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Abstract. In this paper, we improve some boundedness results, which have been obtained
with respect to nonlinear differential equations of fifth order without delay, to a certain functional
differential equation with constant delay. We give an illustrative example and also verify our main

result by means of Liaponov tecnique.
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1 Introduction

Among the scores of articles on the qualitative theory of differential equations, the
number of articles on boundedness of solutions to nonlinear fifth order differen-
tial equations with delay is significantly less than those on differential equations
without delay. For those contributions on the boundedness of solutions of non-
linear fifth order differential equations without delay, one can refer to the papers
of Abou-El Ela and Sadek [1], Chukwu [3], Sinha [14], Tung [15, 16, 17], Yuan
Hong [21] and some other references thereof. For those regarding the bound-
edness of solutions of nonlinear fifth order differential equations with delay, we
cite Tung ([18, 19]). All of the aforementioned contributions have focused on
the Liapunov’s second (direct) method [12] utilizing Liapunov functions and
functionals.
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214 THE BOUNDED SOLUTIONS

It is also worth mentioning that the construction of Liapunov functions and
functionals for higher order nonlinear differential equations still remains as a
general problem. In fact, the construction of Liapunov functional for delay
differential equations of higher orders is more difficult than the derivation of
Liapunov function for differential equations without delay. Since 1960 many
excellent books, most of them in Russian, have been published on the qualitative
behaviors of delay differential equations. See, for example, Burton [2], E’sgol’ts
[4], EI’sgol’ts and Norkin [5], Gopalsamy [6], Hale [7], Hale and Verduyn Lunel
[8], Kolmanovskii and Myshkis [9], Kolmanovskii and Nosov [10], Krasovskii
[11], Makay [13] and Yoshizawa [20] and the references listed in these books.

In this paper, we consider nonlinear fifth order delay differential equation

xO@) + filt,x(t —r), x' @t —r),x"t —r),x"(t —r),
xP@ —rx® @) + oax” (t) + a3x" (1) + oax' () + fs(x (@t —7)) (1)
=plt,x@t—r),x'(t—r),x"(t —r), X" = r)),

which is equivalent to the system

X)) =y, Y@ =z0), Z@O=wh), w) =u®),

u'(ty = — filt,x(t —r),yt —r),z(t —r), w(t —r), u(t —r))u(t)
— ww(t) —a3z(t) —agy(t) — fs(x (1)) + / f5(x(s)y(s)ds (2)

+ pt,x(@t—r),yt —r),zt —r),wt —r),ut —r)),
where f}, fs and p are continuous functions for the arguments displayed ex-
plicitly in equation (1); r is a positive constant , that is, 7 is a constant delay;
oy, a3 and o4 are some positive constants. This fact guarantees the existence
of the solution of delay differential equation (1) (see E’sgol’ts [4, p. 14]). It is
assumed that the derivative f(x) = % exists and is continuous for all x and all
solutions considered are assumed to be real valued. In addition, we assume that
the right-hand side of system (2) satisfies a Lipschitz condition in x(¢), y(¢),
z(t), w(t), u(t), x(t—r), y(t—r), z(t—r), w( —r)and u(t —r). Then the
solution is unique (see El’sgol’ts [4, p. 15]). Throughout the paper x(¢), y(¢),
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CEMIL TUNC 215

z(t), w(t) and u(?) are also abbreviated as x, y, z, w and u, respectively. It
should be noted that the equation considered here, (1), is completely different
than that investigated by Tung ([18, 19]).

2 Preliminaries

In order to reach our main result, we will give some basic information for
the general non-autonomous delay differential system, see also Burton [2],
El’sgol’ts [4], El’sgol’ts and Norkin [5], Gopalsamy [6], Hale [7], Hale and
Verduyn Lunel [8], Kolmanovskii and Myshkis [9], Kolmanovskii and
Nosov [10], Krasovskii [11], Makay [13] and Yoshizawa [20]. Now, we con-

sider the general non-autonomous delay differential system
x/:f(taxt)a xt(g):x(t-"_g)s _FSQSO, [207 (3)

where f : [0, 0c0) x Cy — N" is a continuous mapping, f'(¢,0) = 0, and we
suppose that f takes closed bounded sets into bounded sets of ). Here (C, ||.||)
is the Banach space of continuous function ¢: [ —r, 0] — R” with supremum
norm, r > 0; Cy is the open H-ball in C;

Cu:={pe(C[-r0], R): ol <H}.

Standard existence theory, see Burton [2], shows that if ¢ € Cy and ¢t > 0,
then there is at least one continuous solution x (, fy, ¢) such that on [#y, £ + o)
satisfying equation (3) for ¢ > t, x,(¢, ») = ¢ and « is a positive constant. If
there is a closed subset B C Cx such that the solution remains in B, then o = 0.

Further, the symbol |.| will denote the norm in R" with |x| = max;<;<, |x;].

Definition 1 (See [2]). A continuous function W: [0, co) — [0, co) with
W@©) =0, W(s) > 0 if s > 0, and W strictly increasing is a wedge. (We
denote wedges by W or W;, where i an integer.)

Definition 2 (See [2]). Let D be an open set in X" with 0 € D. A function
Vi [0, co) x D — [0, oo) is called positive definite if V' (¢, 0) = 0 and if there
is a wedge W, with V(¢,x) > Wi(|x|), and is called decrescent if there is a
wedge W, with V (¢, x) < Wr(|x]).
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216 THE BOUNDED SOLUTIONS

Definition 3 (See [2]). Let V (¢, ¢) be a continuous functional defined for
t >0, ¢ € Cy. The derivative of V' along solutions of (3) will be denoted
by V and is defined by the following relation

V(t, ¢) = lim sup V(t + hy xeen(to, ¢2) — V(t, x:(to, $)) |
h—0

where x (ty, ¢) is the solution of (3) with x, (%), ¢) = ¢.

Example. Let us consider the nonlinear second order delay differential equa-
tion:
X'+t x(t =), X' —r)x' @) + [t —r))

= p(t,x (@), x(t —r), x'(t),x'(t = 1))

which is equivalent to the system
x' =y,

V==t xt—r),yt—r)y— fx)+ / S (x(s)y(s)ds

t—r

+ p(t,x,x(t —r),y,y({t —r)).

We assume that the functions ¢ and p are continuous and satisfy the following:

et xt —r),yt —r)) = o

and
|p(t, x,x(t—r),y, y(it— r))| <q(?)

forall ¢, t € [0,00),x,x(t —r),y and y(¢ — r), where r is a positive con-
stant, constant delay, which will be determined later; max ¢(¢) < oo and g €
L'(0, 00); f is continuously differentiable satisfying the conditions: x ! f(x) >
ay, (x # 0), and |f/(x)| < L for all x; a;, ar and L are some positive con-

stants. In particular, let us take

1
1+ 24 x24+x2(t—r)+ 2+ y*@t—r)

p(t,x,x(t —r),y,y(t —r)) =
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Then, it follows that

1 1
< .
1+ +x24+x2(¢—r)+ 32+ y2@—r) ~ 1442

If we choose

1= ——,
9 1+
then we have
o0 o0 1
/q(s)ds=/1+szds=%<oo,
0 0

thatis, ¢ € L'(0, 0o). Now, we introduce the Liapunov functional

X 0 t 2
2Vt X0, y0) = 2/f(s)ds +y2+2A/ /yz(e)deds ,
0 —r t+s

where A is a positive constant which will be determined later. It is clear that the

functional V (¢, x;, y;) is positive definite:

V(t0,0) =0,
| B x 0 t %
Ve, xip) =5 2/f(s)ds +y2+2k/ /yz(e)deds
L. 0 —r t+s

1
2

r 1
2/ f(s)sds +y*| = E(ozzx2 +y2)% >0
0

v

M| —

s -
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218 THE BOUNDED SOLUTIONS

for all x(# 0) and y. Along a trajectory of the equation, we have

ZL
2

X 0 t

d 1

EV(t,xt,yt) =7 2/f(s)ds+y2+2kf /yz(e)deds
0

—r t+s
X | =29, x(t —=r), y(t =r)y* +2y / S e (s))y(s)ds

2y
L+ 22+ x24x2(t —r) + y2 4+ y2(t — 1)
t
+2)\y2r—2)L/y2(s)ds

t—r

+

Hence, we get
d 1 5
V(& xis y0) oV (8 xi y) = _Z["’(t’ x(t—r),yt—r)]y

y
A1+ 24+ x2+x2(t —r) + y> + Y2t — 1))

1 t
+Zy/f/(X(S))y(S)ds+

t

+1A2 le 2(s)d
4yr 1 yo(s)ds.

t—r
In view of afore mentioned assumptions, the inequality 2 |uv| < u? + v and

the fact
y _

L+2+x2 432 —r)+ 2+ 32t —r) ~ 1422

we find
[yl

d 1 5
Vit x y) 2V x 7)< = g[zal —(L+20r] y* + WA+0

+ é(L —2,\)/y2(s)ds.

L
If we choose A = > then we have

Iyl

d 1 2
V(t,x,,yt)a V(t, Xts yt) = - Z[al - Ll"] y + 4(1 +t2) .
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Therefore, it follows that

V(t,xtsyt)iV(t,x;,y,) < — la y2 + L
dt T4 41 +1)
_ bl
T A1 +12)

1
< —V(,x;, .
= 2(1+t2) (t, x¢, ¥e)

. o
for some constant & > 0 provided that » < fl Thus, we get

d
_Vt’ ’ S—'
ar” ey = 5

1
Now, integrating this inequality from O to ¢ and using the fact T

L'(0, 00), we have
T
V(ty Xt J/t) S V(Ov x09y0) + Z .
Therefore, one can conclude that
x| <K, Iyl=K

for all # > 0. That is,
Ix|<K, |x|<K

for all + > 0. This fact shows that all solutions of the equation considered
are bounded.

3 Main result

We establish the following result.

Theorem. In addition to the basic assumptions imposed on the functions f1,

f5 and p appearing in equation (1), we assume that there are positive constants

o, oy, Ay, 03, 0y, €, £, €1, & and A such that the following conditions hold:
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220 THE BOUNDED SOLUTIONS

(1) ooy —a3 >0, (1o — az)az — (@14 — as)a > 0,

) 2
8o := (304 — ars) (o — 3) — (14 — as)” > 0,

(w3 — ap0s) (1 — @3)
o104 — U5

Ay — (ctjaq4 — a5) > 2e0p  and

0304 — 005 o104 — U5 &
Ay = — - —>0.
a1y — O5 o100 — O3 (03]

(11) 20 5 fl(tv-x(t _r)vy(t —I"),Z(t _r)aw(t —}’),u(t —7")) — ] 5 &1
forallt, x(t —r), y(t —r), z(t —r), w(t —r) and u(t — r), where the

constant g1 satisfies the inequality

. { sar(aoy — as)? € 80(4}
&1 < min 5 T
l6ag(jar — o3)? 4oy 46
(i) f5(0) =0, f5(x) #0ifx # 0, x7' f5(x) > a(x #0), and f{(x) < as
forall x.

2 2
(fs/(x) —a5)2 < min{—8 oz4’ £ Tzom}.

) |pt,x@t —r),y(t —r),z(t —r),wt —r),u(t —r))| < q) for all t,
x(t—r),yt—r),z(t —r), wt —r)and u(t —r), where max q(t) < oo
and g € L'(0, 00).

Then, there exists a finite positive constant K such that the solution x(t) of

equation (1) defined by the initial functions
x() =¢@), x'(1)=¢'(), x"1)=9¢"1), X"O)=¢" (1), ty—r=t=1
satisfies the inequalities

x| <K, [YO|<K. |X"0|<K, "O|<K, |P0|=<kK

forall t > ty, where ¢ € C* ([z‘o -, to], gﬁ) provided that

o & 780[2(0[10[4 — O(5) E0l4 }

7 <min{ —, ; )
{20(5 2105 Bogas(ajoy —az) 2(8as + 21)
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Proof. For the proof, we introduce the Liapunov functional Vy = V(¢, x;, ys,
Zt, Wy Ug):

204(10n — 3)

—Uuz

2y = u? + 2ajuw +
o104 — s

o104 — s

+2 [a3 4+ w — 8:| wz + 2016wy + 204yw + 2w f5(x)
ajay — as
+ a3z + [w —aq — a18i| 2+ 28c2yz + 20104yz
a0y — o5

4)
aX(ajon — Ots)yz
o0 — s

— 2aszy + 2a1zf5(x) + + (a3 — ajas)y?

204(ajar —

0 t
3)yfs(x>+za / f5(&)dE + 21 / f V2 (0)dods
0

—r t+s

o104 — A5

0 t 0 t

+2u/ /zz(e)dé?ds+2p/ /w2(0)d0ds,

—r t+s —r t+s
where A, i and p are some positive constants which will be determined later in

the proof and § is also a positive constant satisfying

_as(ajon —a3)

8: +¢. )

a104 — U5

Now, in view of (4), it follows that

2 2
og(ajor —a 046 o
2y = [Halwwﬁw] +$<z+_sy)
4

ajoy — s (a4 — as)? a
2
(14 —as) [ a1 — a3 ag(aiay — a3)
fs(X) + e 4 +o1z+w
(1ap —a3) [ajog —as ajog — os

t

0
A (wAai2)? + —w? 426 <w> yz 4 ZA/ / 12(0)dods
o]

104 — QA5
—r t+s
0 1 0 ¢ 2
+2y,/ /zz(e)des—i-Zp/ /wz(e)dederZn,
—r t+s —r i+s i=1
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222 THE BOUNDED SOLUTIONS

where
(04104
V= 28/ fierds = L2 )
25
V2 = |:80(3 — 105 — % — 32i| y2.
as(aiay — as)

The assumptions f5(0) = 0, fs(x)sgnx > 0, x ' fs(x) > «a (x #0),
Jfi(x) < as and (5) imply that

(Othlz a3)

> 28/ fs(§)dE > 28/ afdE = sax?
0 0

Vo= 2e / F5(E)dE + / 158 [as — 120)]

and
) 2 —
v, = |: asdg e <s+ as(ajay — as) —a3)]y2
ag(ojog — o) ooty — o5
> @h
204 (a1 — as)
provided that
) 2 —
asdo . [8 n as(onoy —az) a3] ’
dag(aoy — as) ajog — os

which we now assume. Now, the estimates related to V; and V; yield

2
2V, > [u +a1w+wz+8y:|

o104 — 05
06450

2
(07
———— |z + —5y + eax? + Ay(w + o2)?
(ojos — as) oy

580 £ o304 — Q05
—y2 w +2¢ (— yz
2a4(aioy — as) a0y — s

(6)
t 0 t
+2A/ /y2(9)d0ds—|—2uf fzz(e)deds
—r i+s —r t+s
0 t
+2,0/ /wz(é)déds.
—r t+s
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Following a similar way as that of Tung [18], one can easily conclude from
(6) that
Vo > Dg(x2 +y2 +22+ w4+ uz) )

for a sufficiently small positive constant Dg. Now, let

%Vo(t,x,,y,,zt,wt,u,):f/o and  (x(@), y(t), z(t), w(®), u())

be a solution of system (2). Then, a direct computation along this solution shows
that

d
— Vol(t, x¢t, vt,zt, We, Up) =
7 ot xt, Ve, 2t, We, Up)

— [fl (t,x@t—r),y@t—r),z(¢t —r),wt —r),u(t —r)) —al] u?

adjogajop — o
— [ouoez - {oe3 e ad M :1(053;—2% 3) —6}] w?

agajoy —asz)

| azagagan —a3)
ajog —os

— {8y + ajaq4 — 065}:| 22— |:6044 -
ajayg — a5

fgm} v
— a1 [f1 t,x(@t—r),y@t—r),zt —r),wt —r),u(t —r)) — al] wu

oo —a3) [

filt,x@t —r),y@t —r),z(t —r),wt —r),ut —r)) — al]zu
ajog — as

-6 [fl t,x(t—r),yt—r),zt —r),wlt —r),u(t —r)) — al]yu

t
—[as = o) ] yw —ay [as — f5()] yz +u / fe(x(s)y(s)ds

t—r

t t
Faqw / FLes)y(s)ds + 2412 = 9) / S () (s)ds
ajog — as
t—r t—r
‘
+ 8y f ANV ($)ds + [u b4 MO0 Sy]
S oy —as
x plt,x(t —r),y(t —r),z@t —r), w(t —r),ut —r))
t ¢ t
+ Ayzr — A / y2(s)ds + ,uzzr — / zz(s)ds + pwzr —p / wz(s)ds,
t—r t—r t—r
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224 THE BOUNDED SOLUTIONS

In view of the assumptions of theorem and expression (5), we have that

[alaz B {O[3 L adslnm —ay) 3}] -

o104 — U5

azas(aian — a3)

— By + oy — as) > cap
o104 — 05

and
Ol4(0(10[2 — o

Say 3)fs/(X) > eay.

a104 — U5
By the assumption f{(x) < as and inequality 2 |uv| < u? + v?, we obtain the
following:

t

u / FLx()y(s)ds < %ru2 + % / Y2 (s)ds,

t—r
t

t
ayw f FLx(s))y(s)ds < “lzo‘srwu% / 2(s)ds,
t—r

2

t—r

ag(ajoy — a3) - agas(ojon — 0l3)r )

: / Sy (s)ds <

a0 — Us 2(ay04 — as)

t
agas(ajon — as)

2
(s)ds
2(ajoq — as) J 4

and

t

(S(X5

\ 8
8y f f5x(s)y(s)ds < %ryz += V2 (s)ds.

Making use of these inequalities, we get -

Vo < —[Ailt.x(t =), y(t —r).2(t = r), wit —r),u(t —r) — o] u?
—ew’ — (ecn)z” — (saa)y’
—ar[filt,x@ —r), y(t —r),z(t =), wt —r),u(t —r)) —o1]wu

_ N2 T ) =yt — 1), 20— 1) Wt — )l — 7)) — o] zu
a0y — o5

—S§[fit,x(t —r),y@t —r),z(t —r),w —r),u(t —r)) — o] yu
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(o —
+ [fix) —as|yw + o [ fi(x) —as]yz + u+a1w+4;1;4—2_a53)z+8y

X |plt,x(t —r),yt —r),z(t —r),w(t —r),u(t —r))|

o ol agos(ajony — o 1Yo
850 N9 0 s me) o, S0 o
2 2 2(a1o4 — as) 2

t t

+ A ry2 + Mzzr + pwzr +n / 22 (s)ds — 0 f w?(s)ds
t—r t—r

t

asas(aiop —a3)  as - aias - das / >
S s 222 d
+[ YNowwa—as) 272 T3 } y(s)ds

t—r

= _411 (it x(t =), y(t = 1), 2t =), w(t —r),u(t —r)) — 1) — 2as5r] u?
—1[28—< +061¢15)r] w2_|:78£_< +w>ri|zz
4 g 2 8 o 2(aa4 — as)

ey das 2
- — = ——+ X
() e

X |plt,x(@t —r),y(t —r),z(t —r),w(t —r),u(t —r))|

o104 — A5

t

agas(aiop —a3)  as - ajas - das / >
ST TRy d
+[ Yowwa—as) 272 T } y(s)ds

t—r

t t

8
- / 22 (s)ds — P / w?(s)ds — Z Vi, (8)
k=4

t—r t—r
where

1
Va = Z[AGxE =)y =)z =) wle =)t =) — o]

ag(ajay —053)[

filt,x(@t —r),y@t —r),z(t —r),wt —r),ult —r)) — al]zu
ajay — a5

ea3 5
+16Z’
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1
Vs = Z[fl(t,x(z =)yt —r)zt —r), wt—r),ult —r)) —aj]u

THE BOUNDED SOLUTIONS

2

+ oy [f] t,x(@t—r),yt—r)zt—r),wt —r),ult —r)) — ozl]w u

482

IR

w,

1
Vo = Z[AGxE =)y =)z =) wle =r)out =) — o]

+8[ /1t xt —r), y(t — 1), z(t —r), w(t —r), u(t —r)) —aj Jyu

824 .2
+ 2 yo,
& £y
V, = Z wz _ [fs/(x) —a5]yw+ TyZ’
gay say
Vg = ?Zz—al[fs/(x)—og]yZ-FTyz.

Now, subject to the assumptions (ii) and (iii) of theorem, one easily finds that

respectively. Gathering the above discussion into (8) and making use of the

assumption (ii), it follows that

: 1 1
N = = 5 leo = 2us7] u? — 7126 = (o + 20105 1] w?

+

_780{2
(e

t

e

st ) o s 0] [ s

2(o1aq4 — as) 2 2 2

u+oiw+

t—r

ag(aian — as)
——z 4y
o104 — 05

X |pt,x(@t —r),y(t —r),z(t —r),wlt —r),u® —r))|

t

t

—/L/zz(s)ds—p/wz(s)ds.

t—r

t—r
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If we let

— )
- agas(oon — as) as  onas | das ’
2(aj04 — as) 2 2

agas(ajon — a3) aas
= and p = ,

2(ojoty — as) 2

then subject to the assumption (i) of theorem the inequality (9) implies that

. 1 1
Vo < — 1 [e0 — 2ats7] u? — 1 [2e — 4(oja5)7] w?

7 _ )
_[Tec g (oo 053)r 2 a4 (045 +a)r|y?
8 o104 — U5 4 2

o010 — o
104 — 05

+

X |plt,x@t—r),yt —r),z(t —r),wlt —r),u(t —r))|.

Thus, one easily obtains that

d
%Vo(t’xt’yt’ztv wl‘aut) < —T(y2 +Zz + w2 +u2)

o010 —
Hawwzw‘
o104 — U5

_l’_

X |pt,x(t —r), y(t =r),z(t =r), wt —r), u(t —r))|

for some constant t > 0 provided that

. &0 & 780[2(0[10[4 — 065) E04
r < min .

205 20105 8auas(aas —as)’ 2(8as + 24)
Clearly, we have

(07 — o
u+alw+mz+5y'
104 — U5

—Vo(t, x4, Ye, 2o Wi uy) <
di o0(t, X1y Vi, 20, Wy, Uy)

X |P(f,x(t—”)a)’(t—”),Z(f—”),w(f—”),u(t—i’))|
as(aay — as)

a104 — U5

< (Iu|+a1|w|+ |Z|+5|y|) q(t)
< D7 (Iyl + |zl + lw| + lu]) g (@),
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where

D7=max{1, oy, 20 =) 5}.

a104 — U5

Using the fact [y| < 1 + 1%, |z| < 1 +22, |lw| < 1 +w? and |u| < 1 4 u?,
we see that

d
EVO(t’xt’yt’Ztv wtaul) S D7 [4+ ()/2 +22 + w2 +u2)] q(t)

In view of (7), it follows that

d _
EVO(t’ Xty yt’ Zgy Wy, ut) S 4D7Q(t) + D7D8 ! VO(I’ Xty )’z, Zyy Wy, Ut)‘](t)

Finally, integrating this inequality from ¢y, (¢, > 0), to ¢ and using the as-
sumption ¢ € L'(0, 0o) and Gronwall-Reid-Bellman inequality, we conclude
that

Vo(tv Xt, ytv Zt, Wy, ut) S VO(tOv xtO’ yto’ Ztov wtov uto)

t
4+ 4D A + D; D! / (VoS Xer vy 20, s, 115)) ()
1

0
t

< [Vo(to, X19» Vig» Ztgs Wiy Ugy) + 4D7.A] exp D7D8_1/q(s)ds

1o

< [Vo(to, Xty Vigs Ztg» Wiys Ugy) + 4D7A] exp (D7D8—1A) = K; < 00,
where K; > 0 is a constant,
Kl = [VO(tO’ xlo’ ylo’ ZtO’ wtO’ utO) + 4D7A] X eXp (D7D§1A) ’

and
o

A= /q(s)ds.
0

Now, the inequality (7) and the last inequality together give that
Xy 2w +ut <DV X, vz, wu) < K,
where K = K| Dg !, This fact completes the proof of theorem. U
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