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1 Introduction

The equation studied hereis of the form

x4 o)X + flx,x, %) +gx, x) +h(x) = p(t, x, x,%,%), (L)
where ¢, f, g, h and p are continuous functions which depend only on the argu-
mentsdisplayed. Thedotsindicatedifferentiationwithrespect totheindependent
variable ¢ and all solutions considered are assumed real. The derivatives,

d . N _ . dh
a—g(x,X) =g.(x,x), —glx,x)=g;(x,x) and — =h'(x)
X 0x dx

exist and are continuous. Moreover, the existence and the uniqueness of the
solutions of the equation (1.1) will be assumed.

Ever since Lyapunov [20] proposed his famous direct (or second) method on
the stability of motion, numerous methods have been proposed in the relevant
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2 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

literature to derive suitable Lyapunov functions and hereby, in particular, many
papers and books have been devoted to the study of stability and boundedness of
solutions of certain second-, third-, fourth-, fifth- and sixth order nonlinear dif-
ferential equations(see, for example, Anderson[1], Barbasin[3], Cartwright [4],
Chin ([9], [6]), Ezeilo ([8], [9]), Harrow ([10], [11]), Ku and Puri [13], Ku et
a.[14],Ku([15],[16]), Krasovskii[17], Leighton[18], Li [19], Marinosson [21],
Miyagi and Taniguchi [22], Ogundare [23], Ponzo [24], Quian [25], Reissig et
al. [26], Schwartz and Yan [27], Shi-zong et a. [28], Sinha ([29], [30]), Skid-
more [31], Szeg6 [32], Tejumola ([33], [34]), Tiryaki and Tung [35], Tung ([36],
[37], [38], [39], [40], [41], [42], [43]), Zubov [44], Wu and Xiong [45] and ref-
erences quoted therein for some publications on these topics). So far, perhaps,
the most efficient tool for the study of the stability and boundedness of solutions
of agiven nonlinear differential equation is provided by Lyapunov theory. This
theory is based on the use of positive definite functions that are non-increasing
along the solutions of differential equations under consideration. But, finding
an appropriate Lyapunov function isin general a difficult task. Despite having
derived Lyapunov functionsfor special cases of equation (1.1), Chin[6] remarks
that “it isdifficult to derive suitable Lyapunov functionsfor the differential equa
tions of the fourth-order”. It also worth mentioning the following opinions of
some authors about the method: Iggidr and Sallet [12] express that “ The most
efficient tool for the study of the stability of a given non-linear system is pro-
vided by Lyapunov theory”. Further, in [25], Qian says that “ So far, the most
effective method to study the stability of nonlinear differential equationsis still
the Lyapunov’s direct method”. For some related papers on the construction of
Lyapunov’s functions, one can refer to the works summarized by Chin [5] about
the subject and the references cited therein. In [6], Chin has tried to use a new
technique (theintrinsic method) proposed by himself to construct new Lyapunov
functions for the following fourth-order non linear differential equations

x@ 4 a1X + aox 4+ azx + f(x) =0, (1.2)
x@ 4+ a1xX + Y (x)x + azx + agx =0, (1.3)

and
x® +arx¥ + f(x, X)X +azx +agx =0 (1.4)
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so that they are far less restrictive than those presented in some literature. Later,
the authors in [35] based on the resultsin [6] have extended the method used in
[6] to construct new Lyapunov functions to investigate the stability of the zero
solution x = 0 of non-linear differential equations described by

x@ +a1X + f(x, X)X +azx +h(x) =0

and
x4 ax 4+ f(x, X)X + g(x) + asx = 0.

But, in 1998, Wu and Xiong [45] proved that the Lyapunov functions constructed
by Chin [6] were the same as those obtained by Cartwright [4] and Ku [15],
and Chin’'s results [6] were not true for the equations (1.2), (1.3), and (1.4) in
the general cases. The local asymptotic stability of zero solution of the equa-
tions(1.2), (1.3) and (1.4) hasal so been discussed by Wu and Xiong [45]. There-
fore, in this paper, the results obtained in [35] will be revised and improved,
and some additional results to be obtained for the non-linear differential equa
tions of the form (1.1) will be given. Equation (1.1) can be written in the phase
variables form as

X=y,y=2,z2=w,

(1.5)
w=—-g@@w— f(x,y,2) —gx,y) —h(x) + p(t,x, y, z, w).

It should also be noted that the domain of attraction of the zero solution x = 0
of equation (1.1) (for p = 0) in the following first result is not going to be
determined here.

2 Stability and boundedness results

Set
; glx,y)
1 Ly #£0
—/w(i)dC,z;éo y
p1(z) =1 2 ; and  gi(x,y) = )
¢(0),z=0 @g(x, 0),y =0.

Inthe case p = 0, we establish the following resuilt.
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4 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

Theorem 1. Assume that

(i) n(0) = g(x,0) =0,

(i) there are constants a > 0,b > 0,¢ > 0,d > 0,8 > 0 and ¢ > 0 such
that
abc —cgy(x,y) —ade(z) =6 >0 forallx,yandz

bc
D=Clb+7,

. . s
in which & < 5cD

(iii) 0<d—h(x) < @ forall x and h(x)sgnx — 400, as |x| — oo,

(iv) 0 < ga(x,y) — ¢ < &,/ﬁ forall x and y # 0, and —*/‘STE <
vg:(x,y) <0 forall x and vy,

(v) 0 < f(x%y,z) —b < min[é\/g, %\/g] forall x,y and z # 0, and
vfe(x,y,2) <0 forall x,y and z

(Vi) ¢(z) = a,p1(z) — p(z) < ﬁ forall z.

Then the zero solution of system (1.5) is asymptotically stable.

Remark 1. Making the use of condition (ii) of Theorem 1, we can obtain

bc
(P(Z) < 35 gy(-xa y) < ab'
Remark 2. [If wetake ¢(x) = a, f(x,x,x) = bx,g(x,x) = cx,h(x) =
dx instead of equation (1.1), then equation (1.1) reduces to the linear constant
coefficient differential equation and conditions (i)—(vi) of Theorem 1 reduce to

the corresponding Routh-Hurwitz criterion.
Remark 3. Theorem 1 revises the first theorem in [35] and includes and im-

proves the results of Ezeilo ([8], [9]), Harrow [10], Tung [42, Theorem 2.1] and
Wu and Xiong [45] except of the restriction on the function f, that is

z 84V a’ 8Y ¢
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Throughout our main results, we use as abasic tool the scalar Lyapunov func-
tionV = V(x, y, z, w) defined by:

y

2V = 28 / h(€)dE + Bby? — ady® + 2/ g(x, n)dn + abz?
0

0
b4

+2 / 0(0)¢ds — B2 + aw? + 2h(x)y + 20h(x)z 2.1)

0
b4

+20g(x, y)z + 2By / 0(&)dt + 2B8yw + 2zw,
0

where 1 4
a=¢+—-,B=¢+—. (2.2
a C

The following lemmas will be needed in the proof of Theorem 1 and forth-
coming results.

Lemma 1. Assume that all the conditions of Theorem 1 be satisfied. Then
there are positive constants D; = D;(a, b, ¢, d, ¢, 8), (i = 1, 2, 3, 4) such that

X

V=D / h(E)dE + Day? + Daz? + Daw?
0

foral x, y, zand w.

Proof. Sinceg("Tj” > ¢, it follows that

y y

(x,n)
Z/g(x,n)dn=2/g nn ndn > cy®.
0 0

Therefore, the Lyapunov function 2V in (2.1) can be rearranged as.

2V = 1 [h(x) + cy + acz]® + L [w + ¢1(2)z + Ber(2)y]
c ¢1(2)

et s
$1(2)
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6 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

r 1
+ 20 [g1(x,y) —c] yz + 2B / h(g)dg — (;) h?(x)
0

+{2f¢@Md§m&kﬂ-

0

In view of the assumptions of Theorem 1, the values of «, 8 in (2.2) and
the mean value theorems (both for the derivative and integral) it can easily be
concluded that

2V > th(s)ngr 0 N2 (0 ) 24 e
& b —_— EW".
- 2ac? Y 4a?c .
0

This completes the proof of Lemma 1.

Lemma2. Assumethat all theconditionsof Theorem 1 besatisfied. Thenthere
exist positive constants D; = D;(a, b, c, €, 8) (i = 5, 6, 7) such that whenever
(x(@), y(@), z(¢), w(t)) isany solution of system (1.5), then

d
V(x,y,z,w) < —(Dsy? + Dez? + D7w?). (2.3)

V=—
dt

Proof. Along any solution (x, y, z, w) of system (1.5) it follows from (2.1)
and (1.5) that

’ Y d
V = — [M—(X@g(x,y)—ﬂwl(z)} Zz—[ago(z)_]_]wZ

vz +ag(x,y)yz

— [Bortr ) = @)]y* - B [w - b]

— [M —b:| w — o [d —h’(x)]yz—i—y/gx(X, n)dn.

Z

Subject to conditions (ii)—(vi) of Theorem 1 and (2.2) we have that

7 (52 (Y 2 (250 w2 we — W — e —
V< (4)y (16ac>z (4)w Ws— Wr— W — Wo, (2.4)
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where

ea
4

>zuz+wx[lli4zjg b]zu}+—( ) )Za
S,y

>y2+ﬁ[ ] +(5000)

)yz—i—a[d h(x) ( )zz

Wy = (Sc)y —ag.(x, Vyz+ | 7 ) 22
4 16ac

~8

<
e
<

» R

In view of the inequalities

az[f(x,y,@ _b]2< _[f(x y:2) b]2< e

Z a? z 16¢’
2 2 2
2 f(xd’,Z)_ ﬂ f(x,)’,Z)_ 8_8
8 [—Z b] - [_Z b| <2
2 , 2 4 , 2 d¢
a?[d —h'(x)] <;[a’—h(x)] <1

4 Se
2 2 2
a[yg(x, »]° < ;[ygx(x,y)] <

respectively, and the assumptions of Theorem 1, we have that

We > (%a) w? — (4£j§) lzw| + (ﬁ) z2

e (2.5)
ea 1/6
= [T'w'_Z\/;'Z'} =0
EC
Wz (%) 2—<v) il + (g5 )
(2.6)

|V
N‘m
a
<
|
AP
8]
o~
L
N
%
o
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8 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

W>(E)2_} S e (2) 2
8=\4)Y "oV VT Gac )t

2 (2.7
_ «/ecH 1/8|| -0
- 2 4 2 acZ -
ec 1 /¢ )
Wo > (€Y y2_ 2 /% 9\ 2
0= (4)y 2Va|yz|+(16ac)z
(2.8)

2
Jec 1/6
= | —1yl— =/ — > 0.
[2 |yl 2\/aclzl >
By collecting the estimates (2.5)—2.8) into (2.4) we obtain
s (5o (O ) (3,0
ve-(3) (16ac>Z (4>w
which proves the lemma.

Proof of Theorem 1. Taking into consideration Lemma 1, Lemma 2 and con-
dition (iii) of Theorem 1, it follows that

V(x,y, z,w) =0 ifandif only x?>+ y?+z24+w? =0,
V(x,y,z,w) >0 ifandif only x%+4 y? + z2 4+ w? > 0,

Vix,y,z,w) — oo if andif only x%+ y? 4+ z2 + w? — oo.

Let y denote a trgectory (x(z), y(t), z(t), w(t)) of the system (1.5) with
p(t,x,y,z,w) =0suchthatt =0, x = xo, y = yo, 2 = 20, W = wg, Where
(x0, Yo, 2o, wo) isan arbitrary pointinx, y, z, w-space from which maotions may
originate. Thenby Lemma2 for r > 0, it clear that

Vx,y,z,w) = V(x@), y(), z(t), w)) = V() = V(0).

Moreover, V(t) is non-negative and non-increasing and therefore tends to a
nonnegative limit, V (co) say, ast — oo. Suppose V (co) > 0. Consider the set

S{x,y,z,w) | V(x,y,z, w) < V(xo, Yo, 20, wo)} .

Because of the properties of the function V in (2.1) we know that S is bounded,
and thereforethe set y C S is also bounded. Further, the nonempty set of all
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limit points of y consists of whole trgjectories of the system

X=y,y=2,2=w,
w=—p@w— f(x,y,2) —gx,y) — h(x)

lyingonthesurface V(x, y, z, w) = V(co). Thusif P isalimit point of y, then
there exists a half-trgjectory, say yp of the above system, issuing from P and
lying on the surface V (x, v, z, w) = V(00). Since for every point (x, y, z, w)
onyp wehaveV(x, y, z, w) > V(o0), thisimplies that V =00n yp. Also, in
view of the inequality obtained in Lemma 2, that is

. ec ) 3ca
V- () <16ac>zz B (T) w?,
V = 0impliessy = z = w = 0; and by the above system, assumptions (i),
(iii) of Theorem 1 thismeansthat x = 0. Thus, the point (0, 0, 0, 0) lies on the
surface V(x, y, z, w) = V(o0) and hence V (co) = 0.
This completes the proof of Theorem 1.
Inthe case p # 0 we have the following result.

Theorem 2. Assume that

(i) g(x,0) =0,
(ii) conditions (ii)~(Vi) of Theorem 1 hold,
@iii) |p(t, x,y,z, w)| < (A+1|yl+1z|+|wgq (), where q(t) is a non-negative

and continuous function of t, and satisfies
t
/q(s)ds <B<oo forall t>0,
0
A and B are positive constants. Then for any given finite constants
X0, Yo, 2o and wo, there exists a constant K = K (xo, Yo, 20, Wo), Such
that any solution (x(t), y(t), z(t), w(t)) of system (1.5) satisfying the ini-

tial condition
x(0) = x0, y(0) = yo, z2(0) = z0, w(0) = wo

Comp. Appl. Math., Vol. 26, N. 1, 2007



10 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

satisfies for all t > 0,
x| <K, [yl =K, |z()] < K, |lw®)| < K.
Remark 4. Theorem 2 revises and improves the second result obtained in

[35], and generalizes the results of Ezeilo [8], Harrow [11] and Tung [42, Theo-
rem 2.7].

Proof of Theorem 2. The proof of this theorem is based essentially on the
method devised by Antosiewicz [2]. Now, let (x(¢), y(¢), z(t), w(z)) be an arbi-
trary solution of the system (1.5) satisfying the initial conditions

x(0) = xo, y(0) = yo, z2(0) = zo9, w(0) = wo

givenin Theorem 2. Next, consider the Lyapunov function V(1) = V (x(¢), y(¢),
z(¢), w(t)), where V isdefined by (2.1). Because of 1(0) isnot necessarily zero
now; we have only the following estimate in the proof of theorem

r 1
V=D f h(§)d§ + D2y? + Daz” + Daw® — (;) K0 (29
0
and since p £ 0, the conclusion of Lemma 2 can be revised as follows
V < — (Dsy? + Dgz? + Dyw?) + (@w + z + By) p(t, x, y, 2, w).
Let Dg = max(«, 1, 8). Then, we have
V < —Dg(Iyl + Izl + [wl) (A + Iyl + Iz + [w]) g ().
Making the use of the inequalities
lwl <1+w? and |2yz] < y?+7°

we obtain
V < Dq [3+4(y2+z2+w2)]q(t), (2.10)

where Dg = Dg(A + 1). It follows from (2.9) that
V > Do (y* + 2%+ w?) q(t) — Do, (2.11)

Comp. Appl. Math., Vol. 26, N. 1, 2007
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Dyo = min(D2, D3, D4) and Dy = (1) 2%(0). Now, combining expressions
(2.10) and (2.11) we get

V < Dug(t) + D12Vq(t) (212
where D1, = Dqg (3 + ‘l‘)—Dlg) , Do = %. Integrating expression (2.12) between
0tot, weobtain

t t

V(t)— V(0 < Dy / ¢(s)ds + Diz / V($)q(s)ds.
0 0

Setting D13 = D11 B + V(0), and using condition (iii) of Theorem 2 we have

t

V(t) < Diz+ 012/ V(s)q(s)ds.
0

Hence, Gronwall-Bellman inequality yields

t
V() < Dizexp | Diz / ¢(s)ds
0

The proof of Theorem 2 is now complete.
If p isabounded function, then the constant K above can be fixed independent
of xo, yo, zo and wg, aswill be seen from our next result.

Theorem 3. Assume that g(x,0) = 0 and conditions (ii)—<Vi) of Theorem 1
hold, and that p(t, x, y, z, w) satisfies

lpt,x,y,z,w)| <A <00

for all values of t, x, y, 7z and w, where A is a positive constant. Then there
exists a constant K1 whose magnitude depends a, b, c,d, §, e as well as on
the functions ¢, f, g and h such that every solution (x(t), y(t), z(t), w(t)) of
system (1.5) ultimately satisfies

lx(®)| < K1, ly@®)| < K1, 1z(t)] < K1, lw(®)| < K3.

Comp. Appl. Math., Vol. 26, N. 1, 2007



12 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

Remark 5. Note that in [34], Tejumola extended the boundedness results
givenin[33] to aspecial case of equation (1.1). Theorem 3 isalso another exten-
sion of [33]. Theorem 3 extends the results of Tung [42, Theorem 2.9] and im-
provestheresultsof Wuand Xiong [45] except of therestrictiononthefunction f,

that is,
Z 8V a’ 8V ¢

Now, the actual proof of Theorem 3 will rest mainly on certain properties of
a piecewise continuously differentiable function Vi = Vi(x, v, z, w) defined by
V1 = V 4+ Vp, where V isthefunction given by (2.1) and V, isdefined asfollows:

wsgnx, |lw| < |x]. )

Vo(x, w) = {
The first property of V; is stated in the following.

Lemma 3. Subject to the conditions of Theorem 3, there is a constant D14
such that
Vi(x,y,z,w) > =D forall x,y, z,w (2.14)

and
Vi(x, y,z,w) = 400 as x>+ y? + 722 + w? — +o0. (2.15)
Proof. From (2.13) we have |Vp(x, w)| < |w| for al x and w. Hence
Vo(x, w) > — |w| foral x and w.
By combining the estimates obtained for V and V we get the estimate for V;
vz Dlzh@)ds + D32 + D22 + Daw? — 2|u|
- Dlzh@ds + D3y + Daz? + Da(jw| — D32 — D}

By using condition (iii) of Theorem 1 we deduce that the integral on the right-
hand here is non-negative and tends to infinity when x do so. It is evident that
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(2.14) and (2.15) are verified, where D14 = D, which completes the proof of
Lemma 3.

The next property of the function V; is connected with itstotal time derivative
and is contained in the following lemma.

Lemma 4. Let (x,y,z, w) be any solution of the differential system (1.5)
and the function v1 = v1(t) be defined by vi(t) = Vi(x(t), y(t), z(¢), w(t)).
Then the limit

izf(t) = limsup vl + ) — v
h—0t+ h

exists and there is a constant D1s such that

U1 (1) < —1 provided x%(t) + y2(r) + 22(t) + w?(1) > Dss.

Proof. Inaccordancewiththerepresentation V, = V + Vy we have arepresen-
tation v, = v+vg. Theexistenceof i;f isquiteimmediate, since v hascontinuous
first partial derivativesand vq iseasily shownto belocally Lipschitizianin x and
w S0 that the composite function v, = v + vy isat theleast locally Lipschitizian
inx,y,zand w. Taking into consideration to the assumptions of Theorem 3 an
easy calculation from (2.13) and (1.5) shows that
ysgnw, if |w| > |x|
v = 1 —hsgnx —[p@w + f(x,y,2) +g(x, y)
—pt,x,y,z, w)]sgnx, if |w| <|x|

_ ] ysgnw, it jw| > x|
—h(x)sgnx + Dag lw| + |z| + |y| + 1], if |w| < |x|,

where

88
Dig = — .
16 max[ b+8dV bty 8V ¢ 8cV2ac }

By noting the estimates obtained for v and v; , we see that

. S e 1) 3e
=i = (5) () 2 ()

+ Dy (Iyl+ Izl + [w]), if Jw] > |x]|

Comp. Appl. Math., Vol. 26, N. 1, 2007



14 SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS OF FOURTH-ORDER

or

o+ . ec 1) 3ca
vy =V + Vg =< — (Z> y2 - (@) Z2 - (T) w2 — h(X)Sgnx
+ D1g (L + |yl + |z| + [w]), if [w| < [x].

Then by an argument similar to that in the proof of the theorem in Ezeilo [§],
one may show that the inequality in Lemma4 can be easily obtained. Hencethe
details of the proof are omitted. The proof of thislemmais now complete.

Proof of Theorem 3. Throughout Lemma 3 and Lemma 4, we have proved
that the function V1 = V + Vj has the following properties:

Vi(x, y,z,w) > —Dy4 fordl x,y,z, w,

Vi(x, y,z,w) = 00 8 x4 y% 4 7%+ w? - +oo,

and
L+ .
V, < —1 provided x4 y?+ 7%+ w? > Dss.

Applying the usua Yoshizawa-type argument, Theorem 1 in Chukwu [7], to the
above expressions we can conclude for any solution (x (), y(¢), z(¢), w(t)) of
the system (1.5) that

lx(H)] < K1, |y@®)| < K1, |z(1)] < K1, [w(®)| < K,

for sufficiently large r.
Thus the proof of Theorem 3 is complete.

Acknowledgement. The author would like to express sincere thanks to the
anonymous refereesfor their inval uable corrections, comments and suggestions.
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