ c. (3.18)

Moreover, owing to (3.10), (3.14), and (3.18), a comparison in (3.6) leads to

‖ξ‖L2(0,T ;H) ≤ c. (3.19)

On a second step, we fix χ = E(̂u) in (3.5) and look for a corresponding

solution fulfilling the required Cauchy condition stated by (3.4). Thanks to (3.7)

and (3.11), we owe, e.g., to [9, Theorem 1.2bis, p. 163-164] to infer existence

and uniqueness of a unique solution

u := G(χ). (3.20)

Hence, let us show that for a suitable choice of R in (3.10), u = G(E(̂u)) turns

out to belong to X. Indeed, we can test (3.5) by u and integrate in time over

(0, t). Recalling (3.1)-(3.4), a suitable application of theYoung inequality yields

‖u(t)‖2
V +

∫ t

0

3∑
i=1

∫
�

|Diu|4 +
∫ t

0

∫
�

χ |∇u|2

≤ c

∫ t

0
‖f ‖V ′ ‖u‖V ≤ c

(
‖f ‖2

L2(0,t;V ′) + ‖u‖2
L2(0,t;V )

)
,

(3.21)

and the Gronwall lemma yields

‖u‖L∞(0,T ;V ) + ‖u‖L4(0,T ;W) ≤ c̃, (3.22)

where c̃ depends only �, T , and f . Thus, if we choose R ≥ c̃ in (3.10), it

follows that

P : X → X, P (̂u) := G(E(̂u)) (3.23)

maps X into itself. Then, towards the aim of applying the Schauder theorem to

the operator X, and consequently prove that P admits a fixed point, we show that

P is a continuous and compact operator in X with respect to the natural topology

induced by L4(0, T ; W). We perform some a priori estimates, which turn out to

be useful to prove both the compactness and the continuity of P . Let us point
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out that some of the following estimates are only formal. Nonetheless, they can

be rigorously justified prooceeding, e.g., as in [9].
We first test (3.5) by ut and then integrate over (0, t). Hence, integrating by

parts in time and applying the Young inequality, we infer that

‖ut‖2
L2(0,t;V )

+ 1

4

3∑
i=1

‖Diu(t)‖4
L4(�)

+ 1

2

∫
�

χ(t) |∇u(t)|2

≤ c

(∫ t

0

∫
�

f ut +
∫ t

0

∫
�

χt |∇u|2
)

≤ 1

2
‖ut‖2

L2(0,t;V )

+ c

(
‖f ‖2

L2(0,T ;V ′) + ‖χt‖2
L2(0,t;H)

+
3∑

i=1

∫ t

0
‖Diu‖4

L4(�)

)
.

(3.24)

In particular, let us point out that we have performed the following integration

by parts in time∫ t

0

∫
�

χt∇u · ∇ut = 1

2

∫ t

0

∫
�

χ
d

dt
|∇u|2

= 1

2

∫
�

χ(t) |∇u(t)|2 − 1

2

∫ t

0

∫
�

χt |∇u|2 .

(3.25)

Thus, after recalling that (3.12) holds independently of û, the Gronwall lemma

yields

‖ut‖L2(0,T ;V ) +
3∑

i=1

‖Diu‖L∞(0,T ;L4(�)) ≤ c. (3.26)

Finally, we formally test (3.5) by Au. By monotonicity arguments and applying

the chain rule, we have

W ′ 〈Au, Au〉W ≥ 0. (3.27)

Then, by definition of the operators A and B, owing to (3.12), (3.7), and (3.27),

we can write

1

2
‖∇u(t)‖2

H + 1

2
‖Au(t)‖2

H +
∫ t

0

∫
�

χ |Au|2

≤ c

(∫ t

0
‖∇χ‖L4(�) ‖∇u‖L4(�) ‖Au‖H +

∫ t

0
‖f ‖H ‖Au‖H

)
.

(3.28)
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Thus, owing to the regularity of χ (cf. in particular (3.18)) and (3.26), the

generalized version of the Gronwall introduced in [1] ensures

‖Au‖L∞(0,T ;H) ≤ c, (3.29)

and finally

‖u‖L∞(0,T ;H 2(�)) ≤ c. (3.30)

Thus, we can infer that

‖P (̂u)‖H 1(0,T ;V )∩L∞(0,T ;H 2(�)) ≤ c, (3.31)

from which it easily follows that P is a compact operator in X. Moreover, the

previous estimates (3.12) and (3.31), which are independent of the choice of û,

allow us to deduce that P is a continuous operator in X. Towards the aim of

proving continuity of P , we take

ûn ∈ X, ûn → û in L4(0, T ; W), (3.32)

and set

χn = E(̂un), un = G(χn). (3.33)

Our purpose is to show that

P (̂un) → P (̂u), (3.34)

strongly in L4(0, T ; W) (cf. (3.32)). Proceeding as above, we show that

(un, χn, ξn), with ξn ∈ ∂I[0,1](χn), fulfil the following estimate (cf. (3.12) and

(3.31))

‖χn‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H 2(�)) + ‖ξn‖L2(0,T ;H)

+ ‖un‖H 1(0,T ;V )∩L∞(0,T ;H 2(�)) ≤ c,
(3.35)

independently of n. By weak and weak star compactness results, at least for

some suitable subsequence, the following convergence holds

χn

∗
⇀ χ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)), (3.36)
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and by compactness (cf. [13])
χn → χ in C0([0, T ]; H) ∩ L2(0, T ; V ). (3.37)

Hence, by the boundedness of ξn stated by (3.35), we have

ξn ⇀ ξ in L2(0, T ; H), (3.38)

so that (3.37) and (3.38) ensure ξ ∈ ∂I[0,1](χ) (cf. [2]). Now, we can pass

to the limit in (3.6), written for n, as n → +∞, and by the uniqueness of the

solution for the limit equation, once û is fixed, we eventually identify χ = E(̂u).

Moreover, let us observe that uniqueness of the solution for the limit equation

extends convergences (3.36)-(3.38) to the whole sequences. On a second step,

we discuss the asymptotics behavior of un and |∇un|2, in order to pass to the

limit in (3.5) written for n. By (3.35), we deduce, at least up to the extraction of

some subsequence,

un

∗
⇀ u in H 1(0, T ; V ) ∩ L∞(0, T ; H 2(�)), (3.39)

|∇un|2 ⇀ d in L∞(0, T ; H). (3.40)

By compactness, (3.39) leads to the strong convergence

un → u in L∞(0, T ; W), (3.41)

which allows us to eventually identify d = |∇u|2. Hence, to show that P is

continuous, we aim to pass to the limit as n → +∞ in (3.5), which is possible

thanks to (3.39), (3.40), and (3.41). Then, uniqueness of the solution for the

limit equation allow us to identify u = G(χ) in (3.41), concludes the proof.

Moreover, it follows that (3.39)-(3.41) actually hold for the whole sequence. In

particular, P turns out to satisfy the assumptions of the Schauder theorem and

consequently it admits a fixed point u. It is now a standard matter to verify that

the couple of functions (u, χ = E(u)) is a solution to Problem Pa .

Hence, to complete the proof of Theorem 3.1, it remains to show that this

solution is unique. First let us make some few remarks about useful notation we

will use in the sequel. We assume that Problem Pa admits two solutions

S1 = {u1, χ1}, S2 = {u2, χ2}, (3.42)
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whose regularity is specified by Theorem 3.1. We denote by [f ] the difference

of two functions f1, f2, i.e.

[f ] = f1 − f2, (3.43)

and by f , the mean value

f = f1 + f2

2
, (3.44)

so that we can make use of the identity

f1g1 − f2g2 = [fg] = [f ]g + f [g]. (3.45)

To simplify notation, but without loss of generality, in the sequel let us rewrite

(3.45) and subsequent computations omitting the symbol of the mean value,

namely

[fg] = [f ]g + f [g]. (3.46)

Now, we take the difference of (3.5) written for S1 and S2

[u]t + A[u]t + [Au] + B([χ ]∇u) + B(χ∇[u]) = 0, (3.47)

test by [u], and integrate over (0, t). By monotonicity of A (cf. [9]), we have∫ t

0
W ′ 〈[Au], [u]〉W ≥ 0. (3.48)

Thus, recalling the definition of the operator B, and integrating by parts in time,

we write

1

2
‖[u](t)‖2

V +
∫ t

0

∫
�

χ |∇[u]|2

≤
∫ t

0
‖∇u‖L4(�) ‖[χ ]‖L4(�) ‖∇[u]‖H .

(3.49)

Analogously, we take the difference of (3.6) written for S1 and S2, test by [χ ],
and integrate over (0, t). By monotonicity of the subdifferential operator, there

holds ∫ t

0

∫
�

[ξ ][χ ] ≥ 0. (3.50)
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Thus, we finally write

1

2
‖[χ ](t)‖2

H + ‖∇[χ ]‖2
L2(0,t;H)

≤ 2
∫ t

0
‖∇u‖L4(�) ‖∇[u]‖H ‖[χ ]‖L4(�) .

(3.51)

Now, we can add (3.49) and (3.51), apply the Young inequality to get (cf. (3.8))

1

2
‖[u](t)‖2

V + 1

2
‖[χ ](t)‖2

H + ‖∇[χ ]‖2
L2(0,t;H)

≤ δ ‖∇[χ ]‖2
L2(0,t;H)

+ Cδ

(
‖[χ ]‖2

L2(0,t;H)
+ ‖∇u‖2

L∞(0,T ;L4(�))
‖[u]‖2

L2(0,t;V )

)
≤ δ ‖∇[χ ]‖2

L2(0,t;H)
+ c

(
‖[χ ]‖2

L2(0,t;H)
+ ‖[u]‖2

L2(0,t;V )

)
.

(3.52)

Thus, owing to the Gronwall lemma and taking, e.g., δ = 1/2 we finally have

[u] = [χ ] = 0 a.e. in Q, (3.53)

which concludes the proof of uniqueness.

Remark 3.2. It is clear that Theorem 3.1. holds also in the case when the

higher order nonlinear elastic term is neglected in (3.5), namely the equation

governing macroscopic displacements is substituted by

ut + Aut + B(χ∇u) = f. (3.54)

Nonetheless, it turns out to be useful to keep it in order to perform the following

asymptotics analysis.

Remark 3.3. Let us point out that the presence of the viscosity term involving

deformations is strongly exploited in the proof of the uniqueness of the solution

to Problem Pa . Analogously, we could introduce dissipation for the gradient of

the phase parameter by adding Aχt in (3.6).

Remark 3.4. An analogous result as in Theorem 3.1 could be obtained ne-

glecting ut in (3.5), but to substitute the boundary condition (2.8), e.g., by a

Dirichlet prescription on the velocity ut on �, to get A be coercive via Poincaré’s

inequality.
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4 Passage to the limit for vanishing external forces

Theorem 3.1 ensures that, for f fulfilling (3.7) there exists a unique solution

to Problem Pa . In this section, we consider a sequence fτ of exterior forces

fulfilling (3.7) and denote by (uτ , χτ ) the corresponding solution to Problem Pa ,

i.e.

uτt
+ Auτt

+Auτ + B(χτ∇uτ ) = fτ (4.1)

χτt
+ Aχτ + ξτ = w − 1

2
|∇uτ |2 , (4.2)

where ξτ ∈ ∂I[0,1](χτ ). Then, we prescribe

fτ ⇀ 0 in L2(0, T ; V ′), (4.3)

as τ ↘ 0. We aim to investigate the asymptotics behavior of the solutions

(uτ , χτ ), as the parameter τ ↘ 0. The following theorem can be proved.

Theorem 4.1. Let (4.3) hold. Then, as τ ↘ 0 the following convergences are

verified

uτ

∗
⇀ 0 in H 1(0, T ; V ) ∩ L∞(0, T ; W), (4.4)

|∇uτ |2 ∗
⇀ d ≥ 0 in L∞(0, T ; H), (4.5)

χτ

∗
⇀ χ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)). (4.6)

Moreover, d and χ fulfill, a.e. in (0, T ),

χt + Aχ + ξ = w − 1

2
d in H, (4.7)

for some ξ belonging to ∂I[0,1](χ) a.e. in Q.

Proof. The proof of Theorem 4.1 is performed by exploiting an a priori

estimates-passage to the limit procedure. In particular, we prove some estimates

on the solutions which are uniform with respect to τ , and then pass to the limit

by compactness arguments.
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First a priori estimate. We test (4.2) by χτt
and (4.1) by uτt

, integrate in

time over (0, t), and add the resulting equations. It is now a standard matter to

integrate by parts and write

∥∥uτt

∥∥2
L2(0,t;V )

+ 1

4

3∑
i=1

‖Diuτ (t)‖4
L4(�)

+
∫ t

0

∫
�

χτ∇uτ · ∇uτt

+ ∥∥χτt

∥∥2
L2(0,t;H)

+ 1

2
‖∇χτ (t)‖2

H ≤
∫ t

0
‖fτ‖V ′

∥∥uτt

∥∥
V

ds

+
∫ t

0

∫
�

wχτt
− 1

2

∫ t

0

∫
�

|∇uτ |2 χτt
.

(4.8)

Notice that on the left hand side we can equivalently rewrite (cf. (3.4))∫ t

0

∫
�

χτ∇uτ · ∇uτt
= 1

2

∫ t

0

∫
�

χτ

d

dt
|∇uτ |2

= 1

2

∫
�

χτ (t) |∇uτ (t)|2 − 1

2

∫ t

0

∫
�

χτt
|∇uτ |2 ,

(4.9)

so that two terms cancel and applying the Young inequality, we finally obtain

∥∥uτt

∥∥2
L2(0,t;V )

+
3∑

i=1

‖Diuτ (t)‖4
L4(�)

+
∫

�

χτ (t) |∇uτ (t)|2

+ ∥∥χτt

∥∥2
L2(0,t;H)

+ ‖∇χτ (t)‖2
H ≤ c

(
1 + ‖fτ‖2

L2(0,T ;V ′)

)
.

(4.10)

Remark 4.2. In particular, notice that the presence of the higher order elasticity

term allows us to bound |∇uτ |2 in L2(Q) in (4.2) after prescribing only that fτ

is bounded in L2(0, T ; V ′) (cf. Remark 3.2).

Second a priori estimate. We proceed formally and test (4.2) by Aχτ . After

integrating over (0, t), by monotonicity of the subdifferential operator, standard

arguments show that (cf. (4.10))

‖∇χτ (t)‖2
H + ‖Aχτ‖2

L2(0,t;H)
≤ c

(
1 + ‖∇uτ‖4

L4(Q)

)
≤ c. (4.11)

Finally, a comparison in (4.2) yields

‖ξτ‖L2(0,T ;H) ≤ c. (4.12)
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For the sake of simplicity, we summarize the main estimates we have obtained

and we exploit in the following passage to the limit argumentation,

‖uτ‖H 1(0,T ;V )∩L∞(0,T ;W) ≤ c, (4.13)∥∥|∇uτ |2
∥∥

L∞(0,T ;H)
≤ c, (4.14)

‖χτ‖H 1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H 2(�)) ≤ c. (4.15)

Thus, well known weak and weak star compactness results allow us to deduce

that the following convergences hold, at least up to the extraction of a suitable

subsequence

uτ

∗
⇀ u in H 1(0, T ; V ) ∩ L∞(0, T ; W), (4.16)

|∇uτ |2 ∗
⇀ d ≥ 0 in L∞(0, T ; H), (4.17)

χτ

∗
⇀ χ in H 1(0, T ; H) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H 2(�)). (4.18)

In particular, let us observe that the weak convergence (4.16) is not sufficient to

identify d with |∇u|2 in (4.17). Hence, by (4.12) we also infer that

ξτ ⇀ ξ in L2(0, T ; H) (4.19)

Moreover, by compactness, from (4.16) and (4.18), we obtain the following

strong convergences (actually something more holds)

uτ → u in C0([0, T ]; H), (4.20)

χτ → χ in C0([0, T ]; H) ∩ L2(0, T ; V ). (4.21)

Owing to the results presented in [2], (4.19) and (4.21) enable us to identify at

the limit ξ ∈ ∂I[0,1](χ). Thus, (4.16)-(4.18), (4.19), and (4.20)-(4.21), allow us

to pass to the limit as τ ↘ 0 in (4.1) and (4.2) and get, a.e. in (0, T ),

ut + Aut +Au + B(χ∇u) = 0 in V ′, (4.22)

χt + Aχ + ξ = w − 1

2
d in H, (4.23)

where

ξ ∈ ∂I[0,1](χ) a.e. in Q. (4.24)
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Then, as one can prove that (4.22)-(4.23) admits a unique solution (cf. the proof

of Theorem 3.1), we can identify u = 0, so that (4.22) vanishes, namely there

are not macroscopic displacements or deformations at the limit. Hence, let us

discuss the mechanical meaning of d in (4.23). By (4.17) it follows that d is

the weak limit of deformation energies associated to the vanishing sequence of

macroscopic motions (cf. (4.16)) and, in general, d �= 0. Thus, this function,

representing a source of damage in (4.23), can be interpreted as the remaining

damaging effect of macroscopic motions, acting at a microscopic level. It follows

that a sequence of vanishing macroscopic motions can retain its damaging effect,

at the limit, as a source of damage in the equation of microscopic motions. In

order to support this fact, in the next section we briefly discuss the balance of

the energy of our problem.

5 Balance of the energy

We first consider the work provided by the exterior forces during a time interval

(0, t), which is given by

Tτ (t) =
∫ t

0
〈fτ , uτt

〉. (5.1)

By (4.1), we can rewrite (5.1) as it follows

Tτ (t) =
∫ t

0

∫
�

∣∣uτt

∣∣2 +
∫ t

0

∫
�

∣∣∇uτt

∣∣2

+
3∑

i=1

1

4

∫
�

|Diuτ (t)|4 + 1

2

∫ t

0

∫
�

χτ

d

dt
|∇uτ |2 .

(5.2)

We let

Aτ(t) =
∫ t

0

∫
�

∣∣uτt

∣∣2 +
∫ t

0

∫
�

∣∣∇uτt

∣∣2 +
3∑

i=1

1

4

∫
�

|Diuτ (t)|4 , (5.3)
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and then, by (4.2), we write

1

2

∫ t

0

∫
�

χτ

d

dt
|∇χτ |2 = 1

2

∫
�

χτ (t) |∇uτ (t)|2

− 1

2

∫ t

0

∫
�

χτt
|∇uτ |2 = 1

2

∫
�

χτ (t) |∇uτ (t)|2 +
∫ t

0

∫
�

∣∣χτt

∣∣2
+ 1

2

∫
�

|∇χτ (t)|2 −
∫ t

0

∫
�

wχτt
.

(5.4)

In particular, in (5.4) we have used the fact that∫ t

0

∫
�

ξτχτt
=
∫

�

I[0,1](χτ (t)) −
∫

�

I[0,1](χτ (0)) = 0, (5.5)

as χτ ∈ [0, 1] a.e. and χτ (0) = 1. Hence, we set

Bτ(t) =
∫ t

0

∫
�

∣∣χτt

∣∣2 + 1

2

∫
�

|∇χτ (t)|2 −
∫ t

0

∫
�

wχτt
. (5.6)

Thus, we can rewrite Tτ as follows

Tτ (t) = Aτ(t) + Bτ(t) + 1

2

∫
�

χτ (t) |∇uτ (t)|2 . (5.7)

Then, we investigate the limit as τ ↘ 0 of Tτ . By (4.18), the weak lower

semicontinuity of norms, and (4.23) we can infer that

lim inf
τ↘0

Bτ(t) = QB(t) +
∫ t

0

∫
�

|χt |2 + 1

2

∫
�

|∇χ(t)|2 −
∫ t

0

∫
�

wχt

= QB(t) − 1

2

∫ t

0

∫
�

dχt = QB(t) +D(t),

(5.8)

where QB ≥ 0. Analogously, by (4.16)-(4.17) (where u = 0) we have that

lim inf
τ↘0

Aτ(t) = QA(t) + 1

4
‖d(t)‖2

H , (5.9)

and QA ≥ 0. Finally, by (4.17) and (4.21) we have

lim
τ↘0

1

2

∫
�

χτ (t) |∇uτ (t)|2 = 1

2

∫
�

χ(t)d(t). (5.10)
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Hence, we can take a suitable subsequence of τj such that

lim
τj ↘0

Tτj
(t) = lim inf

τ↘0
Tτ (t). (5.11)

Thus, denoting by

T (t) = lim
τj ↘0

Tτj
(t), (5.12)

owing to (5.8)-(5.9) we can eventually infer that

T (t) = Q(t) +D(t) + S(t), (5.13)

where (cf. (5.8) and (5.9))

Q(t) = QA(t) + QB(t), (5.14)

D is introduced in (5.8), and

S(t) = 1

4
‖d(t)‖2

H + 1

2

∫
�

χ(t)d(t). (5.15)

Thus, let us conclude that the work which is provided to the structure T (t) is di-

videed between damaging external workD(t), external source of heat Q(t), and

stored energy S(t). In particular, when no instantaneous damage work is applied

at the final time t (d(t) = 0), from (5.15) it results S(t) = 0 and, consequently,

the work which has been provided is exactly the sum of the damaging work D
and of the heat sources Q resulting from the dissipative phenomena.
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