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Abstract. In this work, a stationary Stokes flow with thermal effects is studied both math-

ematically and numerically. First, existence, uniqueness and regularity of the weak solution of

the problem are established. Next, finite element approximation to the problem, based on a fixed

point algorithm, is proposed. Then, an error estimate between continuous solution and discrete

one is obtained. Finally, some numerical tests are presented to confirm the theoretical results.
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1 Introduction

In modelling engineering problems describing incompressible quasi Newtonian

flows with viscous heating we need to consider the following thermally coupled

Stokes problem (see for instance [1– 4], and the references therein):
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(i) −2∇· (µ(θ)D(u)) + ∇p = f in �

(ii) ∇· u = 0 in �

(iii) −�θ = µ(θ)|D(u)|2 in �

(iv) u = 0 on �

(v) θ = 0 on �

(1.1)

where u : � → R
d is the velocity, p : � → R is the pressure, θ : � → R is the

temperature, � is a bounded open subset of Rd , d = 2 or 3, � its boundary. The

viscosity µ is a function of θ , µ = µ(θ). D(u) = 1
2 (∇u + ∇uT ) is the strain

rate tensor, and |D(u)|2 is the second invariant of D(u).

Problems of this type have received especial attention recently. Mathematical

analysis of this class of problems can be found, for example, in [2, 5]. In [5],

a convergence result for an iterative method was obtained under very strong

regularity hypothesis. To our knowledge, there is no general result on the nu-

merical analysis of problem (1.1). For mathematical and numerical analyses of

simpler problems consisting of nonlinear coupled systems of two scalar elliptic

equations, we refer to [6– 12].

Complete mathematical and numerical analyses to a coupled nonlinear system

of scalar elliptic equations are presented in [11]. In the present work, we will

extend the analyses presented in [11] to problem (1.1). We admit for simplicity

homogeneous boundary conditions and assume that the coupling function µ ∈
C(R) is bounded, i.e., there exist constants K2 ≥ K1 > 0 such that, for all

ξ ∈ R,

K1 ≤ µ(ξ) ≤ K2 . (1.2)

We first establish existence, uniqueness and regularity of the weak solution of

problem (1.1). Then, we apply a fixed point algorithm and propose a finite

element approximation. We prove the convergence of the fixed point algorithm

and derive error estimates for the discrete iterative solutions. Finally, we present

some numerical results to confirm the predicted rates of convergence of the

finite element approximations and to illustrate the influences of nonhomogeneous

boundary conditions and of the source term f on existence and stability of

solution for a two-dimensional model.
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2 Variational formulation

Let W m,r (�) denote the standard Sobolev space with its norm ‖·‖W m,r , for m ≥ 0

and 1 ≤ r ≤ ∞. We write H m(�) = W m,2(�) when r = 2, with the norm

‖ · ‖Hm , and Lr (�) = W 0,r (�) when m = 0, with the norm ‖ · ‖Lr . W m,r
0 (�)

is the closure of the space C∞
0 (�) for the norm ‖ · ‖W m,r . Vector variables are,

in general, denoted with bold face. We denote also W m,r (�) = [W m,r (�)]d ,

W m,r
0 (�) = [W m,r

0 (�)]d , Hm(�) = [H m(�)]d , Hm
0 (�) = [H m

0 (�)]d , and

Lr (�) = [Lr (�)]d .

Throughout this work, we assume that f ∈ L2(�), then the variational for-

mulation of problem (1.1) can be defined as:


Find (u, p, θ) ∈ H1
0(�) × L2

0(�) × H1
0 (�) such that

(i) a(θ; u, v) + b(v, p) − ( f , v) = 0, ∀ v ∈ H1
0(�)

(ii) b(u, q) = 0, ∀ q ∈ L2
0(�)

(iii) c(θ, η) − (µ(θ)|D(u)|2, η) = 0, ∀ η ∈ H1
0 (�) ∩ L∞(�)

(2.1)

where

a(θ; u, v) = 2(µ(θ)D(u), D(v)) (2.2)

b(v, q) = −(q, ∇· v) (2.3)

c(θ, η) = (∇θ, ∇η) (2.4)

(· , ·) denotes the duality between Lr (�)d and Lr ′
(�)d , d = 1, 2, 3, r ′ is the dual

number of r . Lr
0(�) = {

q ∈ Lr (�)

∣∣∣ ∫�
q = 0

}
. Introducing the space:

V =
{
v ∈ H1

0(�)

∣∣∣∇· v = 0
}

, (2.5)

we associate with (2.1) the following problem:


Find (u, θ) ∈ V × H1
0 (�) such that

(i) a(θ; u, v) = ( f , v), ∀ v ∈ V

(ii) c(θ, η) = (µ(θ)|D(u)|2, η), ∀ η ∈ H1
0 (�) ∩ L∞(�).

(2.6)

The classical Korn’s inequality implies that the norm ‖D(·)‖L2 is equivalent

to the norm ‖ · ‖H1 in space H1
0(�). Condition (1.2) implies that

a(θ; v, v) ≥ 2K1‖D(v)‖2
L2, ∀ v ∈ H1(�) (2.7)
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and

a(θ; u, v) ≤ 2K2‖D(u)‖L2‖D(v)‖L2, ∀ u, v ∈ H1(�). (2.8)

b(v, q) satisfies the inf-sup condition, i.e. there exists a constant β > 0 such that

(cf. [13])

inf
0 
=q∈L2

0(�)

sup
0 
=v∈H1

0(�)

b(v, q)

‖D(v)‖L2‖q‖L2
≥ β. (2.9)

3 Existence, uniqueness and regularity

Definition 1. We denote by Sr for r ∈ (1, ∞) the class of regular subsets G in

R
d for which the Stokes operator maps V 1,r

0 (G) = {
W 1,r

0 (G)

∣∣∣∇· v = 0
}

onto

W−1,r (G).

Remark 1. For r ∈ (1, ∞), a bounded C1 domain or a bounded Lipschitz

domain with sufficiently small Lipschitz constant depending on d and r , is of

class Sr [14].
From now on, we assume � is of class Sr for some r > 2. For 1 ≤ s ≤ r , we

define Ms ≥ 1 by

inf
v∈V 1,s′

0 \{0}
sup

u∈V 1,s
0 \{0}

|(D(u), D(v))|
‖D(u)‖Ls ‖D(v)‖Ls′

= 1

Ms
. (3.1)

Remark 2. Similarly to [15] and [16], we can see that Ms < ∞ and especially

M2 = 1.

Similarly to [12] and [15], we can prove

Lemma 1. For any given θ , if u ∈ H1
0(�) satisfies (2.1.i, ii) (or (2.6.i)), then

there exist s ∈ (2, min{6, r}] satisfying

1

s
>

1

2
−

(
1

2
− 1

r

)
log(K2 + K1) − log(K2 − K1)

log Mr
. (3.2)

and a constant Cs > 0 defined by

1

Cs
= K1 + K2

2Ms

(
1 − Ms

K2 − K1

K2 + K1

)
> 0, (3.3)
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such that u ∈ W 1,s
0 (�) and the following estimate holds

‖D(u)‖Ls ≤ Cs‖ f ‖W−1,s ≤ C‖ f ‖L2 . (3.4)

If s defined in Lemma 1 is such that

s ≥ 12

5
if d = 3, (3.5)

we have

|(µ(θ)|D(u)|2, η)| ≤ K2‖D(u)‖2
Ls ‖η‖Ls/(s−2) ≤ C‖ f ‖2

L2‖∇η‖L2 . (3.6)

Thus, by the density of H 1
0 (�)∩ L∞(�) in H 1

0 (�), problem (2.1) can be written

equivalently as:


Find (u, p, θ) ∈ H1
0(�) × L2

0(�) × H1
0 (�) such that

(i) a(θ; u, v) + b(v, p) = ( f , v), ∀ v ∈ H1
0(�)

(ii) b(u, q) = 0, ∀ q ∈ L2
0(�)

(iii) c(θ, η) = (µ(θ)|D(u)|2, η), ∀ η ∈ H1
0 (�).

(3.7)

And the associated problem (2.6) can also be written equivalently as:




Find (u, θ) ∈ V × H1
0 (�) such that

(i) a(θ; u, v) = ( f , v), ∀ v ∈ V

(ii) c(θ, η) = (µ(θ)|D(u)|2, η), ∀ η ∈ H1
0 (�).

(3.8)

We now prove existence of a solution to problem (3.8). For any given ξ ∈
L2(�), we denote by uξ ∈ V the solution of

a(ξ ; uξ , v) = ( f , v), ∀ v ∈ V , (3.9)

and define by θξ ∈ H 1
0 (�) the solution of

c(θξ , η) = (µ(ξ)|D(uξ )|2, η), ∀ η ∈ H 1
0 (�). (3.10)

By (3.10), (1.2) and (3.6), we have

‖∇θξ‖L2 ≤ C0‖ f ‖2
L2 (3.11)
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where the constant C0 depends only on �, K1 and K2.

Let BR be the ball in L2(�) defined by

BR =
{
η ∈ L2(�)

∣∣∣ ‖∇η‖L2 ≤ C0‖ f ‖2
L2

}
. (3.12)

Then, the map T defined by

ξ → T (ξ) = θξ ∈ H 1
0 (�), ∀ ξ ∈ L2(�) (3.13)

is compact since H 1
0 (�) is compactly imbedded in L2(�), and satisfies that

T (L2(�)) ⊂ BR . We only need show that the map T is continuous, then the

solvability of problem (3.8) comes from the Schauder Fixed Point Theorem.

Furthermore, by Lemma I.2.1 in [13], there exists p ∈ L2
0(�) such that (u, p, θ)

solves problem (3.7).

To show the continuity of the map T , let ξ j → ξ in L2(�), by Lemma 1, the

corresponding solutions {uξ j } of

a(ξ j ; uξ j , v) = ( f , v), ∀ v ∈ V (3.14)

satisfy

‖D(uξ j )‖Ls ≤ Cs‖ f ‖L2 . (3.15)

So, there is a subsequence denoted by {uξ jm
} such that

uξ jm
→ uξ weakly in W 1,s

0 (�). (3.16)

The uniqueness of the solution of (3.9) implies that (the whole sequence)

uξ j → uξ weakly in W 1,s
0 (�). (3.17)

Then, noticing (3.5), we can see that

µ(ξ j )|D(uξ j )|2 → µ(ξ)|D(uξ )|2 weakly in Ls/2(�) ⊂ H−1(�). (3.18)

Since (3.10) is a standard elliptic problem, the continuity of the map T is well

known.
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Theorem 1 (Existence). If s defined in Lemma 1 satisfies (3.5), then prob-

lems (2.1) and (2.6) are equivalent to problems (3.7) and (3.8), respectively.

Problem (3.7) has a solution (u, p, θ) whereas (u, θ) is a solution of problem

(3.8), and the following estimates hold:

‖D(u)‖Ls ≤ C‖ f ‖L2 (3.19)

and

‖∇(θ)‖Ls̃ ≤ C‖ f ‖2
L2 (3.20)

where

s̃ =



ds

(2d − s)
≥ 2, if s < 2d

any number in (2, ∞), if s ≥ 2d.

(3.21)

Proof. It is only needed to prove (3.20). In fact, by the Sobolev inequality, we

have
‖∇θ‖Ls̃ ≤ C‖�θ‖Ls/2 = C‖µ(θ)|D(u)|2‖Ls/2

≤ C‖D(u)‖2
Ls ≤ C‖ f ‖2

L2 .
(3.22)

where C > 0 is a constant depending only on �, K1, K2 and s. �

To study the uniqueness of the problem, we need to assume that the function µ

is Lipschitz continuous, i.e., there is a Lipschitz constant L , for any ξ1, ξ2 ∈ R,

such that

|µ(ξ1) − µ(ξ2)| ≤ L|ξ1 − ξ2|. (3.23)

Suppose (3.8) has two solutions (u1, θ1) and (u2, θ2), and let ū = u1 − u2 and

θ̄ = θ1 − θ2. Then, by (3.8), we have ∀ v ∈ V

a(θ1; ū, v) = a(θ1; u1, v) − a(θ1; u2, v)

= a(θ2; u2, v) − a(θ1; u2, v),
(3.24)

and

c(θ̄ , η) = (
µ(θ1)|D(u1)|2 − µ(θ2)|D(u2)|2, η

)
, ∀ η ∈ H 1

0 (�). (3.25)

By (3.24), (3.23), (3.19) and the Sobolev inequality, for

s ≥ 3, if d = 3, (3.26)
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we have
‖D(ū)‖L2 ≤ 1/2K1‖[µ(θ2) − µ(θ1)]D(u2)‖L2

≤ L/2K1‖θ̄‖L2s/(s−2)‖D(u2)‖Ls

≤ C‖ f ‖L2‖∇θ̄‖L2

(3.27)

where C > 0 is a constant dependent on �, K1, K2, L and s.

Let η = θ̄ in (3.25), and considering the Hölder inequality, the Sobolev in-

equality, (3.30), (3.27) and (3.19), we have

‖∇θ̄‖2
L2 = (µ(θ1)|D(u1)|2 − µ(θ2)|D(u2)|2, θ̄ )

≤ ‖µ(θ1)|D(u1)|2 − µ(θ2)|D(u2)|2‖L2s/(s+2)‖θ̄‖L2s/(s−2)

≤ C
{‖µ(θ1)D(ū) · D(u1 + u2)‖L2s/(s+2)

+‖[µ(θ1) − µ(θ2)]|D(u2)|2‖L2s/(s+2)

}‖∇θ̄‖L2

≤ C
{

K2‖D(ū)‖L2‖D(u1 + u2)‖Ls

+L‖θ̄‖L2s/(s−2)‖D(u2)‖2
Ls

}‖∇θ̄‖L2

≤ C̄‖ f ‖2
L2‖∇θ̄‖2

L2 .

(3.28)

where C̄ is a constant directly proportional to K2 and L , inversely to K1, and

dependent on � and s as well.

Therefore, if

C̄‖ f ‖2
L2 < 1, (3.29)

then it holds that θ̄ = 0, which implies that ū = 0 by (3.27). With the above

result, we can state:

Theorem 2 (Uniqueness). If conditions (3.23), (3.26) and (3.29) hold. Then,

problem (3.8) (or (3.7)) has a unique solution.

Theorem 3 (Regularity). If

‖µ′‖L∞ ≤ L , (3.30)

and if s defined in Lemma 1 satisfies that

s ≥



3, if d = 2

18

5
, if d = 3,

(3.31)
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then we have

‖u‖H2 + ‖p‖H1 ≤ C
{
1 + ‖ f ‖2

L2

} ‖ f ‖L2 (3.32)

and

‖θ‖H2 ≤ C
{
1 + ‖ f ‖2

L2

}2 ‖ f ‖2
L2 (3.33)

where C > 0 is a constant dependent on �, K1, K2, L and s.

Proof. From (3.30), (3.19) and (3.20), we get

‖µ′(θ)∇θ · D(u)‖L2 ≤ L‖∇θ‖L2s/(s−2)‖D(u)‖Ls ≤ C‖∇θ‖Ls̃ ‖ f ‖L2 ≤ C‖ f ‖3
L2 .

Thus, by Theorem I.5.4 in [13], we have

‖u‖H2 + ‖p‖H1 ≤ C
{‖µ′(θ)∇θ · D(u)‖L2 + ‖ f ‖L2

}
≤ C

{
1 + ‖ f ‖2

L2

} ‖ f ‖L2 .
(3.34)

Then,

‖θ‖H2 ≤ C‖�θ‖L2 = C‖µ(θ)|D(u)|2‖L2 ≤ C‖D(u)‖2
L4

≤ C‖u‖2
H2 ≤ C

{
1 + ‖ f ‖2

L2

}2 ‖ f ‖2
L2 .

(3.35)

�

4 A fixed point algorithm

From the numerical point of view, it is interesting to introduce an iterative scheme

to solve problems (3.7) and (3.8). The scheme proposed in this section is based

on a fixed point algorithm.

For an arbitrary θ0, and n = 1, 2, . . . , we can get an iterative solution of

problem (3.7) {(un, pn, θn)} by:


Find (un, pn, θn) ∈ H1
0(�) × L2

0(�) × H1
0 (�) such that

(i) a(θn−1; un, v) + b(v, pn) = ( f , v), ∀ v ∈ H1
0(�)

(ii) b(un, q) = 0, ∀ q ∈ L2
0(�)

(iii) c(θn, η) − (µ(θn−1)|D(un)|2, η) = 0, ∀ η ∈ H1
0 (�).

(4.1)

And an iterative solution of problem (3.8) {(un, θn)} can be obtained by:


Find (un, θn) ∈ V × H1
0 (�) such that

(i) a(θn−1; un, v) = ( f , v), ∀ v ∈ V

(ii) c(θn, η) = (µ(θn−1)|D(un)|2, η), ∀ η ∈ H1
0 (�).

(4.2)
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Theorem 4. The solutions {(un, pn, θn)} of (4.1) and {(un, θn)} of (4.2) satisfy

‖D(un)‖Ls ≤ C‖ f ‖L2, ∀ n ≥ 1 (4.3)

‖∇θn‖Ls̃ ≤ C‖ f ‖2
L2, ∀ n ≥ 1 (4.4)

where s and s̃ are same as in Theorem 1. Moreover, with the same assumptions

of Theorem 3, we have

‖un‖H2 + ‖pn‖H1 ≤
{

C
{
1 + ‖∇θ0‖L∞

} ‖ f ‖L2, n = 1

C
{
1 + ‖ f ‖2

L2

} ‖ f ‖L2, ∀ n ≥ 2
(4.5)

and

‖θn‖H2 ≤
{

C
{
1 + ‖∇θ0‖L∞

}2 ‖ f ‖2
L2, n = 1

C
{
1 + ‖ f ‖2

L2

}2 ‖ f ‖2
L2, ∀ n ≥ 2.

(4.6)

Proof. The proof is similar to that of Theorem 1 and 3. �

Theorem 5. If problem (3.7) has a unique solution (u, p, θ), then the se-

quence {(un, pn, θn)} defined by (4.1) converges in H1
0(�)× L2

0(�)× H 1
0 (�) to

(u, p, θ); and the sequence {(un, θn)} defined by (4.2) converges in V × H 1
0 (�)

to (u, θ).

Proof. We only give a proof for problem (4.1), since the proof for problem

(4.2) is similar. If this Theorem is not true, then there exist some small constant

ε0 > 0 and an infinite subsequence of {(un, θn)}, denoted by {(uni , pni , θni )},
such that

‖D(uni − u)‖L2 + ‖pni − p‖L2 + ‖∇(θni − θ)‖L2 ≥ ε0, ∀ i. (4.7)

On the other hand, Theorem 4 implies that {(uni , pni , θni )} ∈ W 1,s
0 (�) ×

Ls
0(�) × W 1,s̃

0 (�). Since the space W 1,s
0 (�) × Ls

0(�) × W 1,s̃
0 (�) is compact in

H1
0(�) × L2

0(�) × H 1
0 (�), and noticing the fact that any limit of {(un, pn, θn)}

should satisfy (3.7) and that problem (3.7) has a unique solution. Then we can

get a subsequence of {(uni , pni , θni )} which converges to (u, p, θ) in H1
0(�) ×

L2
0(�) × H 1

0 (�), which leads a contradiction to (4.7). Hence, we complete the

proof. �
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To further study u − un , p − pn and θ − θn , by (3.7) and (4.1), and using

similar arguments to (3.27) and (3.28), we can deduce that

‖D(u − un)‖L2 ≤ L/2K1‖D(u)‖Ls ‖θ − θn−1‖L2s/s−2

≤ C‖ f ‖L2‖∇(θ − θn−1)‖L2,
(4.8)

‖∇(θ − θn)‖L2 ≤ C‖µ(θ)|D(u)|2 − µ(θn−1)|D(un)|2‖L2s/(s+2)

≤ C
{

K2‖D(u − un)‖L2‖D(u + un)‖Ls

+L‖θ − θn‖L2s/(s−2)‖D(un)‖2
Ls

}
≤ C̄‖ f ‖2

L2‖∇(θ − θn−1)‖L2

(4.9)

where C̄ is the same as in (3.28). The estimate for p − pn comes from (3.7),

(4.1) and the inf-sup condition (2.9),

β‖p − pn‖L2 ≤ sup
0 
=v∈H1

0(�)

a(θ; u, v) − a(θn−1; un, v)

‖D(v)‖L2

≤ 2
{‖(µ(θ) − µ(θn−1))|D(u)|‖L2 + ‖µ(θn−1)D(u − un)‖L2

}
≤ 2

{
L‖θ − θn−1‖L2s/(s−2)‖D(u)‖Ls + K2‖D(u − un)‖L2

}
≤ C‖ f ‖L2‖∇(θ − θn−1)‖L2 .

(4.10)

Thus, we have

Theorem 6. If condition (3.29) holds, then, the fixed point algorithms (4.1)

and (4.2) work with the linear convergence rate, and the following estimates

hold:

‖D(u − un)‖L2 + ‖p − pn‖L2 ≤ C‖ f ‖L2 M̄( f )n−1‖∇(θ − θ0)‖L2, (4.11)

‖∇(θ − θn)‖L2 ≤ M̄( f )n‖∇(θ − θ0)‖L2 (4.12)

where M̄( f ) = C̄‖ f ‖2
L2 < 1.

5 Finite element approximation

For simplicity we assume that� is a polygonal (or polyhedral) domain discretized

by a quasi uniform mesh of Ne triangles (or tetrahedrons) or convex quadrilaterals

(or hexahedrons), with mesh parameter h. Let Sh be the Lagrangian finite element
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space of C0(�) piecewise linear polynomials, and Sh
0 = Sh ∩ H 1

0 (�). Let

also Xh ⊂ H1(�) and Qh ⊂ L2(�) be two finite element spaces, and Xh
0 =

X ∩ H1
0(�) and Qh

0 = Qh ∩ L2
0(�) such that the following hypotheses hold:

Hypothesis H1 (Approximation property of Xh
0). There exists an operator

	X ∈ L(H2(�); Xh) ∩ L(H2(�) ∩ H1
0(�); Xh

0) such that:

‖v − 	Xv‖H1 ≤ Chm−1‖v‖Hm , ∀ v ∈ Hm(�), m = 1, 2; (5.1)

Hypothesis H2 (Approximation property of Qh). There exists an operator

	Q ∈ L(L2(�); Qh) such that:

‖q − 	Qq‖L2 ≤ Chm‖q‖Hm , ∀ q ∈ H m(�), m = 0, 1; (5.2)

Hypothesis H3 (Uniform inf-sup condition). For each qh ∈ Qh
0 there exists a

vh ∈ Xh
0 such that:

(qh, ∇· vh) = ‖qh‖2
L2 (5.3)

‖∇· vh‖L2 ≤ C‖qh‖L2 (5.4)

with a constant C > 0 independent of h, qh and vh.

Remark 3. Hypothesis H3 is equivalent to the discrete inf-sup condition, i.e.

(cf. [13])

inf
0 
=qh∈Qh

0

sup
0 
=vh∈Xh

0

b(vh, qh)

‖D(vh)‖L2‖qh‖L2
≥ β

C
= β∗. (5.5)

The Galerkin approximation to problem (4.1) reads:

Given θ0
h as an approximation of θ0, for n = 1, 2, . . . ,

{
(un

h, pn
h , θ

n
h )

}
can be

calculated by:


Find (un
h, pn

h , θn
h ) ∈ Xh

0 × Qh
0 × Sh

0 such that

(i) a(θn−1
h ; un

h, vh) + b(vh, pn
h) − ( f , vh) = 0, ∀ vh ∈ Xh

0

(ii) b(un
h, qh) = 0, ∀ qh ∈ Qh

0

(iii) c(θn
h , ηh) − (µ(θn−1

h )|D(un
h)|2, ηh) = 0, ∀ ηh ∈ Sh

0 .

(5.6)

Since ∇· un
h ∈ L2

0(�), then (5.6.ii) is equivalent to

b(un
h, qh) = 0, ∀ qh ∈ Qh . (5.7)
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Thus, we can define the space:

V h =
{
vh ∈ Xh

0

∣∣∣ b(vh, qh) = 0 ∀ qh ∈ Qh
}

(5.8)

and the problem associated with (5.6) is:


Find (un
h, θn

h ) ∈ V h × Sh
0 such that

(i) a(θn−1
h ; un

h, vh) = ( f , vh), ∀ vh ∈ V h

(ii) c(θn
h , ηh) = (µ(θn−1

h )|D(un
h)|2, ηh), ∀ ηh ∈ Sh

0 .

(5.9)

To analyze problem (5.6), we introduce the standard Stokes and elliptic pro-

jections (ũn
h, p̃n

h , θ̃
n
h ) ∈ Xh

0 × Qh
0 × Sh

0 defined by

(D(ũn
h − un), D(vh)) − ( p̃n

h − pn, ∇· vh) = 0, ∀ vh ∈ Xh
0

(qh, ∇· ũn
h) = 0, ∀ qh ∈ Qh

0

(5.10)

(∇(θ̃n
h − θn), ∇ηh) = 0, ∀ ηh ∈ Sh

0 . (5.11)

It is well known that

Lemma 2. There exists a constant C > 0 independent of h and n such that the

following estimates hold:

‖un − ũn
h‖L2 + h‖D(un − ũn

h)‖L2 + h‖pn − p̃n
h‖L2

≤ Ch2
{‖un‖H2 + ‖pn‖H1

}
,

(5.12)

‖θn − θ̃n
h ‖L2 + h‖∇(θn − θ̃n

h )‖L2 ≤ Ch2‖θn‖H2 . (5.13)

The following inverse properties of the finite element spaces Xh
0 and Sh

0 are

useful.

Lemma 3. For any ηh ∈ Sh
0 , we have

‖ηh‖L∞ ≤ M(h)‖∇ηh‖L2 (5.14)

where

M(h) =




M, if d = 1

M | log h|1/2, if d = 2

Mh−1/2, if d = 3,

(5.15)

and M is a constant independent of h.
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Proof. See [11] �

For the errors of un
h − ũn

h , pn
h − p̃n

h and θn
h − θ̃n

h , we have:

Lemma 4. There exists a constant C > 0 only dependent on �, K1, K2 and L

such that
‖D(un

h − ũn
h)‖L2 ≤ C

{‖ f ‖L2‖∇(θn−1 − θn−1
h )‖L2

+ h‖un‖H2 + h‖pn‖H1

}
.

(5.16)

Proof. By (5.6.i) and (4.1.i), we have, ∀ vh ∈ Xh
0

a(θn−1
h ; un

h − ũn
h, vh) = ([µ(θn−1) − µ(θn−1

h )]D(un), D(vh))

+ a(θn−1
h ; un − ũn

h, vh) + b(vh, pn − pn
h).

Let vh = un
h − ũn

h . By noticing that b(un
h − ũn

h, qh) = 0, ∀ qh ∈ Qh
0 and the fact

that (cf. [13]) infqh∈Qh
0
‖pn − qh‖L2 ≤ C‖pn − 	Q pn‖L2 ≤ Ch‖pn‖H1 , we can

get

‖D(un
h − ũn

h)‖L2

≤ 1

2
K1

{
L‖D(un)‖Ls ‖θn−1 − θn−1

h ‖L2s/(s−2)

+ K2‖D(un − ũn
h)‖L2 + inf

qh∈Qh
0

‖pn − qh‖L2

}
≤ C

{‖D(un − ũn
h)‖L2 + ‖ f ‖L2‖∇(θn−1 − θn−1

h )‖L2 + h‖pn‖H1

}
.

Thus, Lemma 2 leads to (5.16). �

Lemma 5. There exists a constant C > 0 only dependent on �, K1, K2, L and

β∗ such that

‖pn
h − p̃n

h‖L2 ≤ C
{‖ f ‖L2‖∇(θn−1 − θn−1

h )‖L2 +h‖un‖H2 +h‖pn‖H1

}
. (5.17)

Proof. By (5.6.ii) and (4.1.ii), we have, ∀ vh ∈ Xh
0

b(vh, pn
h − p̃n

h) = a(θn−1; un, vh) − a(θn−1
h ; un

h, vh) + b(vh, pn − p̃n
h)

= (2[µ(θn−1) − µ(θn−1
h )]D(un), D(vh))

+ a(θn−1
h ; un − un

h, vh) + b(vh, pn − p̃n
h).
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By Remark 3, Hypothesis H3 yields:

‖pn
h − p̃n

h‖L2 ≤ 1

β∗ sup
0 
=vh∈Xh

0

{
2([µ(θn−1) − µ(θn−1

h )]D(un), D(vh))

+ a(θn−1
h ; un − un

h, vh) + b(vh, pn − p̃n
h)

}/‖D(vh)‖L2

≤ 1

β∗
{
2L‖D(un)‖Ls ‖θn−1 − θn−1

h ‖L2s/(s−2)

+ 2K2‖D(un − un
h)‖L2 + ‖pn − p̃n

h‖L2

}
≤ C

{‖ f ‖L2‖∇(θn−1 − θn−1
h )‖L2 + h‖un‖H2 + h‖pn‖H1

}
In the last inequality, we applied Lemmas 2 and 4. �

Lemma 6. The following estimate

‖∇(θn
h − θ̃n

h )‖L2

≤ C‖ f ‖2
L2

{
1 + M(h)‖∇(θn−1 − θn−1

h )‖L2

}‖∇(θn−1 − θn−1
h )‖L2

+ Ch
{‖ f ‖L2 + h1/2‖un‖H2 + h1/2‖pn‖H1

} · {‖un‖H2 + ‖pn‖H1

} (5.18)

holds with C > 0 only dependent on �, K1, K2 and L, and M(h) defined

by (5.15).

Proof. By (5.6.iii), (5.11) and (4.1), we have

‖∇(θn
h − θ̃n

h )‖2
L2 = (∇(θn

h − θn), ∇(θn
h − θ̃n

h ))

= (µ(θn−1
h )|D(un

h)|2 − µ(θn−1)|D(un)|2, θn
h − θ̃n

h )

= ([µ(θn−1
h ) − µ(θn−1)]|D(un)|2, θn

h − θ̃n
h )

+ (µ(θn−1
h )(|D(un

h)|2 − |D(un)|2), θn
h − θ̃n

h )

= R1 + R2.

(5.19)

By the Hölder inequality and the Sobolev inequality,

R1 ≤ L‖θn−1 − θn−1
h ‖L2s/(s−2)‖D(un)‖2

Ls ‖θn
h − θ̃n

h ‖L2s/(s−2)

≤ C‖ f ‖2
L2‖∇(θn−1 − θn−1

h )‖L2‖∇(θn
h − θ̃n

h )‖L2 .
(5.20)

Since a2 − b2 = (a − b)2 + 2b(a − b), then R2 can be split into:

R2 = (µ(θn−1
h )|D(un

h − un)|2, θn
h − θ̃n

h )

+ 2(µ(θn−1
h )D(un) · D(un

h − un), θn
h − θ̃n

h )

= R21 + R22.

(5.21)
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By the Hölder inequality and the inverse inequality (5.14),

R21 ≤ K2‖D(un − un
h)‖2

L2‖θn
h − θ̃n

h ‖L∞

≤ K2 M(h)‖D(un − un
h)‖2

L2‖∇(θn
h − θ̃n

h )‖L2 .
(5.22)

To estimate R22, we have

R22 ≤ 2K2‖D(un)‖Ls ‖D(un
h − un)‖L2‖θn

h − θ̃n
h ‖L2s/(s−2)

≤ C‖ f ‖L2‖D(un − un
h)‖L2‖∇(θn

h − θ̃n
h )‖L2 .

(5.23)

Combining (5.19)– (5.23), and noticing that

‖D(un − un
h)‖L2

≤ ‖D(un − ũn
h)‖L2 + ‖D(un

h − ũn
h)‖L2

≤ C
{‖ f ‖L2‖∇(θn−1 − θn−1

h )‖L2 + h‖un‖H2 + h‖pn‖H1

}
.

(5.24)

we obtain (5.18). �

Let us now make an inductive hypothesis: for sufficiently small h,

M(h)‖∇(θn−1 − θn−1
h )‖L2 < 1, ∀ n ≥ 1 (5.25)

In fact, when n = 1, we can choose θ0
h as the standard elliptic projection of

θ0, thus, M(h)‖∇(θ0 − θ0
h )‖L2 ≤ Ch1/2‖θ0‖H2 < 1 for sufficiently small h. If

(5.25) holds for n − 1, then, we have

‖∇(θn − θn
h )‖L2

≤ ‖∇(θn − θ̃n
h )‖L2 + ‖∇(θn

h − θ̃n
h )‖L2

≤ Ĉ‖ f ‖2
L2‖∇(θn−1 − θn−1

h )‖L2 + Ch
{
(‖ f ‖L2 + h1/2‖un‖H2

+ h1/2‖pn‖H1)(‖un‖H2 + ‖pn‖H1) + ‖θn‖H2

}
(5.26)

where Ĉ is a constant only dependent on �, K1, K2 and L . If

Ĉ‖ f ‖2
L2 = M̂( f ) < 1, (5.27)

and for sufficiently small h such that

h1/2
(
1 + max{‖∇θ0‖L∞, ‖ f ‖2

L2}
) ≤ 1
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or

h1/2 max
n

{‖un‖H2 + ‖pn‖H1

} ≤ C‖ f ‖L2,

then, we can obtain

‖∇(θn − θn
h )‖L2

≤ M̂( f )n‖∇(θ0 − θ0
h )‖L2

+ Ch

1 − M̂( f )

{‖ f ‖L2 max
n

(‖un‖H2 + ‖pn‖H1) + max
n

‖θn‖H2

}
≤ M̂( f )nh‖θ0‖H2 + Ch

1 − M̂( f )
‖ f ‖2

L2

(
1 + max

{‖∇θ0‖L∞ , ‖ f ‖2
L2

})
.

(5.28)

Thus, choosing h sufficiently small such that

Ch1/2
{
‖θ0‖H2 +

[ 1

C
+ 1

1 − M̂( f )
‖ f ‖2

L2

]
× (

1 + max
{‖∇θ0‖L∞, ‖ f ‖2

L2

}) }
< 1

(5.29)

where C depends on M , then, the inductive hypothesis (5.25) holds. Meanwhile,

we have

Theorem 7. Let (un
h, pn

h , θ
n
h ) be the solution of problem (5.6) and (un

h, θ
n
h )

the solution of problem (5.9). Then, for sufficiently small h satisfying (5.29),

(un
h, pn

h , θ
n
h ) converges to the solution (un, pn, θn) of problem (4.1), and the

following error estimates hold:

‖D(un − un
h)‖L2 + ‖pn − pn

h‖L2

≤ C‖ f ‖L2h
{

M̂( f )n−1‖θ0‖H2 +
[
1 + 1/(1 − M̂( f ))‖ f ‖2

L2

]
× (

1 + max
{‖∇θ0‖L∞, ‖ f ‖2

L2

})} (5.30)

‖∇(θn − θn
h )‖L2 ≤ M̂( f )nh‖θ0‖H2

+ Ch

1 − M̂( f )
‖ f ‖2

L2

(
1 + max

{‖∇θ0‖L∞, ‖ f ‖2
L2

}) (5.31)

where C is a constant independent of n, h and f , and M̂( f ) < 1 is defined

by (5.27).
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Now, let C∗ = max{C̄, Ĉ} where C̄ and Ĉ are defined by (3.28) and (5.26)

respectively. Thus,

C∗‖ f ‖2
L2 = M∗( f ) < 1 (5.32)

implies (3.29) and (5.27). Hence, we get the main result

Theorem 8. If condition (5.32) holds, then problem (3.7) has a unique solution

(u, p, θ) and (u, θ) is also the solution of problem (3.8), the finite element

solution sequence {(un
h, pn

h , θ
n
h )} of (5.6) (where {(un

h, θ
n
h )} solves problem (5.9))

converges to (u, p, θ) and the following estimates hold, for sufficiently small h

satisfying (5.29),

‖D(u − un
h)‖L2 + ‖p − pn

h‖L2

≤ C‖ f ‖L2

{
(M∗( f ))n−1

[
‖∇(θ − θ0)‖L2 + h‖θ0‖H2

]
+ h

[
1 + 1/(1 − M∗( f ))‖ f ‖2

L2

] (
1 + max

{‖∇θ0‖L∞ , ‖ f ‖2
L2

})} (5.33)

‖∇(θ − θn
h )‖L2 ≤ (M∗( f ))n{‖∇(θ − θ0)‖L2 + h‖θ0‖H2

}
+ Ch

1 − M∗( f )
‖ f ‖2

L2

(
1 + max

{‖∇θ0‖L∞ , ‖ f ‖2
L2

}) (5.34)

where C is a constant independent of n, h and f , and M∗( f ) < 1 is defined

by (5.32).

6 Numerical results

The iterative solution method described in the previous section has been tested

in two dimensions considering two temperature dependence functions. In the

first case we considered a bounded µ(s) given by

µ(s) = 1

1 + s
.

This case has been performed only to confirm the convergence estimates obtained

here by prescribing homogeneous boundary conditions as adopted in the analysis.

Exact solution has been assumed to be the results obtained with a refined mesh

of 4096 elements, quadratic for the velocity field and linear for the pressures

combined with linear temperature approximation elements. The plots of Fig. 1
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confirm the first order convergence rate for the gradient of the velocities and

of the temperatures as obtained in the analysis. Fig. 1 also shows the second

order convergence of the velocity and the temperature fields as expected but

not demonstrated here. Results for the convergence in terms of the number of

iterations versus values of f are shown in Fig. 2. We note that for a critical value

of f the number of iterations increases largely, but it still remains practically

independent of f before the critical value.
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Figure 1 – Convergence results with errors e1 = ‖∇(u − uh)‖L2 , e2 = ‖∇(θ − θh)‖L2 ,

e3 = ‖u − uh‖L2 and e4 = ‖θ − θh‖L2 in the case of f = 0 and u(1) > 0.
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Figure 2 – Number of iterations for several values of f with T ol = ‖un+1
h − un

h‖L2+
‖θn+1

h − θn
h ‖L2 ≤ 10−12.

The second example deals with an axisymmetric flow in a cylindrical tube. In

this study we consider the Arrhenius function

µ(s) = e
H
s
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with H the activation energy. The tube is 10 cm long with a diameter of 4 cm.

It is a developing hydrodynamics and thermal problem. A Dirichlet bound-

ary condition for the velocity has been prescribed at the entrance section, u =
{1.0; 0.0} cm/s, homogeneous Neumann condition has been set at the end of the

tube and non slip at the wall.

For the temperature, two cases have been considered. In the first case, a 500K

has been prescribed at the entrance and along the cylinder wall. Changes in

the temperature field are due to the coupling viscous dissipation, with higher

temperatures in the core of the tube. Of course, the solution of the uncoupled

analogue of this problem is a uniform temperature of 500K all over the domain.

The corresponding temperature profiles are shown in Fig. 3.

500K

516K

517K

518K

500K

Figure 3 – Isothermal lines for the coupled problem with 500K at the entrance and at

the wall.

The second case corresponds to what is known as extended or modified Graetz

problem [17], after L. Graetz (1885) studies [18] on developed hydrodynamics-

developing thermal fields for fluids passing a flat plate. The model problem

consists of a fluid at 700K, entering the same tube with the same velocity bound-

ary conditions of the first case studied, cooled by a prescribed temperature of

500K at the tube wall. Changes in the temperature field are determined for the

uncoupled and for the coupled situations. In this problem the coupled effects do

not alter the velocity field but they are strong enough to affect the temperature

field. The activation energy has been set to 5θmin . The classical temperature

profiles (isothermal lines) obtained for the uncoupled case are shown in Fig. 4.

For the coupled situation, the isothermal lines obtained are depicted in Fig. 5,

exhibiting a hotter region along the core of the duct, as expected.

Concerning convergence of the iterative method, 120 iterations have been

required for the convergence of the coupled modified Graetz problem while in

Comp. Appl. Math., Vol. 26, N. 1, 2007



J. ZHU, A.F.D. LOULA, J. KARAM F. and J.N.C. GUERREIRO 65

700K

528K

518K

508K

500K

Figure 4 – Isothermal lines for the uncouped flow in a cylinderical tube with 700K at

the entrance and 500K at the wall (uncoupled).

700K

528K

518K

508K

500K

Figure 5 – Isothermal lines for the Graetz problem with 700K at the entrance and 500K

at the wall(coupled).

the coupled problem considered in the first case convergence has been achieved

with only 45 iterations.

7 Conclusions

In this paper, we gave the complete mathematical analyses, such as existence,

uniqueness and regularity of the weak solution of problem (1.1). The uniqueness

is conditional and dependent on the source term f which should be small. We ap-

plied a fixed point algorithm to solve the nonlinear problem and proposed a finite

element approximation. We proved the convergence of the fixed point algorithm

and derive error estimates for the discrete iterative solutions. We got condition

(5.32) for f which guarantees not only the uniqueness of the weak solution but

also the convergence. Finally, we presented numerical implementations for a

two-dimensional model, using Taylor-Hood elements for the velocity-pressure

and bilinear elements for the temperature, to confirm the predicted rates of con-

vergence of the finite element approximations and to illustrate the influences of

nonhomogeneous boundary conditions and of the source term f on existence

and stability of solution.
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