
Computational and Applied Mathematics
Vol. 23, N. 1, pp. 67–80, 2004
Copyright © 2004 SBMAC
www.scielo.br/cam

On dusty gas model governed by the
Kuramoto-Sivashinsky equation

GLEB G. DORONIN* and NIKOLAI A. LARKIN†

Departamento de Matemática, Universidade Estadual de Maringá, 87020-900, Maringá, Brazil

E-mail: ggdoronin@uem.br / nlarkine@uem.br

Abstract. Initial and initial-boundary value problems for the Kuramoto-Sivashinsky model of

‘‘gas – solid particles’’ media are considered. Existence, uniqueness and exponential decay of

global strong solutions are proved for small initial data.
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1 Introduction

There are a number of mathematical models describing nonstationary two-phase

motions of gas-particles mixtures known as ‘‘dusty gases’’ [1]. These models

are usually based either on the Navier-Stokes equations [1, 2], or exploit inviscid

gasdynamics approach [3-5]. There are models that include viscous equations

for a carrier gas and first-order hyperbolic equations for particles [6-10].

Interest in dusty gases dates from the 1930’s due to necessity to simulate

processes of the solid fuel combustion in rockets nozzles. Probably, one of the

first mathematical works in this field is Reference [4]. The main feature of the

corresponding system of PDE’s is that it is not hyperbolic. This circumstance

made the mathematical modeling doubtful and numerical algorithms unstable.

To improve stability of numerical schemes, it was suggested to consider more

regular initial data [19]. However, this approach does not lead to the well-

posedness. Indeed, it was shown in [9] that the Cauchy problem for this model
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does not possess even local-in-time solutions within classes of functions with a

finite number of derivatives. Only analytic solutions do exist due to the Cauchy-

Kovalevsky theorem. This phenomenon has the same nature as the Cauchy

problem for the Laplace equation. On the other hand, considering equations

with dissipative terms, one may expect more regular properties of solutions.

If to use for the carrier phase the Navier-Stokes equations (second order dis-

sipation), then it is possible to prove local-in-time solvability of the Cauchy or

mixed problems [8-10]. However, when the phase interaction term contains the

local concentration of a dispersive phase, we do not know any results on the

existence of global in t solutions. The first step towards the global solvability

was made in [7]: the local concentration of particles was substituted by the aver-

aged constant concentration that made it possible to prove the existence of global

weak solutions to the mixed problem.

In this paper we propose to model the carrier phase of a dusty gas by the

Kuramoto-Sivashinsky equation which has the dissipative term of the fourth or-

der and is widely used in the theory of viscous turbulent flows and in studies of

flame fronts propagation [11-15]. The last ones provide classical examples of

dusty media. This approach is a development and generalization of our previ-

ous results [18]. Instead of an averaged concentration of particles in the phase

interaction term we use a local dust concentration. This provides more technical

and ideological difficulties. Our goal is to investigate the well-posedness of the

mixed and Cauchy problems for this model. We prove the existence and unique-

ness of global strong solutions for small initial data. The method of successive

approximations, compactness arguments and the continuation of a local solution

are used.

If the total mass of solid particles is sufficiently small, then the exponential

decay of solutions is proved. This means an asymptotic stability of a steady state

of a dusty gas flow.

It should be noted that offered proofs are of constructive character that may

serve as a basis for stable and rapid numerical algorithms.
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2 Main results

For T > 0, let Q = {(x, t) : x ∈ �, t ∈ (0, T )} where � ⊆ R is either the

interval � = (0, 1) in the case of mixed problem or the line � = R in the case

of the Cauchy problem. In Q we consider the following problem:

ut + uux + µuxx + νuxxxx + αu = mK(v − u), (2.1)

vt + vvx = K(u − v), (2.2)

mt + (mv)x = 0, (2.3)

u(x, 0) = u0(x), v(x, 0) = v0(x), m(x, 0) = m0(x) ≥ 0, (2.4)

u(0, t) = uxx(0, t) = u(1, t) = uxx(1, t) = 0,

v(0, t) = v(1, t) = 0,

}
if � = (0, 1). (2.5)

Here u and v are velocities of the medium and solid particles respectively; m is

the local concentration of particles; µ, ν and α are positive constant coefficients

of viscosity and friction and K > 0 is the constant coefficient of the phase

interaction.

Remark 1. It can be seen from (2.5) that x = 0 and x = 1 are characteristics of

hyperbolic equations (2.2) and (2.3). This justifies the formulation of the mixed

problem (2.1)-(2.5).

To formulate main results we define a real λ as follows:

λ =
[
‖v′

0‖2 + K(‖u0‖2 + ‖√m0v0‖2)

2α
+ K(‖u0‖2 + ‖√m0v0‖2)

2ν

]1/2

+
[
‖v′′

0‖2 + K(‖u0‖2 + ‖√m0v0‖2)

ν

]1/2

.

(2.6)

Hereafter all the norms ‖ · ‖ are in L2(�).

In order to prove the exponential decay of solutions, we assume that

α > 3K

∫
�

m0(x) dx and ν > K

∫
�

m0(x) dx. (2.7)

Main results of this paper are the following.
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Theorem 1. Let � = (0, 1), 0 < µ < min{α, ν}, K > 0, u0 ∈ H 2(�),

v0 ∈ H 2(�) and m0 ∈ H 1(�). If λ < K/7, then for all T > 0 the problem

(2.1)-(2.5) has a unique strong solution:

u ∈ L∞(0, T ; H 2(�)) ∩ L2(0, T ; H 4(�)),

ut ∈ L2(0, T ; L2(�)),

v ∈ L∞(0, T ; H 2(�)),

vt ∈ L∞(0, T ; H 1(�)),

m ∈ L∞
loc(0, T ; H 1(�)) ∩ L∞(0, T ; L1(�)),

m ≥ 0,

mt ∈ L∞
loc(0, T ; L2(�)).

(2.8)

If conditions (2.7) hold, then there exists a real θ > 0 such that

‖u‖2(t) + ‖√mv‖2(t) ≤ [‖u0‖2 + ‖√m0v0‖2
]
e−θt . (2.9)

Theorem 2. Let � = R, 0 < µ < min{α, ν}, K > 0, u0 ∈ H 2(�), v0 ∈
H 2(�) and m0 ∈ H 1(�)∩L1(�). If λ < K/7, then the Cauchy problem (2.1)-

(2.4) has a unique strong solution satisfying (2.8) for all T > 0. If (2.7) are

valid, then (2.9) holds.

Proof. We prove these theorems simultaneously by the following way. First,

exploiting the method of successive approximations, we construct a local so-

lution. Then, using a priori estimates and small (in norms (2.6)) initial data,

we extend the local solution to the whole interval (0, T ) with arbitrary T > 0.

Finally, we prove the exponential decay of solutions as t → ∞.

3 Preliminary results

Lemma 1. For any w0(x) ∈ H 2(�) and f (x, t) ∈ L2(0, T ; H 2(�)) there is

a t1 > 0 such that there exists a unique solution w ∈ L∞(0, t1; H 2(�)) to the

problem

wt + wwx = K(f − w),

w(x, 0) = w0(x),

w(0, t) = w(1, t) = 0, if � = (0, 1)
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which satisfies the inequality

‖w‖2
H 2(�)

(t) ≤ Cv

(
‖w0‖2

H 2(�)
+ K

∫ t

0
‖f ‖2

H 2(�)
(τ ) dτ

)
, t ∈ (0, t1). (3.1)

Proof. The proof can be found in [8], p. 954. �

Lemma 2. For any p0(x) ∈ H 2(�) and f (x, t) ∈ L2(Q), there exists a unique

solution to the problem

pt + ppx + µpxx + νpxxxx + αp = f (x, t), (3.2)

p(x, 0) = p0(x), (3.3)

p(−L, t) = p(L, t) = pxx(−L, t) = pxx(L, t) = 0 if � = (−L, L) (3.4)

such that for all t ∈ (0, T )

‖p‖2
H 2(�)

(t) +
∫ t

0
‖p‖2

H 4(�)
(τ ) dτ

≤ Cu

(
‖p0‖2

H 2(�)
+

∫ t

0
‖f ‖2

L2(�)
(τ ) dτ

)
.

(3.5)

Proof. The proof can be found in [15]. Estimate (3.5) does not depend on L.

This allows to consider the problem (3.2)-(3.4) on any (−L, L), L > 0 and

then, passing to the limit as L → ∞, to obtain a solution to the Cauchy problem

(3.2), (3.3) (see, for instance, [16]). �

Lemma 3. For any

a(x, t) ∈ L∞ (
0, T ; H 2(�) ∩ H 1

0 (�)
)
,

b(x, t) ∈ L∞ (
0, T ; H 1(�)

)
,

f (x, t) ∈ L2
(
0, T ; H 1(�)

)
,

q0(x) ∈ H 1(�)

there exists a unique solution

q(x, t) ∈ L∞ (
0, T ; H 1(�)

)
(3.6)
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to the following problem:

qt + aqx + bq = f, (3.7)

q(x, 0) = q0(x), (3.8)

q(0, t) = q(1, t) = 0 if � = (0, 1). (3.9)

Proof. In fact, multiplying (3.7) by q, integrating over Qt = � × (0, t) and

using Gronwall’s lemma, we obtain

‖q‖2(t) ≤
(
‖q0‖2 + ‖f ‖2

L2(Q)

)
eC1T , t ∈ (0, T ), (3.10)

where C1 is a positive constant.

Differentiating (3.7) with respect to x, multiplying by qx and integrating over

�, we have

1

2

d

dt
‖qx‖2(t) +

∫
�

(
1

2
axq

2
x + 1

2
(aq2

x )x + bxqqxx + bq2
x

)
dx

=
∫

�

fxqx dx.

(3.11)

Notice that ∣∣∣∣∫
�

bxqqx dx

∣∣∣∣ ≤ sup
�

|q|(t)‖bx‖(t)‖qx‖(t)

≤ C
√

‖q‖2 + ‖qx‖2 · ‖qx‖

≤ C(‖q‖2 + ‖qx‖2),

where the constant C > 0 does not depend on t . Therefore, integrating (3.11)

over t ∈ (0, T ) and using the Cauchy and Gronwall inequalities, we conclude

that

‖qx‖2(t) ≤
(
‖q ′

0‖2 + ‖fx‖2
L2(Q)

)
eC2T , t ∈ (0, T ). (3.12)

Estimates (3.10) and (3.12) imply (3.6). �

Comp. Appl. Math., Vol. 23, N. 1, 2004



GLEB G. DORONIN and NIKOLAI A. LARKIN 73

4 Local solution

Let u0 = 0. For n ≥ 1, n ∈ N, we define approximations un, vn and mn as

solutions to the following problem:

un
t + unun

x + µun
xx + νun

xxxx + αun = mnK(vn − un−1), (4.1)

vn
t + vnvn

x = K(un−1 − vn), (4.2)

mn
t + (mnvn)x = 0, (4.3)

un(x, 0) = u0(x), vn(x, 0) = v0(x), mn(x, 0) = m0(x), (4.4)

un(0, t) = un
xx(0, t) = un(1, t) = un

xx(1, t) = 0,

vn(0, t) = vn(1, t) = 0,

}
if � = (0, 1). (4.5)

By Lemma 1, we conclude that for any v0 ∈ H 2(�) there exists t1 > 0 such

that for all 0 < t < t1 equation (4.2) with imposed initial and boundary (in the

case of the mixed problem) conditions (4.4) and (4.5) has a unique solution such

that

‖vn‖2
H 2(�)

(t) ≤ Cv

(
‖v0‖2

H 2(�)
+ K

∫ t

0
‖un−1‖2

H 2(�)
(τ ) dτ

)
, (4.6)

where the constant Cv does not depend on vn.

Approximations mn(x, t) for t ∈ (0, t1) can be found by the formula:

mn(x, t) = m0
(
yn(0; x, t)

)
exp

{
−

∫ t

0

∂vn

∂x

(
yn(τ ; x, t), τ

)
dτ

}
≥ 0, (4.7)

where yn(τ ; x, t) is a solution to the Cauchy problem

dy

dτ
= vn(y, τ ); y(t; x, t) = x,

defined for every vn ∈ L∞(0, t1; H 2(�)).

Setting in (3.2) f (x, t) = Kmn(vn −un−1), and taking into account Lemma 2,

(4.6) and (4.7), we conclude from (4.1) that for a.e. t ∈ (0, t1)

‖un‖2
H 2(�)

(t) +
∫ t

0
‖un‖2

H 4(�)
(τ ) dτ

≤ Cu

(
‖u0‖2

H 2(�)
+

∫ t

0
‖Kmn(vn − un−1)‖2

L2(�)
(τ ) dτ

)
,

(4.8)
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where the constant Cu does not depend on un.

Thus, all the approximations un, vn and mn are defined on (0, t1) and (4.6)-(4.8)

hold.

The next step is to show the uniform in n ∈ N boundness of approximations

on some interval (0, t2). Inequality (4.8) implies

‖un‖2
H 2(�)

(t) ≤ Cu

[
‖u0‖2

H 2(�)
+

∫ t

0

∫
�

K2(mn)2|vn − un−1|2 dx dτ

]
≤ Cu

[
‖u0‖2

H 2(�)
+ 2K2

∫ t

0
sup
�

|mn|2(‖vn‖2 + ‖un−1‖2)(τ ) dτ

]
≤ Cu

[
2K2

∫ t

0
An−1(τ )Bn−1(τ ) dτ + ‖u0‖2

H 2(�)

]
, t ∈ (0, t1),

(4.9)

where

An−1(τ ) = ‖m0‖2
H 1(�)

exp

{
2Cv

∫ τ

0

(‖v0‖2
H 2(�)

+K

∫ s

0
‖un−1‖2

H 2(�)
dξ

)1/2
ds

}
and

Bn−1(τ ) = ‖v0‖2 + K

∫ τ

0
‖un−1‖2(s) ds + ‖un−1‖2(τ ).

We remind that u0 = 0. Hence, for arbitrary R > 2Cu‖u0‖2
H 2(�)

, it holds

u0 < R. The inductive hypothesis

sup
0≤τ≤t1

‖un−1‖2
H 2(�)

(τ ) < R

implies, by (4.9), that

sup
0≤τ≤t1

‖un‖2
H 2(�)

(τ ) ≤ Cu

[
‖u0‖2

H 2(�)

+ 2K2
∫ t1

0
‖m0‖2

H 1(�)
e

2Cvτ
√

‖v0‖2
H2(�)

+KRτ
(

‖v0‖2
H 2(�)

+ KRτ +R
)

(τ ) dτ

]
.

Consequently, there exists a real t2 > 0 such that for all n ∈ N

sup
0≤τ≤t2

‖un‖2
H 2(�)

(τ ) ≤ 2Cu‖u0‖2
H 2(�)

< R
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and estimates (4.6) and (4.7) imply that vn and mn are bounded uniformly in n

on (0, t3).

Now we prove the convergence of approximations. The functions

Un = un − un−1, V n = vn − vn−1 and Mn = mn − mn−1

satisfy the following problem:

Un
t + un

xU
n + un−1Un

x + µUn
xx + νUn

xxxx + αUn

= K
(
mnV n + vn−1Mn − un−1Mn − mn−1Un−1

)
, (4.10)

V n
t + vnV n

x + vn−1
x V n = K(Un−1 − V n), (4.11)

Mn
t + (vnMn + mn−1V n)x = 0, (4.12)

Un(x, 0) = V n(x, 0) = Mn(x, 0) = 0, (4.13)

Un(0, t) = Un
xx(0, t) = Un(1, t) = Un

xx(1, t) = 0,

V n(0, t) = V n(1, t) = 0,

}
if � = (0, 1). (4.14)

Considering (4.11) and (4.12) as equations of the type of (3.7) withf depending

on Un−1, we obtain from (4.10) by (3.5) that there exist t3 > 0 and 0 < β < 1

such that

sup
0≤t≤t3

‖Un‖H 2(�)(t) ≤ β sup
0≤t≤t3

‖Un−1‖H 2(�)(t).

Let t0 = min(ti), i = 1, 2, 3. Then a subsequence of {un} converges in

L∞(0, t0; H 2(�)) that implies the convergence of {vn} and {mn} in classes

L∞(0, t0; H 2(�)) and in L∞(0, t0; H 1(�)) correspondingly.

The fact that the limit of the approximations is the required solution to (2.1)-

(2.5) is established by the usual way [16].

Lemma 4. A solution of (2.1)-(2.5), satisfying (2.8), is uniquely defined.

Proof. To prove uniqueness of the solution obtained, we consider two solutions

(u, v, m) and (̃u, ṽ, m̃) of (2.1)-(2.5). The functions U = u − ũ, V = v − ṽ
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and M = m − m̃ satisfy the following problem:

Ut + uUx + ũxU + µUxx + νUxxxx + αU

= K
[
m(V − U) + M(̃v − ũ)

]
, (4.15)

Vt + vVx + ṽxV = K(U − V ), (4.16)

Mt + vMx + m̃xV + mVx + ṽxM = 0, (4.17)

U(x, 0) = V (x, 0) = M(x, 0) = 0, (4.18)

U(0, t) = Uxx(0, t) = U(1, t) = Uxx(1, t) = 0,

V (0, t) = V (1, t) = 0,

}
if � = (0, 1). (4.19)

It is easy to see that equations (4.16) and (4.17) are of the type of (3.7) with f

depending on U . Therefore, applying (3.5) to (4.15), we get

‖U‖2
H 2(�)

(t) ≤ CK

∫ t

0
‖U‖2

H 2(�)
(τ ) dτ.

This implies that U = 0 and, consequently, V = 0 and M = 0. �

5 Global solution

We need global a priori estimates to extend the local solution to the whole interval

(0, T ). First, we define the energy function

E(t) = ‖u‖2(t) + ‖√mv‖2(t).

Then, multiplying (2.1) by u, (2.2) by mv, summing up the results, integrating

over Qt and taking into account (2.3), we obtain the first estimate:

E(t) +
∫ t

0

[
ν‖uxx‖2(τ ) + α‖u‖2(τ ) + 2K‖√m(u − v)‖2(τ )

]
dτ

≤ E(0).

(5.1)

Multiplying (2.2) by v and integrating over Qt , we get

‖v‖2(t) + K

∫ t

0
‖v‖2(τ ) dτ ≤ ‖v0‖2 + K

∫ t

0
‖u‖2(τ ) dτ. (5.2)
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Two times successively differentiating (2.2) with respect to x, multiplying by

vx and vxx respectively and integrating over Qt , we come to the inequalities

‖vx‖2(t) +
∫ t

0
(K − sup

�

|vx |)‖vx‖2(τ ) dτ

≤ ‖v′
0‖2 + K

∫ t

0
‖ux‖2(τ ) dτ

≤ ‖v′
0‖2 + K

2

∫ t

0
(‖u‖2 + ‖uxx‖2)(τ ) dτ

(5.3)

and

‖vxx‖2(t) +
∫ t

0
(K − 7 sup

�

|vx |)‖vxx‖2(τ ) dτ

≤ ‖v′′
0‖2 + K

∫ t

0
‖uxx‖2(τ ) dτ.

(5.4)

Lemma 5. If λ < K/7, then

sup
�

|vx(x, t)| < K/7 for all t > 0. (5.5)

Proof. Indeed, when t = 0, sup� |vx | ≤ ‖v′
0‖ + ‖v′′

0‖ ≤ λ < K/7. Suppose

that sup� |vx(x, t∗)| = K/7 for some t = t∗ > 0. Then (5.1)-(5.4) give

K/7 = sup
�

|vx |(t∗) ≤ ‖vx‖(t∗) + ‖vxx‖(t∗)

≤
√

‖v′
0‖2 + KE(0)/2α + KE(0)/2ν +

√
‖v′′

0‖2 + KE(0)/ν

= λ < K/7.

This contradiction proves Lemma 5. �

It follows from (2.3) that the concentration m(x, t) satisfies the conservation

law ∫
�

m(x, t) dx =
∫

�

m0(x) dx = C for all t > 0.

Moreover, (4.7) implies that m(x, t) ≥ 0.
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Thus, if λ < K/7, then

u ∈ L∞(0, T ; L2(�)) ∩ L2(0, T ; H 4(�)),

ut ∈ L2(0, T ; L2(�)),

v ∈ L∞(0, T ; H 2(�)),

vt ∈ L∞(0, T ; L1(�)) ∩ L2(0, T ; H 1(�)),

m ∈ L∞
loc(0, T ; H 1(�)) ∩ L∞(0, T ; L1(�)),

m ≥ 0,

mt ∈ L∞
loc(0, T ; L2(�))

and these inclusions do not depend on T > 0. This allows us to extend the local

solution for all t > 0 (see [17] for details). Uniqueness of a global solution

follows directly from Lemma 4.

6 Stability

Multiplying (2.1) by u, (2.2) by mv, summing up the results, integrating over �

and taking into account (2.3) and the definition of E(t), we obtain

d

dt
E(t) + ν‖uxx‖2(t) + α‖u‖2(t) + 2K‖√m(u − v)‖2(t) ≤ 0. (6.1)

Then we estimate

I1 := 2K‖√m(u − v)‖2(t) = 2K

∫
�

m(u2 − 2uv + v2) dx

≥ 2K

∫
�

(mv2 − mv2/2 − 2mu2 + mu2) dx

= 2K

∫
�

(mv2/2 − mu2) dx

(6.2)

and

I2 := 2K

∫
�

mu2 dx ≤ 2K‖u‖2
L∞(�)

∫
�

m dx

≤ 2K
(‖u‖2 + ‖ux‖2

) ∫
�

m0 dx

≤ 2K

(
3

2
‖u‖2 + 1

2
‖uxx‖2

)∫
�

m0 dx.

(6.3)

Comp. Appl. Math., Vol. 23, N. 1, 2004



GLEB G. DORONIN and NIKOLAI A. LARKIN 79

Taking into account the estimates for I1, I2, we get from (6.1)

d

dt
E(t) +

(
α − 3K

∫
�

m0 dx

)
‖u‖2(t)

+
(

ν − K

∫
�

m0 dx

)
‖uxx‖2(t) + K‖√mv‖2(t) ≤ 0.

Making use of (2.7), one can see that for all t > 0 there exists a constant θ > 0

such that

E(t) ≤ E(0)e−θt .

This completes the proof of Theorems 1 and 2. �
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