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Abstract. In this paper, we study the nonlinear equation of the form

% u(x,t) — czljku(x, t) = f(x,t,u(x,t))

where [F is the ultra-hyperbolic operator iterated k-times, defined by

k
ot (22,2 K L U
X7 x5 X5 Xt Xpi0 Xotq
p + g = n is the dimension of the Euclidean space R”, (x,¢) = (x1,x2,...,x5,1) € R"x

(0, 00), k is a positive integer and c is a positive constant.
On the suitable conditions for f, u and for the spectrum of the heat kernel, we can find the
unique solution in the compact subset of R” x (0, 00). Moreover, if we put k = 1 and ¢ = 0 we

obtain the solution of nonlinear equation related to the heat equation.
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158 NONLINEAR ULTRA-HYPERBOLIC HEAT EQUATION

1 Introduction

It is well known that for the heat equation

0
Eu@J):&AM&O (1.1)
with the initial condition
u(x,0) = f(x)
where A = Z;’Zl ;{—22 is the Laplace operator and (x, ) = (x1, X2, ..., X, 1) €

R" x (0, c0), and f 'is a continuous function, we obtain the solution

1 _ 2
wr) = s o[- [ row a2

as the solution of (1.1).
Now, (1.2) can be written as u(x, t) = E(x, t) * f(x) where

E(x t)=;exp —ﬁ (1.3)
’ (4ctme)n/? 4c2t |° '

E(x,t) is called the heat kernel, where |x|> = xl2 + x% + -4 x,f andt > 0,
see [1, p. 208-209].

Moreover, we obtain E(x,t) — § ast — 0, where § is the Dirac-delta distri-
bution. We also have extended (1.1) to be the equation

%u(x, £y = A0u(x, 1) (1.4)

where [ is the ultra-hyperbolic operator, defined by

92 92 92 92 92 92
ax?  9x; Xy oxr,  0xl, X2,

We obtain the ultra-hyperbolic heat kernel

. P2 ptqg 2
@)1 ex i=1 X T 2 j=p+1 %
(dc2mt)n/? 4c2¢

Ex,t) =

where p + g = n is the dimension of the Euclidean space R” and i = +/—1.
For finding the kernel E(x, ¢) see [4].
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In this paper, we extend (1.4) to be the general of the nonlinear form

d
EH@J%—gﬂ%@J)=f&Jw@JD (1.5)
for (x, t) € R" x (0, oo) and with the following conditions on « and f as follows,

(1) u(x,t) € C*O@R") for any ¢ > 0 where C*®(R”") is the space of contin-

uous function with 2k-derivatives.
(2) f satisfies the Lipchitz condition, that is
|fx, tu) — f(x, t,w)| < Alu —w
where A4 is constantand 0 < 4 < 1.
3)
o0
/ | f(x,t,u(x,t))|dxdt < oo
0o Jre

for x = (x1,x2,...,x,) € R", ¢t € (0,00) and u(x, t) is continuous
function on R” x (0, 00).

Under such conditions of f, u and for the spectrum of E(x, ), we obtain the
convolution
u(x,t) = E(x,t)* f(x,t,u(x,1))

as a unique solution in the compact subset of R” x (0, co) and E(x, ¢) is an
elementary solution defined by (2.5).
2 Preliminaries

Definition 2.1. Let f(x) € L;(R")-the space of integrable function in R".
The Fourier transform of f (x) is defined by

fe) =

(Q2m)n/2 ~/Rn eii(é’X)f(x) dx (2.1)

where & = (61,8, ...,&,), x = (x1,x2,...,x,) € R", (§,x) = &1x1 +&x2 +
-+ &,x, is the usual inner product in R" and dx = dx,dx; ...dx,.
Also, the inverse of Fourier transform is defined by

S (x)

=@WmAﬂmﬂmﬁ 22)

Comp. Appl. Math., Vol. 28, N. 2, 2009



160 NONLINEAR ULTRA-HYPERBOLIC HEAT EQUATION

Definition 2.2. The spectrum of the kernel E(x,t) defined by (2.5) is the
bounded support of the Fourier transform E (&, t) for any fixed t > 0.

Definition 2.3. Let& = (&1, &, ..., &,) be a point in R" and we write

u=E+E+. .. +E & —E L, —... =&, . ptqg=n

Denote by
M, ={§eR": & >0 and u> 0}

the set of an interior of the forward cone, and T denotes the closure of T..

Let Q be spectrum of E(x, t) defined by Definition 2.2 for any fixed t > 0 and
Q C T Let E(&, t) be the Fourier transform of E(x, t) and define

k
1 +
e | (S0, 6 - XL 8) | foreery,

EE¢, 1= (2.3)
0 foré ¢ T',.
Lemma 2.1. Let L be the operator defined by
L=9 _ oy (2.4)
ot '
where OF is the ultra-hyperbolic operator iterated k-times defined by
. ? 9 92 92 9? 2 \"
= =4+ —=4+- +-— - ... ,
ax?  0x3 Xy dxr,  0xs, X34y
p + q = n is the dimension of R”, (x1,x3,...,%x,) € R", t € (0,00), kisa
positive integer and c is a positive constant. Then we obtain
k
1 2 o 2 3 2
E@n:@mémpctg;;—gg +ig, x)| dE (2.5)

as a elementary solution of (2.4) in the spectrum Q C R” fort > 0.
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Proof. Let LE(x,t) = é(x,t) where E(x, t) is the kernel or the elementary
solution of operator L and § is the Dirac-delta distribution. Thus

iE(x, 1) — POVE(x, t) = §(x)8(2).

ot
Take the Fourier transform defined by (2.1) to both sides of the equation, we
obtain
k
0§ — L& — 1
SEEn-c| 3 & Zs E.0) = Gamd O
J=p+l1

Thus .

E6.0 = 5o | ¢t ‘Z £7— Zs,-

J=p+1 =
where H (¢) is the Heaviside function. Since H(¢) = 1 for ¢ > 0. Therefore,
k
- 1 ) ptq
E(é,t):Wexp ct Z £ —25
Jj=p+l1

which has been already defined by (2.3). Thus

— IEDTE 1) dE — iEXN e 7

E(xvt) - (277,')”/2 /"e E(Svt)ds - (27_[)”/2/5‘26 E($9 t)ds
where Q is the spectrum of £ (x, ¢). Thus from (2.3)
k

1 2 « 2 : 2

E(x,t) = Gy /Qexp At jglgj - ;gi +i(g,x)| d¢ for t > 0.

O
Definition 2.4. Let us extend E(x, t) to R" x R by setting

k
o fgexp [czt (rte -3, 8) +i($,x):| d& for t >0,
0 for t <0,

E(x,t) =
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3 Main Results

Theorem 3.1. The kernel E(x, t) defined by (2.5) have the following proper-

ties:
(1) E(x,t) € C*™-the space infinitely differentiable.
) (& -0 E(x, 1) =0 for t > 0.
3)

22—11 M(t)

T OO}

for t >0,

where M (t) is a function of t in the spectrum 2 and T denote the Gamma
Sfunction. Thus E(x,t) is bounded for any fixed t > 0.

(4) lim E(x.,1) = 5.
t—

Proof.

(1) From (2.5), since

" 1 " (R, & '
B =g [ e | | Y o308 | witen fde

J=p+1
Thus E(x,t) e C*® forx e R", ¢t > 0.

(2) By computing directly, we obtain

(i — CZD/‘> E(x,t) = 0.

ot
(3) We have
1 p+q p k
Eer.0) =5 )n/exp | D &= & +iE x| de
i & Jj=p+1 i=1
1 [ p+q p k
|[E(x,t)| < ) /QeXp 2t Z 5/2—25[2 dE.

L j=p+1 i=1
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By changing to bipolar coordinates
& =rw, & =rw,..., 5, =rw, and
§p+l = SWp+1, %—erZ = SWp42; -+ Sp+q = SWp+q

where Y7 @? =1 and Zf“LZH w; = 1. Thus

|[E(x,t)| < / exp [czt (s2 — rz)k] rP s dr ds a2, d,
Q

1
(27)"
where d& = r?~ 597V dr ds d2,d2,, d2, and 2, are the elements of
surface area of the unit sphere in R?” and R? respectively. Since 2 C R”
is the spectrum of E(x,¢) and we suppose 0 < r < Rand0 <s < L

where R and L are constants. Thus we obtain

E(x,1)] < t(s* — r-lsi=Vds d
|(x)|_(2)nf/expcs r)]rs s dr
_Q,Q
= 20y ———=M(¢t) foranyfixedt > 0 in the spectrum 2
227 Mt
_ T Mw (3.1)
72 T((E)
where

R L .
M) = f / exp [czt (s* - rz) ]r"_lsq_l dsdr (3.2)
o Jo

is a function of
T

0, Q,=—— d Q, =——.

t > » F( an q ( )

Thus, for any fixed t > 0, E(x, t) is bounded.

(4) By (2.5), we have

k
ptq

1 o .
E(x,t):(zn)n/Qexp At Z éf—;éiz +i(&, x) | d&.

J=p+1
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Since E (x, t) exists, then

1 .
lim E(x, t) = / el &) gg
=0 Qm)" Jo

= 1 / ei(g’x) ds
(27'[)” n

=48(x), for x e R".

See [3, p. 396, Eq. (10.2.19b)]. O

Theorem 3.2. Given the nonlinear equation

%u(x, 1) — A0, ) = flx,t,u(x,t)) (3.3)

for (x,t) € R" x (0, 00), k is positive number and with the following conditions

onu and f as follows,
(1) u(x,t) € CEOMR) for any t > 0 where C?®(R") is the space of contin-
uous function with 2k-derivatives.
(2) f satisfies the Lipchitz condition, that is
|f(x, tu) — fx,t,w)] < Alu —w
where A is constant and 0 < A < 1.
3)
oo
/ | f (e, t,u(x,t))|dxdt < oo
0 R»
for x = (x1,x2,...,x,) € R", t € (0,00) and u(x, t) is continuous
Sfunction on R" x (0, 00).
Then, for the spectrum of E(x, t) we obtain the convolution

ulx,t)=E(x,t)* f(x,t,u(x,t)) (3.4)

as a unique solution of (3.3) for x € Qy where Q0 is an compact subset of
R”, 0 <t < T with T is constant and E(x, t) is an elementary solution defined
by (2.5) and also u(x, t) is bounded.

In particular, if we put k = 1 and ¢ = 0 in (3.3) then (3.3) reduces to the

nonlinear heat equation.
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Proof. Convolving both sides of (3.3) with E(x, ¢) and then we obtain the
solution
u(x,t) = E(x,0) * f(x, ¢, u(x, 1))

or

u(x,t):fw/ Ewr,s)f(x —rt—s,u(x —r,t —s))drds

where E(r, s) is given by Definition 2.4.
We next show that u(x, ¢) is bounded on R” x (0, c0). We have

|u(x,t)|§/oof |[E@, )| | f(x —rt —s,u(x —r, t —s))| drds
—00 ]Rn

- 227" N.M(t)

by the condition (3) and (3.1) where

N:fm/ | f(x,t,u(x,t))|dxdt.
0o JRre

Thus u(x, t) is bounded on R" x (0, 00).
To show that u(x, ¢) is unique, suppose there is another solution w(x, ¢) of
equation (3.3). Let the operator

B
L=— 720
ot

then (3.3) can be written in the form
Lu(x,t) = f(x,t,u(x,t)).
Thus
Lu(x,t) —Lw(x,t) = f(x,t,ulx,t)) — f(x,t, w(x,?)).
By the condition (2) of the Theorem,
[ILu(x,t) —Lw(x, )] < Alu(x,t) — w(x, t)]. (3.5

Let Q x (0, T] be compact subset of R” x (0,00) and L: C?(Qy) —>
CP(Qq) for 0 <t <T.
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Now (C(zk)(Qo), I| - ||) is a Banach space where u(x, 1) € C%(Q) for 0 <
t <T,| |l given by
llu(x, )l = sup lu(x, 1)].

xeQ

Then, from (3.5) with 0 < A4 < 1, the operator L is a contraction mapping on
CPP(Qp). Since (CQ")(QO), Il - ||) is a Banach space and L: C?Y(Qy) —
CC®M () is a contraction mapping on C?¥ (), by Contraction Theorem,
see [3, p. 300], we obtain the operator L has a fixed point and has unique-
ness property. Thus u(x,t) = w(x, t). It follows that the solution u(x, t) of
(3.3) is unique for (x, ¢) € Q¢ x (0, T'] where u(x, ) is defined by (3.4).

In particular, if we put £k = 1 and ¢ = 0 in (3.3) then (3.3) reduces to the
nonlinear heat equation

%u(x, t) — czAu(x, t) = f(x,t,u(x,t))

which has solution
ulx,t)=E(x,t)* f(x,t,u(x,t))

where E (x, t) is defined by (2.5) with £ = 1 and ¢ = 0. That is complete of
proof. U
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