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Abstract. We study the Riemann problem with forward combustion due to injection of air into

a porous medium containing solid fuel. We neglect air compressibility and heat loss to the rock

formation. Given initial reservoir and injection conditions, we prove that there is a unique time

asymptotic wave sequence for combustion with complete oxygen consumption. The sequence

consists of a region of unburned air at injection temperature, a warming discontinuity, a hot region

with unburned air, a combustion wave and a region with burned air and unburned fuel at the

initial reservoir temperature. The waves have very different speeds, and therefore they cannot

be detected in laboratory experiments that focus on the combustion wave. However, they should

occur in field scale.

By introducing a cut-off in Arrhenius’ law, the reaction rate vanishes at reservoir temperature,

and two types of wave sequences are possible. One was already described. The other occurs for

incomplete oxygen consumption. In this case, the wave sequence contains another wave, i.e., there

is another region ahead of the combustion wave containing incompletely burned air at reservoir

temperature, and a gas composition discontinuity that moves fast. However, instead of a unique

solution for each Riemann data, there is a one parameter family of wave speeds and strengths.

This multiplicity of solutions may to be due to the cut-off.
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1 Introduction

Air injection and in-situ combustion have long been considered as a potential

technique for displacement and recovery of heavy oil reserves [7, 22]. Opera-

tional advantage of this thermal recovery technique is the abundance of injection

gas independently of location. It utilizes heavy and immobile components of the

crude oil as fuel producing in-place heat necessary for the recovery of upgraded

crude oil.

Despite the advantages and a long history, only a small fraction of the total

thermal recovery utilizes this technique. Some reasons are technical, such as

the possibility of front extinction and the necessity of (re-)ignition for sustained

propagation within in-situ combustion in the presence of external heat losses [1].

Thus mathematical analysis of this problem is important to predict these events.

A large number of studies on the structure of the combustion front have been

reported since 1950s, see [1, 2, 3, 4, 5, 6, 8, 20, 21, 23, 26], for instance.

These studies did not take into account other waves that occur in the combustion

problem. As there is interaction between the combustion wave and other waves,

this paper focuses on the solution of the Riemann problem with combustion

taking into account all possible waves.

We assume that upstream processes during the in-situ combustion have already

generated a stationary homogeneously distributed fuel. Burning of this fuel is

the subject of the paper. A bimolecular reaction is assumed to take place be-

tween the injected oxygen and the solid fuel, hence the reaction region behaves

as a source of heat as well as a sink for both of the reactants. We consider

uniform flow, transport and reaction of injected air in porous medium of length

l, with the reaction rate based on the Arrhenius’ law. We neglect external heat

losses. We develop simplified theoretical models for forward (co-flow) combus-

tion under varying boundary conditions and obtain the wave sequences in the

Riemann solution. The formulation of the problem is the same as in [4], while

the nomenclature follows [1].
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The paper is subdivided as follows. In Section 2 we present the mathematical

model. Theory on systems of conservation laws suggests that, besides the com-

bustion front, there could be rarefaction, shock or contact waves. In Section 3

we determine the characteristic speeds and prove that in this model there are

neither rarefaction nor shock waves, only contact discontinuities. In fact, an

examination of the Rankine-Hugoniot conditions shows that all noncombustion

discontinuities are just the contact waves already found. In Section 4 we intro-

duce the combustion front as a traveling wave of the evolution system derived in

Section 2. In this section we also discuss the Rankine-Hugoniot jump conditions

for the combustion wave. In Section 5 we prove that for the physical parameters

considered in this paper, there are no resonances between waves, as opposed to

the case analyzed by Aldushin et al. in [4]. As a consequence of the absence of

resonances, we obtain two distinct temperature relationships for the combustion

front, which we call the hot upstream and the hot downstream combustion cases.

In Section 6 we determine the ranges of parameters in which these combustion

waves may exist. In Section 7 we present our main results. For the hot upstream

combustion we prove in Theorem 7.1 that the wave sequence of the Riemann

solution is uniquely determined in case of complete consumption of oxygen.

In Theorem 7.2 we prove that, for incomplete consumption of oxygen (using

a modified version of the Arrhenius’ law), there is another wave sequence as a

solution. However, this solution is not unique, rather it is a one-parameter fam-

ily of solutions. We also show that the hot downstream case does not occur in

this model. In Appendix A we present tables with typical values of parameters,

constants and nomenclature used through the paper.

2 Formulation of the problem

We assume that air is injected at the leftmost part of a porous rock cylinder

containing solid fuel, so that all wave propagation is one dimensional. Balance

equations are written for the total energy, the total gas mass, the oxygen mass and

the fuel mass. For the latter, we define the fuel density per total volume ρ f and

introduce the extent of conversion depth, η(x̃, t̃ ) = 1 − ρ f (x̃, t̃)/ρo
f (ρo

f is the

initial fuel concentration), such that η = 0 corresponds to complete availability

of fuel (denoted by superscript o) and η = 1 to the complete lack of fuel (the
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latter may occur because the fuel was never present or because it was completely

consumed). The primary dependent variables are the temperature, T̃ (x̃, t̃ ), the

oxygen concentration in terms of mass fraction, Ỹ (x̃, t̃ ) and the fuel conversion

depth η(x̃, t̃ ). The gas density ρg(T̃ , p̃ ) is expressed by the ideal gas equation

of state in terms of temperature and total gas pressure p̃(x̃, t̃ ).

In formulating the conservation equations we make the following assump-

tions: the pore space and the solid matrix are in thermal equilibrium so that a

one-temperature model is used for the energy balance; heat transfer by radiation,

energy source terms due to pressure increase, and work from surface and body

forces are all negligible; the ideal gas law is the equation of state for the gas

phase; thermodynamic and transport properties, such as conductivity, diffusiv-

ity, heat capacity of the solid, heat of reaction, etc., all remain constant. We also

neglect heat loss to the surrounding rock formation. We assume that gas heat

capacity is negligible with respect to the rock heat capacity. The heat loss will

be taken as zero as we study only the adiabatic case in this work. We assume

that the pressure changes within any wave are negligible compared to the pres-

sure drop across the system, so that in the ideal gas law and in other physical

properties the pressure appears as a constant. Under these assumptions the di-

mensional form (indicated by the superscript tilde) of the energy balance, the oxy-

gen mass balance, the gaseous phase mass balance and the combustion kinetics

equations are:

(1 − φ)
∂(csρs T̃ )

∂ t̃
+ ∂(cgρgṽT̃ )

∂ x̃
= λ̃

∂2T̃

∂ x̃2
+ Qρo

f W, (2.1)

φ
∂(ρgỸ )

∂ t̃
+ ∂(ρgṽỸ )

∂ x̃
= DM

∂

∂ x̃

(
ρg

∂Ỹ

∂ x̃

)
− µ̃ρo

f W, (2.2)

φ
∂(ρg)

∂ t̃
+ ∂

(
ρgṽ

)
∂ x̃

= µ̃gρ
o
f W, (2.3)

∂η

∂ t̃
= W, (2.4)

where W is the reaction rate. The equations (2.1)– (2.3) were derived utilizing

Darcy’s law. The four equations (2.1)– (2.4) correspond to the three primary

unknows T̃ , Ỹ , η and the secondary unknow ṽ, which is the volumetric flow
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rate of the gas phase. In the above, ci denotes the average specific heat capacity

of species i (gas or solid) at constant pressure, ρi is the volumetric density of

species i , λ̃ is the effective thermal conductivity (λ̃s=λ̃g), Q is the heat released

due to reaction (per unit mass of solid). Changes in the porosity φ are considered

to be negligible so that φ is constant. DM is an effective diffusion coefficient

in the gas phase (D=DM/φ, where D is the molecular diffusion coefficient),

while µ̃ = γ̃ Mo/M f and µ̃gp = γ̃gp Mgp/M f are mass-weighted stoichiometric

coefficients for oxygen and for combustion gaseous products, respectively. Mo,

M f and Mgp are the molecular weight of oxygen, fuel and gaseous products,

respectively. The net gas mass production is determined from µ̃g = µ̃gp − µ̃,

so that positive or negative sign for µ̃g correspond to net gaseous phase mass

production or consumption, respectively. We will assume µ̃g > 0. For the rate

of reaction, we use the second order law of mass action and the Arrhenius’ Law:

W = k0e−E/RT̃ Ỹ (1 − η) , (2.5)

with activation energy E and pre-exponential factor ko.

We use the ideal gas equation of state p̃Mg = ρg RT̃ , where R is the universal

gas constant, while Mg and ρg are the effective molecular weight and the effective

density of the gas phase, respectively. We neglect the effect of changes of Mg

due to the reaction by approximating Mg by a constant.

Non-dimensionalized combustion equations. We introduce dimensionless

space and time variables. To bring out the internal structure of the combus-

tion wave, we introduce convenient variables and parameters that are defined in

Appendix A. We scale the length by l∗=αs /vi and the time using t∗=l∗/vi , where

vi is the injection velocity and αs the effective thermal diffusivity. We introduce

the scaled temperature θ = T̃ /T̃0, which means that the reservoir temperature

corresponds to θ0 = 1; we also introduce the nondimensional gas density ρ,

which is the gas density divided by the gas density at reservoir temperature.

Thus the equations (2.1)– (2.4) are transformed into four dimensionless balance

equations (2.6)– (2.9), while the dimensionless ideal gas law becomes Eq. (2.10):

∂θ

∂ t̂
+ ∂(aρvθ)

∂ x̂
= ∂2θ

∂ x̂2
+ q	, (2.6)
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∂(φYρ)

∂ t̂
+ ∂(ρvY )

∂ x̂
= 1

Le

∂

∂ x̂

(
ρ

∂Y

∂ x̂

)
− µ	, (2.7)

φ
∂ρ

∂ t̂
+ ∂(ρv)

∂ x̂
= µg	, (2.8)

∂η

∂ t̂
= 	, (2.9)

ρθ = 1, (2.10)

where

	 = αe−γ /θY (1 − η) . (2.11)

The domain of the dependent variables is given by

θ > 0 , 0 ≤ Y ≤ 1 , 0 ≤ η ≤ 1 , v > 0 . (2.12)

From now on, we write t̂ → t , x̂ → x .

The values of the parameters a, q, φ, Le, µ, µg, α and γ are given in Table 1

of Appendix A.

3 Non-combustion waves for the model in hyperbolic framework

In the absence of combustion, the source terms representing mass transfer or

sensible heat generation containing the factor 	 vanish on the right hand sides

of system (2.6)– (2.10). Of course 	 vanishes for Y ≡ 0 or η ≡ 1. We focus

in the waves for large times and long distances for which the second derivative

terms are negligible. Let us first consider smooth solutions, so we can expand

the derivatives in the remaining terms in Eqs. (2.6-2.9), manipulate Eqs. (2.7),

(2.8), use Eq. (2.10) to eliminate ρ, obtaining:

∂θ

∂t
+ a

∂v

∂x
= 0, (3.1)

φ
∂Y

∂t
+ v

∂Y

∂x
= 0, (3.2)

(
θ

a
+ φ

)
∂θ

∂t
+ v

∂θ

∂x
= 0, (3.3)
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∂η

∂t
= 0. (3.4)

The characteristic speeds of system (3.1)– (3.4) in increasing order and the

corresponding characteristic vectors are:

λη = 0, (0, 0, 1, 0)T , (3.5)

λθ = a
v

θ + aφ
,

(
1, 0, 0,

v

θ + aφ

)T

, (3.6)

λY = v

φ
, (0, 1, 0, 0)T . (3.7)

It is easy to see that all characteristic speeds are constant along the integral

curves defined by the corresponding characteristic vector fields, which means

that all of them are associated to contact discontinuities, hence they satisfy the

Rankine-Hugoniot conditions for (3.1)– (3.4), [25]. The characteristic speed λη

corresponds to an immobile discontinuity along which only η varies, λθ corre-

sponds to a thermal discontinuity along which θ and v vary and λY corresponds

to a gas composition discontinuity along which only Y varies.

4 The combustion wave

We proceed next with the study of combustion wave propagation. The combus-

tion wave encounters unburned states ahead and leaves burned states behind it.

We look for combustion fronts as steady traveling waves of system (2.6)– (2.11)

with propagation speed V > 0 by setting x = x̂ −V t̂ and t = t̂ . In these moving

nondimensional coordinates, after using Eq. (2.10) to eliminate ρ, the equations

(2.6)– (2.9) read, after writing x̂ → x :

d

dx
(av − V θ) = d2θ

dx2
− q

d(V η)

dx
, (4.1)

d

dx

(
1

θ
(v − φV )Y

)
= 1

Le

d

dx

(
1

θ

dY

dx

)
+ µ

d(V η)

dx
, (4.2)

d

dx

(
1

θ
(v − φV )

)
= −µg

d(V η)

dx
, (4.3)
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d(V η)

dx
= −	. (4.4)

In the adiabatic case studied here, reaction at the back of the combustion zone

ceases due to complete lack of fuel, i.e., ηb=1 at −∞. This is fuel-deficient

combustion. (Thus, there can be no second combustion wave behind the first

one.) Since gas is injected we have Y b = 1. The temperature and the velocity

behind the combustion need to be calculated. Thus the boundary conditions

behind this combustion front are generically given by:

θ = θb > 0, Y = Y b = 1, η = ηb = 1, v = vb > 0; x → −∞ , (4.5)

where the superscript b means burned.

Ahead of the combustion zone we consider that there is abundant fuel, i.e.,

ηu = 0 at +∞, under two distinct conditions surrounding the combustion front.

The first condition is the complete oxygen consumption case where we set Y u = 0

at +∞. The second condition is the temperature-controlled case where we

set θu = 1 at +∞, and Y u have to be determined. The study of this second

case is of special interest in petroleum applications, as it represents a situation

where oxigen advances faster than the combustion wave, and the breakthrough

of oxigen at the producing well causes safety hazards and other operational

difficulties. These conditions can be summarized in (4.6) and (4.7), respectively:

θ = θu > 0, Y = Y u = 0, η = ηu = 0, v = vu > 0; x → +∞, (4.6)

θ = θu = 1, Y = Y u > 0, η = ηu = 0, v = vu > 0; x → +∞ . (4.7)

where the superscript u means unburned.

Integrating equations (4.1)– (4.3) from x to +∞ once, taking into account that

ηu = 0 at x = +∞ and re-ordering, we get:

dθ

dx
= a(v − vu) − V (θ − θu) + qη, (4.8)

dY

dx
= Leθ

(
1

θ
(v − φV )Y − 1

θu
(vu − φV )Y u − µV η

)
, (4.9)

1

θ
(v − φV ) − 1

θu
(vu − φV ) + µgV η = 0, (4.10)
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V
dη

dx
= −	. (4.11)

Next, we substitute the value of v given by equation (4.10) into (4.8) and (4.9),

and substitute the value of 	 given by Eq. (2.11) into (4.11) to obtain the reduced

system:

dθ

dx
= a

(
vuθ

θu
−
((

θ

θu
− 1

)
φ + µgηθ

)
V − vu

)
− V (θ − θu − qη), (4.12)

dY

dx
= Leθ

((
vu

θu
−
(

φ

θu
+ µgη

)
V

)
Y − µV η − 1

θu

(
vu − φV

)
Y u

)
, (4.13)

dη

dx
= − α

V
Y (1 − η)e−γ /θ . (4.14)

We warn the reader that the temperature-dependent exponential on the right hand

side of equation (4.14) will be modified when the temperature-controlled case

given by the boundary condition (4.7) is studied.

The existence of solutions of system (4.12)– (4.14) for the boundary conditions

(4.5) and (4.6), or (4.7), connecting the burned state U b ≡ (θb, Y b, ηb; vb) at

x → −∞ to the unburned state U u ≡ (θu, Y u, ηu; vu) and x → +∞ is studied

in a separate work, [9, 10]. Such solution represents the profile of a traveling

wave connecting the burned state to the unburned state. For large times, this

traveling wave is regarded as a thin combustion shock, [11, 15]. The Rankine-

Hugoniot condition relating the burned and unburned states is studied in the next

subsection.

4.1 The Rankine-Hugoniot equations for the combustion wave

For the boundary conditions given in (4.5) at −∞ and in (4.6), or (4.7), at +∞,

taking into account that ∂θ/∂x , ∂Y/∂x and ∂η/∂x tend to zero as x tends to

±∞, the R.H.S. of equations (4.12)– (4.13) become:

a

(
vuθb

θu
−
((

θb

θu
− 1

)
φ + µgθ

b

)
V − vu

)
− V (θb − θu − q) = 0 , (4.15)

Leθ
b

(
vu

θu
−
(

φ

θu
+ µ + µg

)
V − 1

θu
(vu − φV )Y u

)
= 0 , (4.16)
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and Eq. (4.14) becomes a trivial identity. Taking x → −∞ in Eq. (4.10) we

obtain a separate equation for vb:

vb − φV =
(

1

θu
(vu − φV ) − µgV

)
θb. (4.17)

The solutions of the Rankine-Hugoniot equations (4.15)– (4.17) together with

the equation 	 = 0 determine all pairs of left and right states that are equilibria

of system (4.12)– (4.14), i.e., that have the potential of representing burned and

unburned states associated to a combustion wave.

4.2 Geometric analysis of the Rankine-Hugoniot equations

Since λY is the particle speed of gas it is convenient to introduce the scaled

combustion wave speed V u(V, vu) ≡ V/λY (U u) given by:

V u = φV

vu
. (4.18)

Here the superscript u in V u reminds the reader that V was scaled by vu . Equa-

tions (4.15) and (4.16) give θb and Y u in terms of V , vu and θu , or in terms of

V u and θu as follows:

θb = ((θu + q + aφ)V − avu) θu(
(1 + aµg)θu + aφ

)
V − avu

, or

θb = ((θu + q + aφ)V u − aφ) θu(
(1 + aµg)θu + aφ

)
V u − aφ

,

(4.19)

Y u = vu − (
φ + (µg + µ)θu

)
V

vu − φV
, or

Y u = φ − (
φ + (µg + µ)θu

)
V u

φ(1 − V u)
.

(4.20)

For a fixed value of θu , Eq. (4.19b) represents θb in terms of V u as a hyperbola

drawn schematically in Fig. 4.1, constructed for parameter values given in Ap-

pendix A. The hyperbola has vertical and horizontal asymptotes respectively at:

V u
d = aφ

(1 + aµg)θu + aφ
, θb

a = (θu + q + aφ)θu

(1 + aµg)θu + aφ
. (4.21)
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d

θ

θ

a

n

pθ

p

θM

θ

M

u

b

b
b

V
u V

u

V
uV u V

u

Figure 4.1 – θb as a function of V u given by (4.19b).

The intersections of this hyperbola with the horizontal and vertical coordinate

axes occur at:

θb = θu, and V u
n = aφ

θu + q + aφ
. (4.22)

Since aµg < q notice that Eqs. (4.21) and (4.22) lead to θb
a > θu and V u

n <

V u
d < 1, respectively.

Remark 4.1. The constants V u
p and θb

p = θb(V u
p ) in Fig. 4.2 are related to

Eq. (4.20b) and will be explained in the text. The constant θM is defined by

Eq. (5.1) and V u
M = V u(θM) is obtained from (4.27).

Now let us consider Eq. (4.20b) for a fixed value of θu . This equation represents

Y u in terms of V u as another hyperbola, which is drawn schematically in Fig. 4.2.

This hyperbola has vertical asymptote V u = 1 and horizontal asymptote at

Y u
a = φ + θu(µ + µg)/φ, which has no physical meaning; see the horizontal

dashed line in Fig. 4.2.
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1

Y

Ya

1

p

d

Y
d

Y

n

Y
n

M

M

u

u

u

u

u

V
uV

u V
u

V
u

V
u

Figure 4.2 – Y u as a function of V u given by (4.20b).

The intersections of this hyperbola with the horizontal and vertical coordinate

axes occur at:

V u
p = φ

φ + (µ + µg)θu
and Y u = 1 . (4.23)

Knowing the value of V u
p we define the scaled temperature value:

θb
p = θb(V u

p ), where the expression of θb is defined in Eq. (4.19b). (4.24)

Notice that V u
p = 1/Y u

a < 1.

Remark 4.2. For the quantities in Fig. 4.1 and 4.2, corresponding to the pa-

rameters in Table 1, the inequalities 0 < V u
n < V u

d < V u
M < V u

p < 1 hold.

We have expressed θb and Y u in terms of V u . Now, let us also express θb in

terms of the scaled combustion speed:

V b ≡ V/λY (U b) = φV /vb ; (4.25)
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here the superscript b in V b reminds the reader that V was scaled by vb.

Using Eq. (4.17) we obtain:

vu = 1

θb

(
θuvb + (

(θb − θu)φ + µgθ
uθb
)
V

)
. (4.26)

Alternatively, instead of obtaining an expression for θb as a function of V u and

θu as in (4.19b), Eq. (4.15) could be utilized to find V u as function of θb and θu :

V u = aφ(θu − θb)

(θu)2 − (
(θb − q) − a(φ − µgθb)

)
θu − aφθb

. (4.27)

Similarly V b can be written in terms of θb:

V b = aφ(θb − θu)

(θb)2 − (
(θu + q) − a(φ + µgθu)

)
θb − aφθu

. (4.28)

θ2 θ

1

θp

p

θ1 θMθ

M
b u b b0 b

V
b

V
b

V
b

Figure 4.3 – V b
(
θb
)

defined by equation (4.28).

Fig. 4.3 shows schematically V b(θb). The denominator in Eq. (4.28) is

quadratic in θb and vanishes at the two real roots θb
1 and θb

2 , with θb
1 < 0 and

θb
2 > θu . Thus the graph of Eq. (4.28) possesses vertical asymptotes given by
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θb = θb
1 and θb = θb

2 . The graph possesses also a horizontal asymptote given

by V b = 0.

We recall that we are interested in forward combustion, so we restrict our

attention to the case V > 0. From Eqs. (4.18) and (4.25) it follows that V u > 0

and V b > 0. Thus, only the portions in the first quadrant of the graphs in

Figs. 4.1, 4.2 and 4.3 are considered.

We conclude that the geometric analysis performed in this section yields the

following restrictions relating burned and unburned states:

0 < V u < V u
n , or V u

d < V u ≤ V u
p , (4.29)

0 ≤ θb < θu , or θb ≥ θb
p > θu , (4.30)

0 <V b < 1 , (4.31)

where V u , V u
d , V u

n , V u
p , θb

p and V b are defined by equations in (4.18), (4.21),

(4.22), (4.23), (4.24) and (4.25), respectively.

5 Wave resonances

We can expect that changes of wave structure in the combustion Riemann pro-

blem occur whenever two wave speeds coincide, either in the burned or in the

unburned regions. In this way we could have an interchange of the relative

position of two waves. For the parameter values in Table 1 such changes are

ruled out for physically interesting temperature range by the following theorem

about absence of resonances:

Theorem 5.1. Let θM be defined by

θM = q

aµg
. (5.1)

Then in the physical domain defined by Eq. (2.12):

(a) the non-combustion waves have distinct speeds;

(b) the combustion, the immobile and the gas composition waves have distinct

speeds;
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(c) consider a combustion wave following a thermal wave, i.e., V < λθ(U u).

In the limit as they tend to have equal speed, the temperature at the left of

the superposed waves is θb = θM .

(d) consider a thermal wave following a combustion wave, i.e., λθ(U b) < V .

In the limit as they tend to have equal speed, the temperature at the right

of the superposed waves is θu = θM.

Proof.

(a) From equations (3.5)– (3.7) we obtain explicitly that

λη < λθ < λY everywhere, (5.2)

which means that there are no speed equalities among non-combustion

waves.

(b) Since we are considering forward combustion there is no resonance bet-

ween the combustion and the immobile wave.

From Eqs. (4.29) and (4.31), we have that 0 < V u < 1 and 0 < V b < 1,

respectively. Since V u = V/λY (U u) and V b = V/λY (U b), it follows

respectively that

V < λY (U u) and V < λY (U b) . (5.3)

(c) From Eqs. (3.6), (4.18) and (4.27), the combustion wave following a ther-

mal wave tend to have the same speed if, and only if, V u = a φ/ (θu + aφ),

or

(θu − θb)

(θu)2 − (
(θb − q) − a(φ − µgθb)

)
θu − aφθb

= 1

θu + aφ
, or

θu(aµgθ
b − q) = 0 or θb = θM .

(5.4)

(d) The proof is analogous to that of (c), using Eqs. (4.25), (4.28) instead of

Eqs. (4.18), (4.27). This conclude the proof of Theorem 5.1.
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Direct calculations with the value of the parameters in Table 1 yield θM ≈
24.21264641. This corresponds to an extremely large temperature value above

6000 K that is beyond physical interest in our case; even at temperatures lower

than 6000 K we may expect that heat losses to the surrounding reservoir can-

not be neglected. This value θM defines a maximum temperature value, below

which there are no speed coincidences. Thus we focus our attention to the tem-

perature range 0 < θ � θM .

So one conclusion of this section is that for physical values of temperature

there are no resonances between waves in this model.

Remark 5.2. The case where the thermal wave speed coincides with the com-

bustion wave speed yields high temperatures and therefore maximal combustion

efficiency. It is called superadiabatic combustion, which is desirable in other

practical applications. The structure of such a combustion wave was analyzed

in [4].

Since V u and V b are both positive, by analyzing the first denominator in

Eq. (5.4) one can see that the sign of (θb − θu) determines if V < λθ or V > λθ .

Thus, our final conclusion in this section is that the following two temperature

relationships for the combustion front are possible:

(A) Hot upstream (left)

θb > θu > 0, for V > λθ(U b) and V > λθ(U u) ; (5.5)

(B) Hot downstream (right)

0 < θb < θu, for V < λθ(U b) and V < λθ(U u) . (5.6)

6 The admissible Rankine-Hugoniot locus for the combustion wave

Cases (A) and (B) in (5.5) and (5.6) yield distinct possibilities for the ranges

of θb, V b, V u and Y u corresponding to distinct portions of the branches in

Figs. 4.1, 4.2 and 4.3. Such ranges are called the admissible states for combustion

waves. In the next two subsections we will obtain the admissible ranges, which

are fully characterized by the value of V u: the first one is V u
M < V u ≤ V u

p and

the second one is 0 < V u ≤ V u
n .
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6.1 Hot upstream

Since θb > θu (see Fig. 4.1) it follows that V u > V u
d . As 0 ≤ Y b ≤ 1 (see

Fig. 4.2) it follows that V u ≤ V u
p .

Let us define

V u
M = V u(θM) , (6.1)

represented in Fig. 4.1 and obtained from Eq. (4.27), where θM is the maximum

value for the nondimensionalized temperature θ defined in (5.1). Let us also

define

V b
M = V b(θM) , and V b

p = V b(θb
p) , (6.2)

represented in Fig. 4.3, where the expression V b is defined in Eq. (4.28). Finally,

let Y u
M in Fig. 4.2 be defined as

Y u
M = Y u(V u

M), where the expression for Y u is defined in Eq. (4.20b). (6.3)

By comparing the graphs in Figs. 4.1, 4.2 and 4.3, and taking into account the

inequalities obtained through the previous sections we arrive at the following

Lemma, which characterizes the admissible Hugoniot locus for hot upstream

combustion waves:

Lemma 6.1. Let θu be a fixed value of the scaled temperature in the range

0 < θu < θM. Then the inequalities

V u
M < V u ≤ V u

p ,

(see Figs. 4.1, 4.2 and definitions in (6.1), (4.18), (4.23)),
(6.4)

hold if, and only if all of the following inequalities hold:

θb
p ≤ θb < θM , (see Figs. 4.1, 4.3 and definitions in (4.24), (5.1)); (6.5)

0 ≤ Y u < Y u
M , (see Fig. 4.2 and definition in (6.3)); (6.6)

V b
M < V b ≤ V b

p , (see Fig. 4.3 and definitions in (6.2) and (4.25)). (6.7)

We notice that condition (6.5) implies that θb > θu (see Figs. 4.1 and 4.3).
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6.2 Hot downstream

Since 0 < θb < θu we see that 0 < V u ≤ V u
n , where V u

n was defined in (4.22).

See Fig. 4.1. Let Y u
n in Fig. 4.2 be defined as

Y u
n = Y u(V u

n ) , (6.8)

where the function Y u is defined by Eq. (4.20b).

As 0 < V u ≤ V u
n and 0 ≤ θb < θu it follows that Y u

n ≤ Y u < 1 and

0 < V b ≤ 1. See Figs. 4.2 and 4.3, respectively.

As in the previous case, by comparing the graphs in Figs. 4.1, 4.2 and 4.3, and

taking into account the inequalities obtained throughout the previous sections

we arrive at the following Lemma, which characterizes the admissible Hugoniot

locus for hot downstream combustion waves:

Lemma 6.2. Let θu be a fixed value of the scaled temperature in the range

0 < θu < θM. Then the inequalities

0 < V u ≤ V u
n ,

(see Figs. 4.1, 4.2 and definitions in (4.18) and (4.22)),
(6.9)

hold if, and only if all of the following inequalities hold:

0 < θb < θu , (see Figs. 4.1, 4.3), (6.10)

Y u
n ≤ Y u < 1 , (see Fig. 4.2 and definition in (6.8)), (6.11)

0 < V b < 1 , (see Fig. 4.3 and definition in (4.25)). (6.12)

7 Wave sequences in the Riemann solutions

We have completed in Section 5 the proof that there is no wave speed coinci-

dence in our combustion problem for temperatures of physical interest. We have

also determined in Section 6 the admissible ranges of the left and right states

of the combustion wave along the Hugoniot locus for the hot upstream and the

hot downstream combustion cases given in (6.4)– (6.7) and (6.9)– (6.12), respec-

tively. We will show in Section 7.2 that the hot downstream combustion case

is unacceptable for this model. In the hot upstream combustion case we will
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describe the wave sequence in the Riemann solution under the conditions (4.6)

and (4.7) surrounding the combustion front, where the waves satisfy an extension

of Lax speed inequalities.

7.1 Hot upstream combustion case

In the hot upstream combustion case the thermal wave precedes the combustion

wave (λθ(U b) < V ), there is no temperature change ahead the combustion

wave, which means that θu = 1 (reservoir temperature) and θb > θu = 1. Thus,

generically the wave sequence in the Riemann solution consists of a (perhaps

trivial) immobile fuel shock, a thermal shock with speed λθ , a combustion front

with speed V and a gas composition wave with speed λY . We denote this se-

quence of waves by means of the following convention:

U i λη−→ U 1 λθ−→ U b V−→ U u λY−→ U 0 . (7.1)

The state U i = (θ i , 1, 0, vi ) denotes the injection conditions, U 1 = (θ i , 1, 1, vi )

denotes an intermediate state in the burned region, while U b = (θb, 1, 1, vb)

and U u = (1, Y u, 0, vu) are the burned and the unburned states surrounding

the combustion front and U 0 = (1, 0, 0, v0) denotes the reservoir conditions

at production. The values of θ i and vi are given as boundary conditions, the

values of θu and Y u are given by condition (4.6) or (4.7), but the speeds λθ , V ,

λY and the values of θb, vb, vu and v0 have to be determined.

7.1.1 The hot upstream combustion in the oxygen deficient case

As discussed above, we have that θu = 1 and according to the condition (4.6),

which characterizes the oxygen deficient case, Y u = 0. We have the following

theorem, which provides formulae for all the states as well as speeds for com-

bustion and noncombustion waves in the wave sequence (7.1) for the Riemann

solution in this case:

Theorem 7.1. Assume that in the wave sequence for the Riemann solution

of (2.6)–(2.11) there is a hot upstream combustion wave with left and right

states satisfying (4.5)–(4.6) and θb > θu = 1. Given the injection conditions
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U i = (θ i , 1, 0, vi ), with θ i > 0 and vi > 0, then the constant states and the

speeds of all waves in the wave sequence (7.1) are uniquely determined.

Proof. Inspecting Fig. 7.1 we see that the speeds and the intermediate states in

the wave sequence (7.1) are determined as follows.

Substituting Y u = 0 in Eq. (4.20b) it follows that V u = V u
p , where V u

p is given

in (4.23) with θu = 1 (see Figs. 4.1 and 4.2). From Eq. (3.6) and Eq. (4.19b)

with θu = 1 and V u = V u
p , it follows that:

λθ = avi

θ i + aφ
and θb = 1 + q − a(µ + µg)

1 − aµ
.

Taking into account that the thermal wave is a contact discontinuity and Eq. (4.28)

with θu = 1 it follows that:

vb = θb + aφ

θ i + aφ
vi and V b = aφ(θb − 1)

(θb)2 − (
1 + q − a(φ + µg)

)
θb − aφ

.

From Eq. (4.25) we obtain the combustion speed V ; then we obtain vu from

Eq. (4.18):

V = vbV b

φ
, vu = φV

V u
.

Since Y u = 0, the strength of the gas composition wave is zero, which explains

why this wave is discarded in the wave sequence (7.1) as represented in Fig 7.1.

Thus the proof of Theorem 7.1 is complete.

7.1.2 The hot upstream combustion in the temperature-controlled case

According to condition (4.7) we have θu = 1, but Y u have to be obtained.

First of all we notice that the condition (4.7) cannot be analyzed as (4.6) since

the unburned state U u is not an equilibrium of system (4.12)– (4.14), because

	 does not vanish. However the exponential factor in (2.5) is extremely small

at prevailing temperatures, so we use the following modified version of the

Arrhenius’ law, [27]:

W (T̃ ) = k0e−Eb/(R(T̃ −T̃0))Ỹ (1 − η) , for T̃ > T̃0, and

W (T̃ ) = 0 , for T̃ ≤ T̃0 ,
(7.2)
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Figure 7.1 – Regions separated by immobile, thermal wave and combustion waves in

the Riemann solution. Values of θ , Y , η and v in each region.

where Eb = E(T̃ b − T̃0)/T̃ b.

This modification on the denominator in the exponential factor ensures that

the reaction rate is equal to zero below the reservoir temperature T̃0, which is a

good approximation of the original formula in the Arrhenius’ law. The value of

Eb is chosen so that at the burned state above reservoir temperature the exponent

assumes the same values as in the original Arrhenius’ formula. Thus in the scaled

temperature variable the function 	 in (2.11) is replaced by the approximation

	 = αe
−γ (1−1/θb)

θ−1 Y (1 − η) , for θ > 1 and 	 = 0 for θ ≤ 1 .

With the above modified version of Arrhenius’ law, the unburned state U u

becomes an equilibrium of system (4.12)– (4.14) and the existence of traveling

wave solutions can be obtained, [9].

Now we notice that since θu = 1 the range for V u in Eq. (6.4) can be restricted

further to

V u
M ≤ V u ≤ V u

1 , where V u
1 = φ

φ + µ + µg
(7.3)

is obtained from Eq. (4.23) with θu = 1. Consequently we get

θb
1 ≤ θb ≤ θM , 0 ≤ Y u < Y u

M , V b
M ≤ V b ≤ V b

1 ,

where θb
1 = θb(V u

1 ) and V b
1 = V b(θb

1 ) are obtained from Eqs. (4.19a) and (4.28),

respectively.
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We can prove the following theorem in this case:

Theorem 7.2. Assume that in the wave sequence for the Riemann solution of

(2.6)-(2.11) there is a hot upstream combustion wave governed by version (7.2)

of Arrhenius’ law with left and right states satisfying conditions (4.5) and (4.7),

and θb > θu = 1. Given the injection conditions U i = (θ i , 1, 0, vi ), with

θ i > 0, vi > 0 and any positive value of the scaled combustion wave speed V u

in the interval [V u
M , V u

1 ] given in (7.3), then all the constant states and speeds

of all waves in the wave sequence (7.1) is uniquely determined.

Proof. Inspecting Fig. 7.2, we see that if the injection rate vi , the temperature

θ i and the value of V u are given, then the speeds λθ , V and λY as well as the

values of θb, vb, Y u , vu and v0 are determined as follows.

From Eq. (3.6) and Eq. (4.19) with θu = 1, we have:

λθ = avi

θ i + aφ
and θb = (1 + q + aφ)V u − aφ(

1 + aµg + aφ
)

V u − aφ
.

Taking into account that the thermal wave is a contact discontinuity and

Eq. (4.28) with θu = 1 it follows that:

vb = θb + aφ

θ i + aφ
vi and V b = aφ(θb − 1)

(θb)2 − (
(1 + q) − a(φ + µg)

)
θb − aφ

.

From Eq. (4.25) we obtain the combustion speed V ; then we obtain vu from

Eq. (4.18). From Eq. (4.20b) with θu = 1, we obtain Y u and from Eq. (3.7) with

v = vu , we obtain the value of λY :

V = vbV b

φ
, vu = φV

V u
, Y u = φ − (

φ + µg + µ
)

V u

φ(1 − V u)
, λY = vu

φ
.

Finally, since the gas composition wave is a contact discontinuity it follows

that v0 = vu , which provides a consistent solution of the system of conservation

laws in the hyperbolic framework under the conditions (4.5)– (4.7) for left and

right states to the combustion wave. This completes the proof of Theorem 7.2.
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Figure 7.2 – Regions separated by immobile, thermal, combustion and gas composition

waves in the Riemann solution. Values of θ , Y , η and v in each region. The latter region

is actually very thin.

Remark 7.3. We notice that, due to the fact that the combustion and the ther-

mal waves are very slow, it takes a long time for these waves to separate from

each other, while the gas composition wave (the extremely fast wave) separates

from the others immediately. This should explain why such phenomena have

not been detected in laboratory experiments, where transient rather than asymp-

totic behavior is detected.

Remark 7.4. As we have seen in Theorem 7.2, in this case the injection con-

ditions together with the initial data are not sufficient to determine the Riemann

solution uniquely, but they determine a family of Riemann solutions depending

on the parameter V u . This strange multiplicity of solutions for the Riemann

problem may to be related to the modification of the exponential factor (7.2) in

Arrhenius’ law.

Remark 7.5. There are two types of Riemann solutions for any given data

if we use the modified version of Arrhenius’ law: the regular solution for

oxygen-controlled combustion and the one-parameter family of solutions for

temperature-controlled combustion.
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7.2 Hot downstream combustion

Recall that in the hot downstream combustion case we have to restrict the pa-

rameters to the ranges defined by Eqs. (6.9)– (6.12). Since 0 < Y u
n < Y u < 1

the complete oxygen consumption case defined by Eq. (4.6) is impossible.

Remark 7.6. We conclude that this model does not support case (b) of Aldushin

et al. [4] that they call the reaction trailing structure.

In the temperature-controlled case defined by (4.7), under the standard Arrhe-

nius’ law (2.5) the state ahead the combustion front is not an equilibrium of the

system of ordinary differential equations (4.12)– (4.14). This fact can be verified

by a procedure analogous to that employed in Subsection 7.1.2. Thus the travel-

ing wave technique is not applicable. On the other hand, if we use version (7.2)

of Arrhenius’ law we must set θu = 1 and therefore we should have θb < 1 in

the downstream combustion case. Thus dη/dx is alway zero, i.e., there is no

fuel consumption near the unburned state U b and there is no connection between

the equilibria U b and U u .

8 Discussion

We have seen that the original formulation of the Arrhenius’ law allows us

to describe mathematically the combustion front as a traveling wave for hot

upstream combustion with complete oxygen consumption ahead the combustion

front. In this situation we have proved that the wave sequence in the Riemann

solution is uniquely determined by the injection conditions together with the

initial data.

For incomplete oxygen consumption, or temperature-controlled case, the

original formulation is inappropriate to characterize the combustion front as

a traveling wave, since the unburned state is not an equilibrium point of the

associated ordinary differential equation system. In such case, in order to apply

the traveling wave theory a change of the Arrhenius formula can be used so that

the unburned state becomes an equilibrium. As a consequence of this change

of the Arrhenius’ law, we lose uniqueness of Riemann solutions. Although the

wave sequence is similar to that for the complete oxygen consumption case, the
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intermediate constant states and the wave speeds form a family depending on

one parameter.

It is hard to establish the existence of traveling waves, which is assumed in

this work. Very often we are led to non hyperbolic equilibria of the associated

system of ordinary differential equations in high dimensional spaces. Even

in cases where the analysis can be done by the invariant manifold theory, we

establish the existence, but without explicit formulas, which would be very useful

[13, 17, 19]. Of course, an alternative approach to be used together the inva-

riant manifold theory is the singular perturbation theory, also called “ matched

asymptotic expansion”, in which explicit approximations of the traveling wave

solution can be obtained, [9, 12 14, 16, 24]. This is the subject of a separate

work, [10].
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Appendix A. Typical values, nomenclature and constants

In Eqs. (2.6)– (2.12), we introduced the following variables and parameters

x̂ = x̃

l∗
, t̂ = t̃

t∗ , θ = T̃

T̃0

, Y = Ỹ

Y i
,

p = p̃ − po

pinj − po
, ρ = ρg

ρi
g

, v = ṽ

vi
,

(A.1)

µ = µ̃ρo
f

ρi
gY i

, µpg = µ̃pgρ
o
f

ρi
gY i

, µg = µ̃gρ
o
f

ρi
g

,

a = cgρ
i
g

(1 − φ)csρs
, 	 = W t∗,

(A.2)
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q = Qρo
f

(1 − φ)csρs T̃0
, κ = ηgl∗vi

K (pinj − po)
, h = h̃t∗

(1 − φ)csρs T̃0 H
, (A.3)

αs = λ̃

(1 − φ)csρs
, Le = αs

DM
, γ = E

RT̃0
, α = koY i pot∗, (A.4)

where po corresponds to the initial gas pressure and is typically much larger than

the pressure drop across the system.

Physical quantity Symbol Value

Total heat content of the porous medium q 1.0121

dimensionless stoichiometric coefficients for oxygen µ 205.8

dimensionless stoichiometric coefficients for gaseous products µg 68.19

Lewis number (ratio of thermal and molecular diffusion) Le 0.214

Arrhenius number (dimensionless activation energy) γ 23.69

dimensionless reaction coefficient α 0.027

volumetric heat capacity ratio of the filtrating gas and matrix a 6.13E-4

porosity of the medium φ 0.3

Table 1 – Typical values of dimensionless parameters. Source: [1], [2].
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