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1 Introduction

The equation studied here is of the form

x (4) + ϕ(
..
x)
...
x + f (x,

.
x,

..
x)+ g(x,

.
x)+ h(x) = p(t, x,

.
x,

..
x,

...
x), (1.1)

where ϕ, f, g, h and p are continuous functions which depend only on the argu-

ments displayed. The dots indicate differentiation with respect to the independent

variable t and all solutions considered are assumed real. The derivatives,

∂

∂x
g(x,

.
x) ≡ gx(x,

.
x),

∂

∂
.
x

g(x,
.
x) ≡ g .

x(x,
.
x) and

dh

dx
≡ h′(x)

exist and are continuous. Moreover, the existence and the uniqueness of the

solutions of the equation (1.1) will be assumed.

Ever since Lyapunov [20] proposed his famous direct (or second) method on

the stability of motion, numerous methods have been proposed in the relevant
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2 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

literature to derive suitable Lyapunov functions and hereby, in particular, many

papers and books have been devoted to the study of stability and boundedness of

solutions of certain second-, third-, fourth-, fifth- and sixth order nonlinear dif-

ferential equations (see, for example, Anderson [1], Barbasin [3], Cartwright [4],

Chin ([5], [6]), Ezeilo ([8], [9]), Harrow ([10], [11]), Ku and Puri [13], Ku et

al. [14], Ku ([15], [16]), Krasovskii [17], Leighton [18], Li [19], Marinosson [21],

Miyagi and Taniguchi [22], Ogundare [23], Ponzo [24], Quian [25], Reissig et

al. [26], Schwartz and Yan [27], Shi-zong et al. [28], Sinha ([29], [30]), Skid-

more [31], Szegö [32], Tejumola ([33], [34]), Tiryaki and Tunç [35], Tunç ([36],

[37], [38], [39], [40], [41], [42], [43]), Zubov [44], Wu and Xiong [45] and ref-

erences quoted therein for some publications on these topics). So far, perhaps,

the most efficient tool for the study of the stability and boundedness of solutions

of a given nonlinear differential equation is provided by Lyapunov theory. This

theory is based on the use of positive definite functions that are non-increasing

along the solutions of differential equations under consideration. But, finding

an appropriate Lyapunov function is in general a difficult task. Despite having

derived Lyapunov functions for special cases of equation (1.1), Chin [6] remarks

that “ it is difficult to derive suitable Lyapunov functions for the differential equa-

tions of the fourth-order”. It also worth mentioning the following opinions of

some authors about the method: Iggidr and Sallet [12] express that “ The most

efficient tool for the study of the stability of a given non-linear system is pro-

vided by Lyapunov theory”. Further, in [25], Qian says that “ So far, the most

effective method to study the stability of nonlinear differential equations is still

the Lyapunov’s direct method”. For some related papers on the construction of

Lyapunov’s functions, one can refer to the works summarized by Chin [5] about

the subject and the references cited therein. In [6], Chin has tried to use a new

technique (the intrinsic method) proposed by himself to construct new Lyapunov

functions for the following fourth-order non linear differential equations

x (4) + a1
...
x + a2

..
x + a3

.
x + f (x) = 0, (1.2)

x (4) + a1
...
x + ψ(

.
x)

..
x + a3

.
x + a4x = 0, (1.3)

and

x (4) + a1
...
x + f (x,

.
x)

..
x + a3

.
x + a4x = 0 (1.4)
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CEMİL TUNÇ 3

so that they are far less restrictive than those presented in some literature. Later,

the authors in [35] based on the results in [6] have extended the method used in

[6] to construct new Lyapunov functions to investigate the stability of the zero

solution x = 0 of non-linear differential equations described by

x (4) + a1
...
x + f (x,

.
x)

..
x + a3

.
x + h(x) = 0

and

x (4) + a1
...
x + f (x,

.
x)

..
x + g(

.
x)+ a4x = 0.

But, in 1998, Wu and Xiong [45] proved that the Lyapunov functions constructed

by Chin [6] were the same as those obtained by Cartwright [4] and Ku [15],

and Chin’s results [6] were not true for the equations (1.2), (1.3), and (1.4) in

the general cases. The local asymptotic stability of zero solution of the equa-

tions (1.2), (1.3) and (1.4) has also been discussed by Wu and Xiong [45]. There-

fore, in this paper, the results obtained in [35] will be revised and improved,

and some additional results to be obtained for the non-linear differential equa-

tions of the form (1.1) will be given. Equation (1.1) can be written in the phase

variables form as

.
x = y,

.
y = z,

.
z = w,

.
w = −ϕ(z)w − f (x, y, z)− g(x, y)− h(x)+ p(t, x, y, z, w).

(1.5)

It should also be noted that the domain of attraction of the zero solution x = 0

of equation (1.1) (for p ≡ 0) in the following first result is not going to be

determined here.

2 Stability and boundedness results

Set

ϕ1(z) =




1

z

1∫
0

ϕ (ζ ) dζ, z �= 0

ϕ(0), z = 0

and g1(x, y) =




g(x, y)

y
, y �= 0

∂

∂y
g(x, 0), y = 0.

In the case p ≡ 0, we establish the following result.
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4 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

Theorem 1. Assume that

(i) h(0) = g(x, 0) = 0,

(ii) there are constants a > 0, b > 0, c > 0, d > 0, δ > 0 and ε > 0 such

that

abc − cgy(x, y)− adϕ(z) ≥ δ > 0 for all x, y and z

in which ε ≤ δ
2acD , D = ab + bc

d ,

(iii) 0 < d − h′(x) ≤
√
δεa
4 for all x and h(x)sgnx → +∞, as |x | → ∞,

(iv) 0 ≤ g1(x, y) − c < δ
8c

√
d

2ac for all x and y �= 0, and −
√
δεa
4 ≤

ygx(x, y) ≤ 0 for all x and y,

(v) 0 ≤ f (x,y,z)
z − b ≤ min

[
c

8d

√
δε
a ,

a
8

√
δε
c

]
for all x, y and z �= 0, and

y fx(x, y, z) ≤ 0 for all x, y and z

(vi) ϕ(z) ≥ a, ϕ1(z)− ϕ(z) < δ

2a2c
for all z.

Then the zero solution of system (1.5) is asymptotically stable.

Remark 1. Making the use of condition (ii) of Theorem 1, we can obtain

ϕ(z) <
bc

d
, gy(x, y) < ab.

Remark 2. If we take ϕ(
..
x) = a, f (x,

.
x,

..
x) = b

..
x, g(x,

.
x) = c

.
x, h(x) =

dx instead of equation (1.1), then equation (1.1) reduces to the linear constant

coefficient differential equation and conditions (i)– (vi) of Theorem 1 reduce to

the corresponding Routh-Hurwitz criterion.

Remark 3. Theorem 1 revises the first theorem in [35] and includes and im-

proves the results of Ezeilo ([8], [9]), Harrow [10], Tunç [42, Theorem 2.1] and

Wu and Xiong [45] except of the restriction on the function f , that is

0 ≤ f (x, y, z)

z
− b ≤ min

[
c

8d

√
δε

a
,

a

8

√
δε

c

]
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Throughout our main results, we use as a basic tool the scalar Lyapunov func-

tion V = V (x, y, z, w) defined by:

2V = 2β

x∫
0

h(ξ)dξ + βby2 − αdy2 + 2

y∫
0

g(x, η)dη + αbz2

+2

z∫
0

ϕ(ζ )ζdζ − βz2 + αw2 + 2h(x)y + 2αh(x)z

+2αg(x, y)z + 2βy

z∫
0

ϕ(ζ )dζ + 2βyw + 2zw,

(2.1)

where

α = ε + 1

a
, β = ε + d

c
. (2.2)

The following lemmas will be needed in the proof of Theorem 1 and forth-

coming results.

Lemma 1. Assume that all the conditions of Theorem 1 be satisfied. Then

there are positive constants Di ≡ Di (a, b, c, d, ε, δ), (i = 1, 2, 3, 4) such that

V ≥ D1

x∫
0

h(ξ)dξ + D2 y2 + D3z2 + D4w
2

for all x, y, z and w.

Proof. Since g(x,y)
y ≥ c, it follows that

2

y∫
0

g(x, η)dη = 2

y∫
0

g(x, η)

η
ηdη ≥ cy2 .

Therefore, the Lyapunov function 2V in (2.1) can be rearranged as:

2V = 1

c
[h(x)+ cy + αcz]2 + 1

ϕ1(z)
[w + ϕ1(z)z + βϕ1(z)y]2

+
[
α − 1

ϕ1(z)

]
w2 + [

αb − β − α2c
]

z2 + [
βb − αd − β2ϕ1(z)

]
y2
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6 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

+ 2α [g1(x, y)− c] yz + 2β

x∫
0

h(ξ)dξ −
(

1

c

)
h2(x)

+

2

z∫
0

ϕ(ζ )ζdζ − ϕ1(z)z
2


 .

In view of the assumptions of Theorem 1, the values of α, β in (2.2) and

the mean value theorems (both for the derivative and integral) it can easily be

concluded that

2V ≥ ε

x∫
0

h(ξ)dξ +
(
δd

2ac2

)
y2 +

(
δ

4a2c

)
z2 + εw2.

This completes the proof of Lemma 1.

Lemma 2. Assume that all the conditions of Theorem 1 be satisfied. Then there

exist positive constants Di ≡ Di (a, b, c, ε, δ) (i = 5, 6, 7) such that whenever

(x(t), y(t), z(t), w(t)) is any solution of system (1.5), then

.

V ≡ d

dt
V (x, y, z, w) ≤ −(D5y2 + D6z2 + D7w

2). (2.3)

Proof. Along any solution (x, y, z, w) of system (1.5) it follows from (2.1)

and (1.5) that

.

V = −
[

f (x, y, z)

z
− α

∂

∂y
g(x, y)− βϕ1(z)

]
z2 − [αϕ(z)− 1]w2

− [
βg1(x, y)− h′(x)

]
y2 − β

[
f (x, y, z)

z
− b

]
yz + αgx(x, y)yz

− α

[
f (x, y, z)

z
− b

]
zw − α

[
d − h′(x)

]
yz + y

y∫
0

gx(x, η)dη.

Subject to conditions (ii)– (vi) of Theorem 1 and (2.2) we have that

.

V ≤ −
(εc

4

)
y2 −

(
δ

16ac

)
z2 −

(
3εa

4

)
w2 − W6 − W7 − W8 − W9, (2.4)
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CEMİL TUNÇ 7

where

W6 =
(εa

4

)
w2 + α

[
f (x, y, z)

z
− b

]
zw +

(
δ

16ac

)
z2,

W7 =
(εc

4

)
y2 + β

[
f (x, y, z)

z
− b

]
yz +

(
δ

16ac

)
z2,

W8 =
(εc

4

)
y2 + α

[
d − h′(x)

]
yz +

(
δ

4ac

)
z2.

W9 =
(εc

4

)
y2 − αgx(x, y)yz +

(
δ

16ac

)
z2.

In view of the inequalities

α2

[
f (x, y, z)

z
− b

]2

<
4

a2

[
f (x, y, z)

z
− b

]2

<
δε

16c
,

β2

[
f (x, y, z)

z
− b

]2

<
4d2

c2

[
f (x, y, z)

z
− b

]2

<
δε

16a
,

α2
[
d − h′(x)

]2
<

4

a2

[
d − h′(x)

]2
<
δε

4a
,

α2 [ygx(x, y)]2 <
4

a2
[ygx(x, y)]2 <

δε

4a
,

respectively, and the assumptions of Theorem 1, we have that

W6 ≥
(εa

4

)
w2 −

(√
δε

4
√

c

)
|zw| +

(
δ

16ac

)
z2

=
[√

εa

2
|w| − 1

4

√
δ

ac
|z|
]2

≥ 0

(2.5)

W7 ≥
(εc

4

)
y2 −

(√
δε

4
√

a

)
|yz| +

(
δ

16ac

)
z2

≥
[√

εc

2
|y| − 1

4

√
δ

ac
|z|
]2

≥ 0,

(2.6)
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8 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

W8 ≥
(εc

4

)
y2 − 1

2

√
δε

a
|yz| +

(
δ

4ac

)
z2

=
[√

εc

2
|y| − 1

2

√
δ

ac
|z|
]2

≥ 0,

(2.7)

W9 ≥
(εc

4

)
y2 − 1

2

√
δε

a
|yz| +

(
δ

16ac

)
z2

=
[√

εc

2
|y| − 1

2

√
δ

ac
|z|
]2

≥ 0.

(2.8)

By collecting the estimates (2.5)– (2.8) into (2.4) we obtain

.

V ≤ −
(εc

4

)
y2 −

(
δ

16ac

)
z2 −

(
3εa

4

)
w2

which proves the lemma.

Proof of Theorem 1. Taking into consideration Lemma 1, Lemma 2 and con-

dition (iii) of Theorem 1, it follows that

V (x, y, z, w) = 0 if and if only x2 + y2 + z2 + w2 = 0,

V (x, y, z, w) > 0 if and if only x2 + y2 + z2 + w2 > 0,

V (x, y, z, w) → ∞ if and if only x2 + y2 + z2 + w2 → ∞.

Let γ denote a trajectory (x(t), y(t), z(t), w(t)) of the system (1.5) with

p(t, x, y, z, w) ≡ 0 such that t = 0, x = x0, y = y0, z = z0, w = w0, where

(x0, y0, z0, w0) is an arbitrary point in x, y, z, w-space from which motions may

originate. Then by Lemma 2 for t ≥ 0, it clear that

V (x, y, z, w) = V (x(t), y(t), z(t), w(t)) = V (t) ≤ V (0).

Moreover, V (t) is non-negative and non-increasing and therefore tends to a

nonnegative limit, V (∞) say, as t → ∞. Suppose V (∞) > 0. Consider the set

S {(x, y, z, w) | V (x, y, z, w) ≤ V (x0, y0, z0, w0)} .
Because of the properties of the function V in (2.1) we know that S is bounded,

and therefore the set γ ⊂ S is also bounded. Further, the nonempty set of all

Comp. Appl. Math., Vol. 26, N. 1, 2007



CEMİL TUNÇ 9

limit points of γ consists of whole trajectories of the system

.
x = y,

.
y = z,

.
z = w,

.
w = −ϕ(z)w − f (x, y, z)− g(x, y)− h(x)

lying on the surface V (x, y, z, w) = V (∞). Thus if P is a limit point of γ , then

there exists a half-trajectory, say γP of the above system, issuing from P and

lying on the surface V (x, y, z, w) = V (∞). Since for every point (x, y, z, w)

on γP we have V (x, y, z, w) ≥ V (∞), this implies that
.

V = 0 on γP . Also, in

view of the inequality obtained in Lemma 2, that is

.

V ≤ −
(εc

4

)
y2 −

(
δ

16ac

)
z2 −

(
3εa

4

)
w2,

.

V = 0 implies y = z = w = 0; and by the above system, assumptions (i),

(iii) of Theorem 1 this means that x = 0. Thus, the point (0, 0, 0, 0) lies on the

surface V (x, y, z, w) = V (∞) and hence V (∞) = 0.

This completes the proof of Theorem 1.

In the case p �= 0 we have the following result.

Theorem 2. Assume that

(i) g(x, 0) = 0,

(ii) conditions (ii)– (vi) of Theorem 1 hold,

(iii) |p(t, x, y, z, w)| ≤ (A+|y|+|z|+|w|)q(t),where q(t) is a non-negative

and continuous function of t , and satisfies

t∫
0

q(s)ds ≤ B < ∞ for all t ≥ 0,

A and B are positive constants. Then for any given finite constants

x0, y0, z0 and w0, there exists a constant K = K (x0, y0, z0, w0), such

that any solution (x(t), y(t), z(t), w(t)) of system (1.5) satisfying the ini-

tial condition

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0

Comp. Appl. Math., Vol. 26, N. 1, 2007



10 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

satisfies for all t ≥ 0,

|x(t)| ≤ K , |y(t)| ≤ K , |z(t)| ≤ K , |w(t)| ≤ K .

Remark 4. Theorem 2 revises and improves the second result obtained in

[35], and generalizes the results of Ezeilo [8], Harrow [11] and Tunç [42, Theo-

rem 2.7].

Proof of Theorem 2. The proof of this theorem is based essentially on the

method devised by Antosiewicz [2]. Now, let (x(t), y(t), z(t), w(t)) be an arbi-

trary solution of the system (1.5) satisfying the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0

given in Theorem 2. Next, consider the Lyapunov function V (t) = V (x(t), y(t),

z(t), w(t)), where V is defined by (2.1). Because of h(0) is not necessarily zero

now; we have only the following estimate in the proof of theorem

V ≥ D1

x∫
0

h(ξ)dξ + D2 y2 + D3z2 + D4w
2 −

(
1

c

)
h2(0) (2.9)

and since p �= 0, the conclusion of Lemma 2 can be revised as follows
.

V ≤ − (
D5y2 + D6z2 + D7w

2
)+ (αw + z + βy)p(t, x, y, z, w).

Let D8 = max(α, 1, β). Then, we have
.

V ≤ −D8 (|y| + |z| + |w|) (A + |y| + |z| + |w|) q(t).

Making the use of the inequalities

|w| ≤ 1 + w2 and |2yz| ≤ y2 + z2

we obtain
.

V ≤ D9
[
3 + 4

(
y2 + z2 + w2

)]
q(t), (2.10)

where D9 = D8(A + 1). It follows from (2.9) that

V ≥ D10
(
y2 + z2 + w2

)
q(t)− D0, (2.11)

Comp. Appl. Math., Vol. 26, N. 1, 2007
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D10 = min(D2, D3, D4) and D0 = (
1
c

)
h2(0). Now, combining expressions

(2.10) and (2.11) we get

.

V ≤ D11q(t)+ D12V q(t) (2.12)

where D11 = D9

(
3 + 4D0

D10

)
, D12 = 4D9

D10
. Integrating expression (2.12) between

0 to t , we obtain

V (t)− V (0) ≤ D11

t∫
0

q(s)ds + D12

t∫
0

V (s)q(s)ds.

Setting D13 = D11 B + V (0), and using condition (iii) of Theorem 2 we have

V (t) ≤ D13 + D12

t∫
0

V (s)q(s)ds.

Hence, Gronwall-Bellman inequality yields

V (t) ≤ D13 exp


D12

t∫
0

q(s)ds


 .

The proof of Theorem 2 is now complete.

If p is a bounded function, then the constant K above can be fixed independent

of x0, y0, z0 and w0, as will be seen from our next result.

Theorem 3. Assume that g(x, 0) = 0 and conditions (ii)– (vi) of Theorem 1

hold, and that p(t, x, y, z, w) satisfies

|p(t, x, y, z, w)| ≤ � < ∞

for all values of t, x, y, z and w, where � is a positive constant. Then there

exists a constant K1 whose magnitude depends a, b, c, d, δ, ε as well as on

the functions ϕ, f, g and h such that every solution (x(t), y(t), z(t), w(t)) of

system (1.5) ultimately satisfies

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |w(t)| ≤ K1.

Comp. Appl. Math., Vol. 26, N. 1, 2007



12 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

Remark 5. Note that in [34], Tejumola extended the boundedness results

given in [33] to a special case of equation (1.1). Theorem 3 is also another exten-

sion of [33]. Theorem 3 extends the results of Tunç [42, Theorem 2.9] and im-

proves the results of Wu and Xiong [45] except of the restriction on the function f ,

that is,

0 ≤ f (x, y, z)

z
− b ≤ min

[
c

8d

√
δε

a
,

a

8

√
δε

c

]
.

Now, the actual proof of Theorem 3 will rest mainly on certain properties of

a piecewise continuously differentiable function V1 = V1(x, y, z, w) defined by

V1 = V +V0, where V is the function given by (2.1) and V0 is defined as follows:

V0(x, w) =
{

xsgnw, |w| ≥ |x |
wsgnx, |w| ≤ |x | . (2.13)

The first property of V1 is stated in the following.

Lemma 3. Subject to the conditions of Theorem 3, there is a constant D14

such that

V1(x, y, z, w) ≥ −D14 for all x, y, z, w (2.14)

and

V1(x, y, z, w) → +∞ as x2 + y2 + z2 + w2 → +∞. (2.15)

Proof. From (2.13) we have |V0(x, w)| ≤ |w| for all x and w. Hence

V0(x, w) ≥ − |w| for all x and w.

By combining the estimates obtained for V and V0 we get the estimate for V1

V1 ≥ D1

x∫
0

h(ξ)dξ + D2 y2 + D3z2 + D4w
2 − 2 |w|

= D1

x∫
0

h(ξ)dξ + D2 y2 + D3z2 + D4(|w| − D−1
4 )2 − D−1

4 .

By using condition (iii) of Theorem 1 we deduce that the integral on the right-

hand here is non-negative and tends to infinity when x do so. It is evident that

Comp. Appl. Math., Vol. 26, N. 1, 2007
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(2.14) and (2.15) are verified, where D14 = D−1
4 which completes the proof of

Lemma 3.

The next property of the function V1 is connected with its total time derivative

and is contained in the following lemma.

Lemma 4. Let (x, y, z, w) be any solution of the differential system (1.5)

and the function v1 = v1(t) be defined by v1(t) = V1(x(t), y(t), z(t), w(t)).

Then the limit
.
v

+
1 (t) = lim sup

h→0+

v1(t + h)− v1(t)

h

exists and there is a constant D15 such that

.
v

+
1 (t) ≤ −1 provided x2(t)+ y2(t)+ z2(t)+ w2(t) ≥ D15.

Proof. In accordance with the representation V1 = V +V0 we have a represen-

tation v1 = v+v0.The existence of
.
v

+
1 is quite immediate, since v has continuous

first partial derivatives and v0 is easily shown to be locally Lipschitizian in x and

w so that the composite function v1 = v+ v0 is at the least locally Lipschitizian

in x, y, z and w. Taking into consideration to the assumptions of Theorem 3 an

easy calculation from (2.13) and (1.5) shows that

.
v

+
0 =




ysgnw, if |w| ≥ |x |
−h(x)sgnx − [

ϕ(z)w + f (x, y, z)+ g(x, y)

−p(t, x, y, z, w)
]
sgnx, if |w| ≤ |x |

≤
{

ysgnw, if |w| ≥ |x |
−h(x)sgnx + D16

[ |w| + |z| + |y| + 1
]
, if |w| ≤ |x | ,

where

D16 = max

{
bc

d
, b + c

8d

√
δε

a
, b + a

8

√
δε

c
, c + δ

8c

√
d

2ac
, �

}
.

By noting the estimates obtained for
.
v and

.
v

+
0 , we see that

.
v

+
1 = .

v + .
v

+
0 ≤ −

(εc
4

)
y2 −

(
δ

16ac

)
z2 −

(
3εa

4

)
w2

+ D17 (|y| + |z| + |w|) , if |w| ≥ |x |
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or

.
v

+
1 = .

v + .
v

+
0 ≤ −

(εc
4

)
y2 −

(
δ

16ac

)
z2 −

(
3εa

4

)
w2 − h(x)sgnx

+ D18 (1 + |y| + |z| + |w|) , if |w| ≤ |x | .

Then by an argument similar to that in the proof of the theorem in Ezeilo [8],

one may show that the inequality in Lemma 4 can be easily obtained. Hence the

details of the proof are omitted. The proof of this lemma is now complete.

Proof of Theorem 3. Throughout Lemma 3 and Lemma 4, we have proved

that the function V1 = V + V0 has the following properties:

V1(x, y, z, w) ≥ −D14 for all x, y, z, w,

V1(x, y, z, w) → ∞ as x2 + y2 + z2 + w2 → +∞,

and
.

V
+
1 ≤ −1 provided x2 + y2 + z2 + w2 ≥ D15.

Applying the usual Yoshizawa-type argument, Theorem 1 in Chukwu [7], to the

above expressions we can conclude for any solution (x(t), y(t), z(t), w(t)) of

the system (1.5) that

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |w(t)| ≤ K1

for sufficiently large t .

Thus the proof of Theorem 3 is complete.
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