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Abstract. An initial value problem is solved for the motion of an incompressible viscous

conducting fluid with embedded small inert spherical particles bounded by an infinite rigid non-

conducting plate. Both the plate and the fluid are in a state of solid-body rotation with constant

angular velocity about an axis normal to the plate. The unsteady flow is generated in the fluid-

particle system due to velocity tooth pulses subjected on the plate in presence of a transverse

magnetic field. It is assumed that no external electric field is imposed on the system and the

magnetic Prandtl number is very small. The operational method is used to derive exact solutions

for the fluid and the particle velocities and the shear stress at the wall. Some limiting cases of

these solutions including the steady-state results are discussed. The general solutions for the

fluid velocity and the wall shear stress are examined numerically and the simultaneous effects of

rotation, the magnetic field and the particles on them are determined. Finally, the present result

for the fluid velocity has been compared numerically with that generated by an impulsively moved

plate in a particular case when time is large.

Mathematical subject classification: 76U05.
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1 Introduction

The fluid flow generated by pulsatile motion of the boundary is found to have

immense importance in aerospace science, nuclear fusion, astrophysics, atmo-

spheric sciences, cosmical gasdynamics, geophysics, and physiological fluid
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2 HYDROMAGNETIC ROTATING FLOW OF A DUSTY FLUID

dynamics. The investigation in this direction was initiated by Ghosh [1] who

examined the motion of an incompressible viscous fluid in a channel bounded

by two rigid coaxial cylinders when the inner cylinder is set in motion by pulses

of longitudinal impulses. Subsequently, Chakraborty and Ray [2] studied the

unsteady magnetohydrodynamic Couette flow between two parallel plates when

one of the plates is subjected to random pulses. Makar [3] presented the solution

of magnetohydrodynamic flow between two parallel plates when the velocity

tooth pulses are imposed on the upper plate and the induced magnetic field is

neglected. Bestman and Njoku [4] constructed the solution of the same problem

as that of author [3] without ignoring the effect of induced magnetic field. Re-

garding pulsatile motion of a two-phase fluid-particle system, Datta et al. [5,6]

examined the heat transfer to pulsatile flow of a dusty fluid in pipes and channels

with a view to their applications in the analysis of blood flow. Ghosh and Sarkar

[7] considered the hydromagnetic channel flow of a dusty fluid induced by veloc-

ity tooth pulses and arrived at the solution by themethod of Fourier analysiswhile

the same problem as that of authors [7] was solved by Ghosh and Debnath [8]

using the method of Laplace transforms. It is seen that both the methods give the

same result although one more initial condition is needed to apply the method of

Fourier analysis. Most recently, Ghosh and Ghosh [9] solved the same problem

as that of authors [7,8] replacing the boundary condition at the upper plate of the

channel by rectified sine pulses in stead of tooth pulses and obtained the solution

by using the method of Fourier analysis which appears to be simpler than that

of Laplace transforms involving complicated inversions. Ghosh and Ghosh [10]

also solved the hydromagnetic flow of a two-phase fluid near a pulsating plate

with a view to its application in the analysis of suspension boundary layers. On

the other hand, Ghosh and Debnath [11,12] have discussed the hydromagnetic

Stokes flow of a rotating fluid with suspended small particles in one paper and in

the other they provided solution of hydromagnetic rotating flow of a two-phase

fluid-particle system in a channel bounded by two parallel plates when one of

the plates is set in accelerated motion impulsively from rest. The objective of

the present paper is to examine the same problem as that of authors [10] in a

rotating system or to construct solution of the same problem as that of authors

[11] with boundary motion being changed from a single frequency harmonic

Comp. Appl. Math., Vol. 27, N. 1, 2008



SANCHITA GHOSH and ARUN K. GHOSH 3

oscillations to multiple frequency unidirectional pulsatile motion with a view to

its application in the analysis of suspension boundary layers in a rotating sys-

tem [13], the motion in the liquid core of the earth which is responsible for the

observed maintenance and secular variation of the mean geomagnetic field [14],

the development of sunspot, the solar cycle and the structure of the magnetic

stars [15] and in the flow and heat transfer characteristics of a fluid film over a

rotating surface which is important in a number of industrial applications such as

spreading of protective coating on electronics and optical devices, lithography

and ablation cooling [16].

The problem is concerned with the unsteady flow developed in a semi-infinite

expanse of an incompressible electrically conducting viscous fluid containing

uniformly distributed small inert spherical particles bounded by an infinite rigid

non-conducting plate in presence of an externalmagnetic field acting transversely

to the plate when both the plate and the fluid are in a state of solid-body rotation

with constant angular velocity about an axis normal to the plate and the plate is

subjected to velocity tooth pulses impulsively from rest. The inquiries are made

about the exact solutions for the fluid and the particle velocities and the shear

stress at the wall. The results are computed numerically with a view to disclose

the quantitative response of various flow parameters on the components of fluid

velocity and the wall shear stress. The ultimate steady-state boundary layers are

discussed. The present result for the fluid velocity at large values of time has

been compared numerically with that generated by impulsively moved plate. It

is seen that, in presence of pulsation, particles increase the fluid velocity near

the plate only when rotation is small and time is large which is not the case in

absence of pulsation. Finally, many known results are derived as limiting cases

of the present solutions.

2 Mathematical formulation

Following Saffman [17] and Ghosh and Debnath [11], the equations of unsteady

motion of an incompressible electrically conducting viscous fluidwith embedded

identical small inert spherical particles in a rotating coordinate system under an

Comp. Appl. Math., Vol. 27, N. 1, 2008



4 HYDROMAGNETIC ROTATING FLOW OF A DUSTY FLUID

external magnetic field B are in usual notations:

∂u

∂t
+ (u · ∇)u+ 2� × u = − 1

ρ
∇ p + ν∇2u

+ K N
ρ

(v − u) + 1

ρ
(j× B)

(2.1)

m
[
∂v

∂t
+ (v · ∇)v + 2� × v

]
= K (u− v) (2.2)

∇ · u = 0 and
∂N
∂t

+ ∇ · (Nv) = 0 (2.3a,b)

where u = (u1, u2, u3) and v = (v1, v2, v3) represent the velocities of the fluid

and the particles respectively, p is thefluid pressure, N is the number density of the

particles which are distributed uniformly in the fluid of density ρ and kinematic

viscosity ν, m is the mass of the particle, K is the Stokes’ resistance coefficient
which for spherical particles of radius a is 6πµa, j is the current density, B is the
magnetic flux density, and � is the angular velocity of the coordinate system.

The Maxwell equations with usual MHD approximation are:

∇ · B = 0, ∇ × B = µ0j, ∇ × E = −∂B

∂t
, (2.4)

j = σ0(E+ u× B) (2.5)

where the displacement currents are neglected, µ0 and σ0 are constants and E is

the electric field.

We now consider the unsteady hydromagnetic flow in a semi-infinite ex-

panse of an incompressible electrically conducting viscous fluid with uniformly

distributed small inert spherical particles bounded by an infinite rigid non-

conducting plate in presence of a constant magnetic field B0 normal to the plate
at z = 0. Both the two-phase fluid and the plate are in a state of solid-body

rotation with constant angular velocity � about the z-axis normal to the plate
and in this situation the plate is set in motion in its own plane impulsively from

rest by imposing velocity tooth pulses periodically on it along the x-axis fixed
in the direction of length of the plate with y-axis also fixed in the plate normal
to its direction of motion.
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Figure 1 – Geometry of the flow configuration.

We assume that the magnetic Prandtl number Pm = σ0µ0ν << 1 which is

plausible formost electrically conducting fluids and no electric fieldE is imposed

on the system. This implies that the current is mainly due to induced electric field

so that j = σ0(u × B) and the applied magnetic field is essentially unaltered by

the electric current flowing through the fluid. We further assume that the induced

magnetic field produced by the motion of the fluid is negligible compared to the

applied magnetic field so that Lorentz force term in (2.1) becomes −σ0
ρ
B20u.

Moreover, the particles are uniformly distributed in the fluid and the flow field

is parallel to the x-direction. This implies that all the physical variables are

functions of z and t only and the equation (2.3b) is satisfied throughout the flow

field when N = N0 = constant.
On the basis of the assumptions made above, the unsteady motion of a two-

phase fluid-particle system occupying the semi-infinite space z > 0 is governed

by the equations:

∂q
∂t

+ 2i�q = ν
∂2q
∂z2

+ k
τ
(r − q) − nq (2.6)
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and
∂r
∂t

+ 2i�r = 1

τ
(q − r) (2.7)

where q = u1+iu2 is the complex fluid velocity, and r = v1+iv2 is the complex
particle velocity, k = mN0

ρ
is the ratio of the mass density of the particles and the

fluid density, usually called, the mass concentration of the particles, τ = m
K is the

relaxation time of the particles and n = σ0
ρ
B20 is the hydromagnetic parameter.

Introducing the non-dimensional variables

(q ′, r ′) = (q, r)
U

, z′ = z√
ντ

and t ′ = t
τ

(2.8)

and the non-dimensional flow parameters

E = 2�τ , n′ = nτ (2.9)

in equations (2.6) and (2.7) and dropping the primes, we get the non-dimensional

equations of motion in the form

∂q
∂t

+ i Eq = ∂2q
∂z2

+ k(r − q) − nq (2.10)

and
∂r
∂t

+ i Er = q − r . (2.11)

The above equations are to be solved subject to the boundary and initial condi-

tions given by

q(o, t) = f (t), t > 0, (2.12)

(q, r) −→ (0, 0) as z −→ ∞, t > 0, (2.13a,b)

(q, r) = (0, 0) at t ≤ 0 for all z, (2.14a,b)

where f (t) represents the tooth pulses which is an even periodic function of
time with period 2T and strength E1T .

3 Solution of the problem

In view of the nature of f (t) mentioned above the mathematical form of q(o, t)
may be written as

q(0, t) = E1
T

{
t H(t) + 2

∞∑
p=1

(−1)p(t − pT )H(t − pT )

}
(3.1)
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where H(t) is the Heaviside step function defined as

H(t − T ) = 0, t < T and H(t − T ) = 1, t ≥ T . (3.2)

Using half-range Fourier series the condition (3.1) may also be written as

q(0, t) = E1
2

− 4E1
π2

∞∑
p=0

cos
[
(2p + 1)π t/T ]
(2p + 1)2 . (3.3)

We now use Laplace transform to the equations (2.10) and (2.11) subject to initial

conditions given in (2.14a, b). The transformed equation for the fluid velocity
then becomes

d2q̄
dz2

−
{

(S + i E + 1)(S + i E + k + n) − k
S + i E + 1

}
q̄ = 0 (3.4)

with

q̄ −→ 0 as z −→ ∞ (3.4a)

and

q̄ = E1
T S2

tanh

(
ST
2

)
at z = 0 (3.4b)

where S is the Laplace transform variable.
The solution of (3.4) gives

q̄(z, S) = E1
T S2

tanh

(
ST
2

)
exp

{
−z
[
(S + i E + c)(S + i E + d)

S + i E + 1
] 1
2

}
(3.5)

where

c, d = 1

2

[
a1 + n ± {

a21 + 2n(a1 − 2) + n2} 12 ] (3.6a,b)

with a1 = 1+ k and c ≥ a1 ≥ 1 > d.
The inversion of (3.5) yields

q(z, t) = E1
T

γ+i∞∫
γ−i∞

tanh
(
ST
2

)
S2

exp


St − z

[
(S + i E + c)(S + i E + d)

S + i E + 1
] 1
2


 dS (3.7)

This inversion integral has a pole at S = 0, a series of simple poles at S =
± iβp and branch points at S = −(c+ i E), −(1+ i E), −(d + i E) as shown in

Figure 2 in the complex S-plane where βp = (2p+1)π
T , p = 0, 1, 2, . . .
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Figure 2 – Contour for the integral (3.7).

On evaluation of the integral (3.7) with the help of residue theorem applied to

the contour shown above, the solution for q(z, t) comes out as

q(z, t)
E1

= 1

2
exp

[
− z√

2
(L1 + i L2)

]

− 2

T 2

∞∑
p=0

1

β2p

[
eiβpt exp

{
− z√

2
(M1 + iM2)

}

+ e−iβpt exp
{

− z√
2
(N1 ± i N2)

}]

− e−i Et

πT

∞,1∫
c,d

e−xt tanh[(x + i E)T/2]
(x + i E)2

× Sin

[
z
{

(x − c)(x − d)
x − 1

} 1
2
]
dx

(3.8)
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where

L1, L2 = (1+ E2)−
1
2
{± [cd + E2(c + d − 1)]

+ [{cd + E2 (c + d − 1)}2 + E2(c + d − cd + E2)2
] 1
2
} 1
2 ,

(3.9a,b)

M1,M2 = (1+ (E + βp)
2)−

1
2
{± [cd + (E + βp)

2(c + d − 1)]
+ [{cd + (E + βp)

2 (c + d − 1)}2 + (E + βp)
2

× (c + d − cd + (E + βp)
2)2
] 1
2
} 1
2 ,

(3.10a,b)

N1, N2 = (1+ (E − βp)
2)−

1
2
{± [cd + (E − βp)

2(c + d − 1)]
+ [{cd + (E − βp)

2 (c + d − 1)}2 + (E − βp)
2

× (c + d − cd + (E − βp)
2)2
] 1
2
} 1
2 ,

(3.11a,b)

∫ ∞,1

c,d
=
∫ ∞

c
+
∫ 1

d
and± signs in (3.8) represent the cases E > βp and E < βp

respectively.

The particle velocity for the corresponding motion can be determined from

(2.11) as

r(z, t) = e−(1+i E)t
∫ t

0

q(z, ξ)e(1+i E)ξ dξ (3.12)

which on using (3.8) yields

r(z, t)
E1

=
exp

{
− z√

2
(L1 + i L2)

}
{1− e−(1+i E)t }

2(1+ E2)
1
2

e−iφ1

− 2

T 2

[ ∞∑
p=0

exp
{
− z√

2
(M1 + iM2)

}
β2p(1+ 〈E + βp〉2) 12

{
eiβpt − e−(1+i E)t}e−iφ2

+
∞∑
p=0

exp
{
− z√

2
(N1 ± i N2)

}
β2p(1+ 〈E − βp〉2) 12

{
e−iβpt − e−(1+i E)t}e−iφ3]

+ e−i Et

πT

∞,1∫
c,d

tanh[(x + i E)T/2]
(x + i E)2

e−xt − e−t
x − 1

× Sin

{
z
[
(x − c)(x − d)

x − 1
] 1
2

}
dx

(3.13)
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where tan φ1 = E, tan φ2 = E + βp and tan φ3 = E − βp.

Thus the exact solutions for the fluid velocity q(z, t) and the particle velocity
r(z, t) are described in equations (3.8) and (3.13) respectively.

4 Limiting cases

( i )The unsteady flow generated in the existing system due to impulsivelymoved

plate can be obtained by making the time period T −→ 0 which in turn makes

the frequency of pulsation βp −→ ∞. In this situation, the modified forms of
the fluid and the particle velocities, as obtained from (3.8) and (3.13) are

q(z, t)
E1

= 1

2
exp

[
− z√

2
(L1 + i L2)

]

− e−i Et

2π

∞,1∫
c,d

e−xt

(x + i E)
Sin

[
z
{

(x − c)(x − d)
x − 1

} 1
2

]
dx,

(4.1)

r(z, t)
E1

=
exp

{
− z√

2
(L1 + i L2)

}
{1− e−(1+i E)t }

2(1+ E2)
1
2

e−iφ1

+ e−i Et

2π

∞,1∫
c,d

e−xt − e−t
(x + i E)(x − 1) Sin

{
z
[
(x − c)(x − d)

x − 1
] 1
2

}
dx .

(4.2)

On putting E1 = 2, the fluid velocity corresponding to Rayleigh problem for

hydromagnetic rotating flow in a two-phase fluid can be obtained from (4.1) as

q(z, t) = exp

[
− z√

2
(L1 + i L2)

]

− e−i Et

π

∞,1∫
c,d

e−xt

(x + i E)
Sin

[
z
{

(x − c)(x − d)
x − 1

} 1
2

]
dx,

(4.3)

The result (4.3) is the same as that of Ghosh and Debnath [11] for their case

a = b = 1
2
, U = 0 and σ = 0. In particular, when k = 0 and n = 0,

(4.3) reduces to the result of Thornley [18] who discussed Stokes and Ray-

leigh layers in a rotating system.
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( ii ) For the clean fluid (k = 0), the result (3.8) gives the fluid velocity in the

form

q(z, t)
E1

= 1

2
exp

[
− z√

2
(α1 + iα2)

]

− 2

T 2

∞∑
p=0

1

β2p

[
exp

{
iβpt − z√

2
(m1 + im2)

}

+ exp

{
− iβpt − z√

2
(n1 ± in2)

}]

− e−i Et

πT

∞∫
n

tanh[(x + i E)T/2]
(x + i E)2

Sin
[
z
√
x − n]e−xtdx

(4.4)

where

α1, α2 = {
(n2 + E2)1/2 ± n}1/2,

m1,m2 = {
(n2 + 〈E + βp〉2)1/2 ± n}1/2,

n1, n2 = {
(n2 + 〈E − βp〉2)1/2 ± n}1/2.

The result (4.4) is a newone anddescribes thefluid velocity for the hydromagnetic

rotating flow of a viscous fluid near a pulsating plate.

Further, when T −→ 0, E1 = 2 and E 
= 0, (4.4) provides the solution of

hydromagnetic Ekman problem as

q(z, t) = exp

[
− z√

2
(α1 + iα2)

]

− e−i Et

π

∫ ∞

n

e−xt

x + i E Sin
[
z
√
x − n ]dx . (4.5)

This result in the limit n −→ 0 yields

q(z, t) = 1

2

[
ez

√
i E er f c

〈
z
2
√
t

+ √
i Et

〉
+ e−z

√
i E er f c

〈
z
2
√
t

− √
i Et

〉 ]
(4.6)

which agrees perfectly with Thornley’s [18] result (5.2) with c = 1.

Finally, in the limit t −→ ∞, (4.6) recovers the classical Ekman layer solution
q(z, t) = e−z

√
i E (4.7)
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and in absence of rotation (E = 0), it approaches to well-known Rayleigh

solution

q(z, t) = er f c
(
z
2
√
t

)
. (4.8)

( iii ) The solutions of the present problem in a non-rotating system (E = 0) are

given by

q(z, t)
E1

= 1

2
e−z

√
cd − 4

T 2

∞∑
p=0

1

β2p
e−γ1z/

√
2 Cos(βpt − γ2z/

√
2)

− 1

πT

∞,1∫
c,d

e−xt tanh(xT/2)

x2
Sin

{
z
[
(x − c)(x − d)

x − 1
]1/2}

dx,

(4.9)

and
r(z, t)
E1

= 1

2
e−z

√
cd(1− e−t)

− 2

T 2

∞∑
p=0

e−γ1z/
√
2

β2p

{
eiβpt − e−t
1+ iβp e−iγ2z/

√
2

+ e−iβpt − e−t
1− iβp eiγ2z/

√
2

}

+ 1

πT

∞,1∫
c,d

tanh(xT/2)

x2
e−xt − e−t
(x − 1)

× Sin

{
z
[
(x − c)(x − d)

x − 1
]1/2}

dx

(4.10)

where

γ1, γ2 = (
1+ β2p

)−1/2{± [
cd + β2p(c + d − 1)]

+ [{
cd + β2p(c + d − 1)}2 + β2p

(
c + d − cd + β2p

)2]1/2}1/2
.
(4.11a,b)

The results (4.9) and (4.10) are the same as those of Ghosh and Ghosh [10].

When T −→ 0 and E1 = 2, we get

q(z, t) = e−z
√
cd − 1

π

∞,1∫
c,d

e−xt

x
Sin

{
z
[
(x − c)(x − d)

x − 1
]1/2}

dx (4.12)

Comp. Appl. Math., Vol. 27, N. 1, 2008
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and

r(z, t) = e−z
√
cd (1− e−t) + 1

π

∞,1∫
c,d

e−xt − e−t
x(x − 1)

× Sin

{
z
[
(x − c)(x − d)

x − 1
]1/2}

dx .

(4.13)

These results are in complete agreementwithYang andHealy [19] corresponding

to their case ω −→ 0 (impulsively moved plate) and describe the solutions

for the fluid and the particle velocities associated with Stokes problems for a

conducting fluid with suspension of particles.

Further, on putting k = 0 (clean fluid) in (4.12), we find the fluid velocity cor-

responding to hydromagnetic Rayleigh problem in a non-rotating system which

is mentioned in Pai [20]. The solution for the fluid velocity in this case is given

by

q(z, t) = e−z
√
n − 1

π

∞∫
n

e−xt

x
Sin

{
z
√
x − n }dx

= 1

2

[
e−z

√
n er f c 〈η − √

nt〉 + ez√n er f c 〈η + √
nt〉]

(4.14)

where η = z
2
√
t
.

Finally, in the hydrodynamic limit (n → 0), (4.14) approaches the classical

Rayleigh layer solution

q(z, t) = er f c η (4.15)

which is same as derived in (4.8).

( iv ) The complex flow given by (3.8) and (3.13) attains the steady-state in the

limit t → ∞ and the ultimate flow field comprises of

q(z, t)
E1

= 1

2
exp

[
− z√

2
(L1 + i L2)

]

− 2

T 2

∞∑
p=0

1

β2p

[
eiβpt exp

{
− z√

2
(M1 + iM2)

}

+ e−iβpt exp
{

− z√
2
(N1 ± i N2)

}]
(4.16)
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and

r(z, t)
E1

=
exp

{− z√
2
(L1 + i L2)

}
2(1+ E2) 12

e−iφ1

− 2

T 2


 ∞∑
p=0

exp
{
iβpt − z√

2
(M1 + iM2)

}
β2p(1+ 〈E + βp〉2) 12

e−iφ2

+
∞∑
p=0

exp
{− iβpt − z√

2
(N1 ± i N2)

}
β2p(1+ 〈E − βp〉2) 12

e−iφ3




(4.17)

It follows from (4.16) and (4.17) that the particles in the steady-state are unable

to attain the actual fluid velocity due to the presence of rotation and pulsation.

But in the limit T → 0, E1 = 2 and E = 0, we have u1 = v1. This shows that,

in absence of pulsation and rotation, the particles attain the fluid velocity in the

steady motion generated by impulsively moved plate. This result is also known

from Michael and Miller’s [21] analysis.

It is also noticed from (4.16) that the ultimate flow consists of distinct multiple

boundary layers, commonly known as Stokes-Ekman Hartman layers, whose

thickness are of order

1

M1

√
2ντ ,

1

L1

√
2ντ ,

1

N1

√
2ντ where M1 > L1 > N1. (4.18)

These boundary layers are modified by rotation, the magnetic field and the par-

ticles.

However, in the limit T → 0, E1 = 2 and E 
= 0, i.e, in the case of flow
induced by impulsively moved plate in a rotating system, the above results (4.16)

and (4.17) yield

q(z, t) = exp

{
− z√

2
(L1 + i L2)

}
(4.19)

and

r(z, t) =
exp

{− z√
2
(L1 + i L2)

}
(1+ E2) 12

e−iφ1 (4.20)

which are identical to those of Ghosh and Debnath [11] corresponding to their

case for σ = 0, a = b = 1/2 and U = 0. Moreover, it is noticed that, in
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absence of pulsation, all the multiple boundary layers coalesce into a single

Ekman-Hartman layer of thickness of the order
1

L1

√
2ντ . In this situation, if

one makes E = 0, (4.19) and (4.20) coincide to give

q(z, t) = r(z, t) = e−z
√
n (4.21)

which provides not only u1 = v1 in a steady-state condition as stated earlier

but also exhibits the existence of a single Hartman layer of thickness of order√
ν/n. Thus the steady-state solution of the hydromagnetic Rayleigh problem

in a non-rotating system is recovered from the present analysis.

5 The wall shear stress

The exact solution for the components of the shear stress at the wall z = 0 can

be expressed as

DknE(0, t) + i LknE(0, t) = −
[
∂q
∂z

]
z=0

(5.1)

where D and L stand for the drag and the Lateral stress respectively on the wall
and q is known from (3.8).
Substituting the expression for q from (3.8) in (5.1), we get

DknE (0, t)
E1

+ i LknE (0, t)
E1

= L1 + i L2
2
√
2

−
√
2

T 2

∞∑
p=0

(M1 + iM2)eiβpt + (N1 ± i N2)e−iβpt
β2p

+ e−i Et

πT

∞,1∫
c,d

tanh[(x + i E)T/2]
(x + i E)2

[
(x − c)(x − d)

x − 1
]1/2

e−xt dx

(5.2)

The corresponding steady-state result is

DknE(0, t)
E1

+ i LknE(0, t)
E1

= L1 + i L2
2
√
2

−
√
2

T 2

∞∑
p=0

(M1 + iM2)eiβpt + (N1 ± i N2)e−iβpt
β2p

(5.3)
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which clearly expresses the fact that both the drag and the lateral stress at the wall

fluctuates in presence of pulsation even when the steady condition is attained and

in such a situation they contain the effects of rotation, the magnetic field and the

particles.

In the case of clean fluid flow (k = 0) and in hydrodynamic limit (n = 0), the

result (5.2) gives

D00E (0, t)
E1

+ i L00E (0, t)
E1

=
√
i E
2

−
√
2

T 2

∞∑
0

√
E + βpei(βpt+π/4) +√

E − βpe−i(βpt∓π/4)

β2p

+ e−i Et

πT

∞∫
0

tanh[(x + i E)T/2]
(x + i E)2

√
xe−xt dx

(5.4)

In this situation, if we make T → 0 and put E1 = 2, we get

D00E(0, t) + i L00E(0, t) = √
i E + e−i Et

π

∞∫
0

e−xt

x + i E
√
xdx

= √
i E(1− er f c

√
i Et) + 1√

π t
e−i Et

(5.5)

which describes the components of the wall shear stress for the unsteady Ekman

layer flow as mentioned in Ghosh and Debnath [11]. In the limit t → ∞, this
result recovers the well-known steady solution

D00E(0, t) + i L00E(0, t) = √
i E . (5.6)

On the other hand, when E = 0, (5.2) yields

Dkn0(0, t)
E1

=
√
cd
2

− 2
√
2

T 2

∞∑
p=0

γ1 Cos(βpt) − γ2 Sin(βpt)
β2p

+ 1

πT

∞,1∫
c,d

tanh(xT/2)

x2
[(x − c)(x − d)

x − 1 ]1/2e−xtdx
(5.7)

which in the limit T → 0 and E1 = 2 gives

Dkn0(0, t) = √
n + 1

π

∞,1∫
c,d

[
(x − c)(x − d)

x − 1
]1/2 e−xt

x
dx . (5.8)
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This result represents the drag on the plate exerted by a two-phase fluid under

hydromagnetic situation in a non-rotating system and is the same as that given

by Yang and Healy [19].

Finally, on putting k = o and n = o, the classical viscous stress on an impul-
sively moved plate is obtained from (5.8) as

D000(0, t) = 1

π

∫ ∞

0

e−xt√
x
dx = 1√

π t
. (5.9)

6 Numerical results

To investigate the effect of various flow parameters on the fluid velocity and the

wall shear stress, the exact solutions (3.8) and (5.2) are evaluated for the cases

E = 0, E = 0.1 and E = 1.0 with T = 2. These values of E and T are taken as
typical although actual values can be used according to the physical situations.

The changing nature of the velocity profiles are incorporated in Figures 3, 4(a,b)

and 5(a,b) for different values of the particle concentration (k), themagnetic field
(n) and time. It is observed from Figure 3 that in absence of rotation (E = 0)

both the particles and the magnetic field produce diminishing effect on the fluid

velocity u1 as long as time remains small. But, at large time, a significant rise
in the magnitude of the fluid velocity near the plate due to particles is noticed

although the magnetic field continues to exert damping effect on it. This is a

consequence of the effect of pulsation on the flow near the plate in absence of

rotation.

Figure 4(a) shows that for small values of rotation, the velocity component

u1 varies in a manner similar to that of non-rotating case excepting a significant
diminution in its magnitude near the plate due to rotation noticed at large values

of time. It is further interesting to note that the effect of particles on u1 near the
plate at large values of time and in absence of rotation is greatly diminished with

the increase of rotation. On the other hand, when rotation is small, themagnitude

of the component u2 of the fluid velocity near the plate is found to decrease due
to particles and the magnetic field for small values of time and increases and

decreases respectively with the particles and the magnetic field when time is

large (Fig. 4(b)). The above observation shows that for small values of rotation

and at large time the increasing effect of particles on u1 component of velocity
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Figure 3 – Variation of the fluid velocity u1 for different values of (k, n, t) when T = 2

and E = 0.0.

near the plate decreases compared to non-rotating casewhile the u2 component of
velocitywhich appears due to rotation increases near the platewith the increase of

particle concentration (k). As a result, the fluid velocity near the plate increases
with the particles only at large values of time when rotation is small. Such a

phenomenon is not found when rotation is large. We therefore say that pulsation

exerts its influence on the flow near the plate only when rotation is small and

time is large.

When large values of rotation is considered, as shown in Figures 5(a,b), the

velocity component u1 decreases sufficiently excepting at small values of time.
Moreover, u1 becomes independent of the magnetic field for all stages of the
motion when rotation is large. In this situation, the effect of particles to diminish

u1 near the plate persists even at large values of time which is not the case
when rotation is small. The velocity component u2, in the case of large rotation,
increases sharply near the plate and then diminishes rapidly with z. This is a
consequence of the effect of rotation. Besides, the magnitude of the component

u2 diminishes with particles and the magnetic field for all stages of the motion
as shown in Figure 5(b). Thus when rotation is large, the pulsation cannot play

a distinctive role to increase the flow near the plate at any stage of the motion.
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Figure 4(a) – Variation of the fluid velocity component u1 for different values of (k, n, t)
when T = 2 and E = 0.1.

Figure 4(b) – Variation of the fluid velocity component u2 for different values of (k, n, t)
when T = 2 and E = 0.1.
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Figure 5(a) – Variation of the fluid velocity component u1 for different values of (k, n, t)
when T = 2 and E = 1.0.

Figure 5(b) – Variation of the fluid velocity component u2 for different values of (k, n, t)
when T = 2 and E = 1.0.
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A comparative study of the magnitude of the fluid velocity produced by pulsa-

tion of the plate has been made with that generated by impulsively moved plate

for small and large values of rotation particularly when time is large. The results

are presented in Figures 6, 7(a,b) and 8(a,b). The distinctive feature of this study

is that the magnitude of the fluid velocity near the plate remains always higher in

an impulsively generated flow compared to its value produced by pulsation of the

plate. Moreover, in presence of pulsation, the increasing effect of the particles

on u1 component of fluid velocity near the plate for small rotation and large time,
is totally absent in a similar situation when the flow is generated by impulsively

moved plate. Additionally, the effect of pulsation on the particles to increase

the fluid velocity near the plate in the case of small rotation and large time can

be minimized with the increase of rotation (see Table I). In all other cases, the

particles and the magnetic field produce diminishing effect on the fluid velocity

near the plate for both the types of motion mentioned above.

Figure 6 – Fluid velocity u1 for different values of (k, n) when T = 2, E = 0.0 and

t = 25 corresponding to both pulsatile and impulsive motion of the plate.

The distribution of drag and the lateral stress on the plate are plotted in Fig-

ures 9, 10(a,b) and 11(a,b) with the advancement of time for the cases E = 0.0,
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Figure 7(a) – Variation of the fluid velocity component u1 for different values of (k, n)
when T = 2, E = 0.1 and t = 25 corresponding to both pulsatile and impulsive motion

of the plate.

Figure 7(b) – Variation of the fluid velocity component u2 for different values of (k, n)
when T = 2, E = 0.1 and t = 25 corresponding to both pulsatile and impulsive motion

of the plate.

Comp. Appl. Math., Vol. 27, N. 1, 2008



SANCHITA GHOSH and ARUN K. GHOSH 23

Figure 8(a) – Variation of the fluid velocity component u1 for different values of (k, n)
when T = 2, E = 1.0 and t = 25 corresponding to both pulsatile and impulsive motion

of the plate.

Figure 8(b) – Variation of the fluid velocity component u2 for different values of (k, n)
when T = 2, E = 1.0 and t = 25 corresponding to both pulsatile and impulsive motion

of the plate.
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E t n k
(|q|,θ)
z 0.0 0.5 1.0 1.5 2.0 2.5

0.1 2.5 0.05 0.0 |q| 0.750 0.642 0.488 0.339 0.220 0.135

θ 0.0 -.0324 -.0563 -.0759 -.0932 -.1089

1.0 |q| 0.750 0.568 0.383 0.237 0.137 0.075

θ 0.0 -.0331 -.0566 -.0755 -.0919 -.1066

0.1 1.0 |q| 0.750 0.561 0.374 0.229 0.131 0.071

θ 0.0 -.0327 -.0560 -.0748 -.0911 -.1058

25 0.05 0.0 |q| 0.5 0.336 0.261 0.234 0.225 0.218

θ 0.0 -.1001 -.2307 -.3494 -.4356 -.4994

1.0 |q| 0.5 0.339 0.272 0.243 0.222 0.201

θ 0.0 -.1608 -.3429 -.4940 -.6106 -.7090

0.1 1.0 |q| 0.5 0.330 0.255 0.220 0.195 0.172

θ 0.0 -.1411 -.3047 -.4440 -.5523 -.6434

1.0 2.5 0.05 0.0 |q| 0.750 0.602 0.446 0.306 0.197 0.121

θ 0.0 -.3078 -.5446 -.7431 -.9196 -1.080

1.0 |q| 0.750 0.528 0.346 0.211 0.121 0.066

θ 0.0 -.3103 -.5439 -.7355 -.9032 -1.055

0.1 1.0 |q| 0.750 0.522 0.339 0.205 0.117 0.063

θ 0.0 -.3062 -.5378 -.7283 -.8954 -1.047

25 0.05 0.0 |q| 0.5 0.248 0.114 0.077 0.083 0.084

θ 0.0 -.2770 -.7978 -1.669 -2.215 -2.451

1.0 |q| 0.5 0.208 0.083 0.060 0.057 0.047

θ 0.0 -.3188 -.9945 -1.909 -2.343 -2.530

0.1 1.0 |q| 0.5 0.208 0.082 0.057 0.053 0.044

θ 0.0 -.3118 -.9621 -1.871 -2.316 -2.603

Table 1 – Magnitude |q| and inclination θ of the fluid velocity vector near the plate for

different values of E , t , n, k.

E = 0.1 and E = 1.0. The effects of the particles and the magnetic field are also

considered in each case. It is seen that the drag on the plate fluctuates with time

in a manner similar to that of pulses on the plate for all values of rotation. More-

over, the drag, in each case, becomes negative at the end and at the beginning

of consecutive pulses acting on the plate. This is expected because near the end

of the decelerating motion of the plate the fluid in motion drives it towards its

destination by exerting drag in opposite direction (negative drag) which prevails

till the plate acquires sufficient momentum to overcome the negative drag during

its next accelerated motion. Besides, for small values of rotation, for instance,
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when E = 0.0 and E = 0.1, the maximum value of the drag is found to occur

at about t = 2τ which for large rotation (E = 1.0) appears at about t = 6τ .

Similar is the case for the appearance of the minimum value of the drag on the

plate. This shows that the time of occurrence of the maximum and the minimum

of the drag on the plate depends on rotation. In general, the drag on the plate

is increased by rotation, the magnetic field and the particles with the effect of

rotation increased due to the particles and diminished due to the magnetic field.

For instance, when t = 5.0, n = 0.3 and E is increased from 0.1 to 1.0, the drag
on the plate increases by 0.242% and 0.338% for k = 0.4 and 0.9 respectively.

Similarly, for t = 5.0, k = 0.4 and E is increased from 0.1 to 1.0, the drag
on the plate increases by 0.242% and 0.174% for n = 0.3 and 0.5 respectively.

Moreover, we find that the increasing effect of the particles on the drag dimin-

ishes due to increase of the magnetic field both in the rotating and non-rotating

system. Finally, we notice that, for all values of rotation, the steady-state result

(eqn. 5.3) contains the effect of both the particles and the magnetic field, which

differs from that of impulsively moved plate, in which case, the steady-state

result for the drag contains both the effects only when rotation is large [Ref. 11].

Figure 9 – Drag on the plate for various values of (k, n) when T = 2 and E = 0.0.
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Figure 10(a) – Drag on the plate for various values of (k, n) when T = 2 and E = 0.1.

Figure 10(b) – Lateral stress on the plate for various values of (k, n) when T = 2 and

E = 0.1.

The lateral stress, on the other hand, developed due to rotation, fluctuates with

time remaining always positive for all values of the flow parameters excepting

at the initial stage of the motion, which is not similar to that of drag. Moreover,
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Figure 11(a) – Drag on the plate for various values of (k, n) when T = 2 and E = 1.0.

Figure 11(b) – Lateral stress on the plate for various values of (k, n) when T = 2 and

E = 1.0.

Comp. Appl. Math., Vol. 27, N. 1, 2008



28 HYDROMAGNETIC ROTATING FLOW OF A DUSTY FLUID

unlike drag, the magnitude of the lateral stress diminishes with the magnetic

field and increases with the particles irrespective of the values of rotation. The

occurrence of the maximum value of the lateral stress depends on rotation with

its minimum at the initial stage of the motion. For instance, when E = 0.1,

the maximum of the lateral stress occurs at about t = 6.5τ and the same is

found at about t = 2.5τ when E = 1.0. Additionally, we observe that the

increasing effect of rotation on the lateral stress increases with the magnetic field

and decreases with the particles which is just reversed to that observed in the

case of drag on the plate.

Finally, the magnitude and inclination of the fluid velocity vector with increas-

ing z and for different values of E , t , n, k are shown in the Table I so that an
understanding about the propagation of disturbance away from the plate and the

structure of the associated Ekman spirals can be ascertained.

7 Conclusion

The Present problem is concerned with the investigation of the unsteady motion

in a fluid-particle system induced by multiple frequency unidirectional motion

of the boundary instead of the motion generated by oscillations of the boundary

with constant frequency about a constant mean as considered by the authors [11].

Accordingly, the flow phenomena encountered by the present authors and the au-

thors [11] are not the same. In the present investigation, the velocity distribution

remains unidirectional and positive for all the time instead of oscillating posi-

tive and negative flows as obtained by the authors [11]. However, the present

findings coincide with those of authors [11] only in the case of an impulsively

moved plate as it represents the same motion. It is further to be noted that blood

flows in large arteries, some atmospheric and oceanic flows driven by pressure

pulses and other similar problems associated with astrophysics, which are gen-

erally considered as unidirectional pulsatile flows, may easily be investigated

following the present analysis instead of that given by authors [11].

Additionally, as the major findings of the present analysis we notice that (i) in

presence of pulsation the particles increases the flow near the plate only when

rotation is small and time is large. Such a phenomenon does not occur in presence

of pulsation with large rotation or in absence of pulsation with any value of
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rotation, (ii) the intensity of pulsatile flow near the plate remains always less

than the impulsively generated flow, (iii) the magnetic field and the particles

require some time to exert their influence on the drag and the lateral stress from

the beginning of the unsteady motion of the plate caused by the pulses. This is

true for all values of rotation, (iv) for all values of rotation, the magnitude of drag

is increased by both the magnetic field and the particles while the magnitude of

the lateral stress is decreased by themagnetic field and increased by the particles.
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