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Abstract. A method of successive Lagrangian formulation of linear approximation for solving

boundary value problems of large deformation in finite elasticity is proposed. Instead of solving

the nonlinear problem, by assuming time steps small enough and the reference configuration

updated at every step, we can linearize the constitutive equation and reduce it to linear boundary

value problems to be solved successively with incremental boundary data. Moreover, nearly

incompressible elastic body is considered as an approximation to account for the condition of

incompressibility. For the proposed method, numerical computations of pure shear of a square

block for Mooney-Rivlin material are considered and the results are compared with the exact

solutions.
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1 Introduction

The constitutive equation of a solid body is usually expressed relative to a pre-

ferred reference configuration which exhibits specific material symmetries such

as isotropy. The constitutive functions are generally nonlinear. Therefore, for

large deformations, it leads to a system of nonlinear partial different equations

for the solution of boundary value problems. The problems are usually formu-

lated in Lagrangian coordinates in the preferred reference configuration, and
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numerical methods involve solving nonlinear systems as well as having other

difficulties, such as the boundary conditions may involve the deformed state

which depends on the solutions themselves. Alternatively, we are proposing a

different method for solving boundary value problem of large deformation in a

successive Lagrangian formulation of linear approximation.

Roughly speaking, the method of successive linear approximation is similar

to the Euler method for solving differential equations, i.e., successively at each

state, the tangent is calculated and projected to a neighboring state. In other

words, the constitutive equations are calculated at each state which will be re-

garded as the reference configuration (updated Lagrangian formulation) for the

next state, and assuming the deformation to the next state is small, the updated

constitutive equations are linearized. In this manner, it becomes a linear problem

just like the problems in linear elasticity from one state to the next state with

incremental small deformations.

For numerical computation of large deformations, “incremental methods”

have been widely discussed ([4, 7, 6]). The problems are usually formulated

with domains in the initial reference configuration, i.e., in “total” Lagrangian

formulation. This is the essential difference from the method proposed in this

paper in which at each step the reference configuration is updated in the “succes-

sive” Lagrangian formulation. Although the two approaches are mathematically

equivalent, the basic equations and numerical treatment of boundary conditions

are quite different. From the examples of pure shear, some advantages of the

present approach are discussed.

2 Updated reference configuration

Let κr be the preferred reference configuration of an elastic body B, and

x = χ(X, t), X ∈ κr (B),

be the deformation of the body κr (B) at time t . Let F(X, t) be the deformation

gradient and the Cauchy stress T (X, t) be given by the constitutive equation

T = Fκr (F). (1)
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It is well-known that the constitutive model based on the linear constitutive

equation, Hooke’s law, does not satisfy the principle of material frame-indif-

ference, and it can only be regarded as an approximation of some nonlinear

model for small deformations (see [3, 2]). Therefore, in order to consider large

deformations, the constitutive function Fκr is generally a nonlinear function of

the deformation F .

Let κt0 be the deformed configuration at time t0. The deformation

ξ = χ(X, t0)

from κr to κt0 need not be small. Let

F0 = F(X, t0) = ∇Xξ , T0 = T (X, t0),

be the deformation gradient with respect to configuration κr and the Cauchy

stress at t0 respectively.

Now, consider a deformation from κt0 to the configuration κt at time t > t0
such that the displacement vector

u = χ(X, t) − ξ , H = ∇ξ u,

where H is the displacement gradient with respect to the updated reference

configuration κt0 (emphasize, not κr ). Then

F = F(X, t) = ∇Xξ + ∇ξ u∇Xξ ,

or

F = (I + H)F0.

Therefore, we can represent the deformation and deformation gradient schemat-

ically in the following diagram:

F0 I + H

X ∈ κr (B) −−−−−−→ ξ ∈ κt0(B) −−−−−−→ x ∈ κt(B)

ξ = χ(X, t0) x = ξ + u

(2)
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2.1 Linearized constitutive equations

We shall assume that the displacement gradient H is small, |H | � 1, and

linearize the constitutive equation (1) relative to the configuration κt0 , namely,

T = T0 + ∇FFκr (F0)[F − F0] = T0 + ∇FFκr (F0)[H F0],

or

T = T0 + L(F0)[H ], (3)

where

L(F0)[H ] = ∇FFκr (F0)[H F0] (4)

defines the fourth order elasticity tensor L(F0) relative to the reference configu-

ration κt0 .

Furthermore, the (first) Piola-Kirchhoff stress tensor relative to the updated

reference configuration κt0 is given by

Tκt0
= det(I + H) T (I + H)−T

= det(I + H)
(
T0 + L(F0)[H ]

)
(I + H)−T

= (I + tr H)
(
T0 + L(F0)[H ]

)
(I − H T ) + o(2)

= T0 + (tr H)T0 − T0 H T + L(F0)[H ] + o(2),

where o(2) represents higher order terms in the small displacement gradient |H |.

We can also define the elasticity tensor for the Piola-Kirchhoff stress by

Lκt0
(F0, T0)[H ] = (tr H)T0 − T0 H T + L(F0)[H ], (5)

and write the linearized Piola-Kirchhoff stress as

Tκt0
= T0 + Lκt0

(F0, T0)[H ]. (6)

2.2 Nearly incompressible elastic body

For an incompressible elastic body, the constitutive equation (1) should be

replaced by

T = −p I + Fκr (F), det F = 1, (7)
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where p denotes the pressure which theoretically for a (perfectly) incompress-

ible material body depends not only on the deformation of the body, but also

on the boundary conditions.

However, we shall consider only nearly incompressible bodies, and assume

that the pressure is a function of density, p = p(ρ), or inversely, the density is a

function of pressure, ρ = ρ(p). Therefore, by nearly incompressible we mean

that the density is nearly insensitive to the change of pressure, i.e., the density ρ

is nearly constant, i.e.,
dρ

dp
≈ const. � 1. (8)

In the approximation considered in (2), since F = (I + H)F0, the Cauchy

stress in the configurations κt and κt0 are given by

T = −p I + Fκr (F), T0 = −p0 I + Fκr (F0),

Linearization in H with (4) gives

T − T0 = −(p − p0)I + ∇FFκr (F0)[H F0] = −(p − p0)I + L(F0)[H ]. (9)

On the other hand, from the equation of mass balance, we have

ρ̇ + ρ div ẋ = 0,

and since ρ = ρ(p), it follows that

ṗ + β tr grad ẋ = 0, (10)

where

β = ρ
(dρ

dp

)−1
� 1 (11)

is a time-independent constant, much greater than 1, by the assumption (8).

Furthermore, since grad ẋ = Ḟ F−1 and F = (I + H)F0, by assuming also

that |Ḣ | � 1, we have

grad ẋ = Ḣ F0((I + H)F0)
−1 = Ḣ F0 F−1

0 (I − H) + o(2) = Ḣ + o(2),

and the equation (10) becomes

ṗ + β tr Ḣ = 0,
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which by integration leads to

p − p0 = −β tr H.

Consequently, from (9), the Cauchy stress becomes

T = T0 + β(tr H)I + L(F0)[H ], (12)

and from (6), the Piola Kirchhoff stress

Tκt0
= T0 + β(tr H)I + Lκt0

(F0, T0)[H ]. (13)

Remark. Perhaps, someone might regard the parameter β introduced in (11)

as a penalization parameter. However, it is different from the usual penaliza-

tion method which introduces a penalizing term into the momentum equation

to account for kinematical or geometrical restrictions. In the present context, it

is a consequence of near-incompressibility assumption (8) resulting in the elim-

ination of the pressure from the constitutive equation by integrating the mass

balance equation, and there is no need to modify the momentum equation.

2.3 Mooney-Rivlin materials

As an example, we shall consider a (nearly) incompressible Mooney-Rivlin ma-

terial with the constitutive equation given by

T = −p I + Fκr (F), Fκr (F) = s1 B + s2 B−1, (14)

where B = F F T is the left Cauchy-Green strain tensor and the coefficients are

constants.

From (4) and (5), after taking the gradient of Fκr (F) at F0, we have

L(F0)[H ] = s1(H B0 + B0 H T ) − s2(B−1
0 H + H T B−1

0 ),

and

Lκt0
(F0, T0)[H ] = (tr H) T0 − T0 H T + s1(H B0 + B0 H T )

−s2(B−1
0 H + H T B−1

0 ).

In numerical examples presented later, the material is assumed to be of

Mooney-Rivlin type and these relations are used.
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3 Linearized boundary value problem

We can now consider the updated Lagrangian formulation of the boundary

value problem. Let � = κ(B) ⊂ IR3 be the region occupied by the body at

the configuration κ (standing for κt0 and instead of ξ , use X as a typical point of

κ(B) for simplicity). ∂� = 01 ∪ 02, and nκ be the exterior unit normal to ∂�.

Let the displacement vector relative to the configuration κ be

u(X, t) = x(X, t) − X, x(X, t0) = X .

Consider the boundary value problem of an elastic body in equilibrium without

external body force given by





− Div Tκ = 0 in �,

Tκnκ = f on 01,

u = g on 02,

(15)

where the surface traction f (X, t0) and the displacement g(X, t0) are prescribed.

Assuming that at t0, the deformation gradient F0 with respect to the preferred

configuration κr and the Cauchy stress T0 are known, and that 1t = t − t0 is

small enough, then from (13), we have

Tκ = T0 + β(tr H)I + Lκt0
(F0, T0)[H ] := T0 + L̃κ(F0, T0)[H ], (16)

where H(X, t) = ∇u(X, t) is the displacement gradient with respect to X in the

configuration κ . Upon substitution into (15), we have the following problem:





− Div(L̃κ(F0, T0)[∇u]) = Div T0 in �,

(L̃κ(F0, T0)[∇u]) nκ = f − T0nκ on 01,

u = g on 02.

(17)

This is the same problem to determine the displacement vector u(X, t) as a

boundary value problem in linear elasticity. The present linearization does not

rely on the incremental loading, as the driving force for the deformation of

the body from the current state, used in the usual incremental methods (see

[4, 7, 6]).
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At every time step, the idea of formulating the boundary value problem in the

form (17) is similar to the theory of small deformations superposed on finite

deformations (see [2, 1]). In this manner, either we are interested in the evolu-

tion of solutions with gradually changing boundary conditions resulting in large

deformation, or, we can treat the boundary values of finite elasticity as the final

value of a successive small incremental boundary values at each time step.

Remark 3.1. The constant β will be taken as a constant large enough to guaran-

tee the near-incompressibility, which in numerical computation can be checked

from the condition det F ≈ 1.

4 Numerical solution for large deformations

Recall the Euler method of solving differential equation, say ẏ = f (t), that for

a discrete time axis, ∙ ∙ ∙ < tn−1 < tn < tn+1 < ∙ ∙ ∙ , and y(tn) = yn , the solution

curve can be constructed by yn+1 = yn + f (tn)1t , where f (tn) is the tangent of

the solution curve at tn . We can use a similar strategy for solving problems of

large deformation, by solving linear boundary value problem stated in (17).

We consider a discrete time axis, ∙ ∙ ∙ < tn−1 < tn < tn+1 < ∙ ∙ ∙ with small

enough constant spacing 1t . Let κtn be the configuration of the body at the

instant tn and

X = x(X, tn) ∈ κtn (B).

Let

F0 = F0(X, tn), T0 = T0(X, tn)

be the deformation gradient relative to the preferred configuration κr and the

Cauchy stress respectively. The boundary value problem (17) with boundary

data f (X, tn) and g(X, tn) in Lagrangian formulation with respect to the refer-

ence configuration κtn , can now be solved as a problem in linear elasticity for

the displacement field u(X, tn+1) from the configuration κtn .

After solving the problem (17) at tn , the reference configuration κtn+1 at tn+1

can be updated from the displacement field, i.e.,

x(X, tn+1) = X + u(X, tn+1),
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while the deformation gradient

F0(X, tn+1) = (I + H(X, tn+1))F0(X, tn)

and the Cauchy stress from (10)

T0(X, tn+1) = T0(X, tn) + β tr H(X, tn+1)I + L(F0(X, tn))H(X, tn+1)

can be calculated at tn+1 so that the Lagrangian formulation of the problem in

the form (17), with boundary data f (X, tn+1) and g(X, tn+1), can proceed again

from the updated reference configuration at tn+1. This numerical procedure will

be referred to as the successive Lagrangian formulation of linear approximation

for large deformations, or simply as the method of Successive Linear Approxi-

mation (SLA).

Boundary value problems in finite elasticity known as Ericksen’s problem are

the textbook examples for which the exact solutions can be obtained by apply-

ing suitable surface tractions on the boundary alone irrespective of constitutive

properties of the elastic bodies. Such controllable deformations are called uni-

versal solutions, and for any incompressible isotropic elastic bodies, there are

several known classes of problems including homogeneous deformation, shear-

ing, bending, torsion, inflation and eversion [3, 2]. In developing a numerical

method for large deformations, such problems with exact solutions can be used

as benchmark problems for comparison. In the following we shall consider one

such problem: pure shear of a square block.

5 Example: pure shear

For applying the method of SLA, we consider the case of pure shear of a square

block, by applying tangential surface traction, the shear stress τ , on the surface

of the block as shown in Figure 1.

This boundary value problem requires that in the deformed state, the normal

stresses must vanish at the boundary and the time-dependent shear stress be

given by τ = α t for some small constant α in order to be consistent with the

assumption of small incremental deformation. In addition, since the boundary

conditions are of the Neumann type, for uniqueness of solution in numerical

computation, the point O will be kept fixed and the line O A will be held in the

horizontal direction as shown in Figure 1.
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τ

τ

τ

τ

O A

B

Figure 1 – Pure shear.

5.1 Exact solution

Theoretically, the shear deformation can be described as

x1 = λ1 X1 + κλ2 X2, x2 = λ2 X2, x3 = λ3 X3. (18)

In the case of pure shear, for which there are no applied normal stresses on the

surface, it can be proved (see for example, [3, 5]) that for any elastic material

body, the deformed state of a square block maintains the geometric shape of an

equilateral parallelogram as shown in Figure 1, i.e.,

O A = O B, or λ2
1 =

(
1 + κ2

)
λ2

2. (19)

Furthermore, for Mooney-Rivlin materials, from (14) and (18), the shear stress

τ = T12 is given by

τ = κ
(
s1λ

2
2 − s2λ

−2
1

)
. (20)

In the following numerical computation, we shall consider the two-dimen-

sional case, so that the thickness in x3-direction remains unchanged, i.e.,

λ3 = 1, and λ1λ2 = 1,

by incompressibility. Consequently, from (19) and (20), it follows that

λ1 =
(
1 − τ 2(s1 − s2)

−2
)−1/4

, κ =
(
λ4

1 − 1
)1/2

. (21)

Both the relations (19) and (21) will be used for comparison with the numerical

results.

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 18:37 — page 475 — #11

I-SHIH LIU, ROLCI A. CIPOLATTI and MAURO A. RINCON 475

5.2 Numerical results

We consider time step tn = n1t , so that the prescribed shear stress at time

step tn is τ = n 1τ for 1τ = α 1t . Following the method of SLA, at every

step n, the reference stress T0 and the deformation gradient F0 are obtained from

the previous step. We shall assume that the initial reference configuration κr is

stress-free, i.e., at n = 0, we have T0 = 0 and F0 = I .

The finite element method with initial rectangular bilinear elements is used

and the following data are given for numerical computation: s1 = 1, s2 = −0.1,

1τ = 0.004 and � = (0, 1) × (0, 1), 01 = ∂�.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 2 – The initial square (at n = 0) and its subsequent deformed states at n = 40,

n = 80, and n = 120.

The numerical results are shown in Figure 2, in which the initial square and

its deformed states at the applying shear stress τ = 40 1τ , τ = 80 1τ , and

τ = 120 1τ are shown. One can easily see that the geometric shapes of the

deformed state are equilateral parallelograms as expected. Indeed, the errors for

n = 40, n = 80, and n = 120 are respectively of 0.07%, 0.09% and 0.99%,
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by comparing the consecutive sides of the parallelogram, (0A − 0B)/0A, using

a mesh of 20 × 20 elements.

The deformation given by (18) is homogeneous, and the figures in Figure 2

seem to confirm this. In other words, theoretically the deformation gradient F is

constant. In particular, so are the values of λ1 = F11 and det F . These values have

been checked, and surely, they are not expected to be exactly constant everywhere

in the numerical results. Instead, we shall see how good those values are from

being constant by showing their average values together with their minima and

maxima over the body in Table 1 and Table 2.

n λex
1 λav

1

(
λmin

1 – λmax
1

)
Average Error

40 1.005360 1.005195 (1.003931 – 1.006040) 0.0164%

80 1.022352 1.022929 (1.020991 – 1.024568) 0.0564%

120 1.054227 1.060329 (1.056625 – 1.062738) 0.5788%

Table 1 – Comparison of the exact value of λ1 with the values obtained from numerical results at

various step n.

n J av
(
J min – J max

)

40 1.000000 (0.999994 – 1.000001)

80 0.999996 (0.999988 – 0.999999)

120 0.999969 (0.999955 – 0.999976)

Table 2 – Verification of the incompressibility condition J = det F ≈ 1 in the numerical simula-

tion at various step n.

At step n, the exact value of λ1, given in Table 1, is calculated from the

equation (21) for the shear stress τ = n1τ . The corresponding value obtained

from the numerical computation is shown in the table. From the average value

over the body and the percentage error, |λav
1 − λex

1 |/λex
1 , it shows that it is in very

good agreement with the analytical prediction. In addition, to show the value

is nearly constant in the body, the minimum and the maximum values of λ1 are

also given.

From Table 2, the condition for near-incompressibility, det F ≈ 1, is clearly

confirmed. The parameter β = 104 has been taken in the numerical computation.
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6 Final remarks

For numerical computation of large deformations in finite elasticity, to obviate

the difficulty of handling nonlinearities, “incremental methods” are widely dis-

cussed, for example, in the books by Oden [4], Ogden [7] and Ciarlet [6]. These

methods consist in letting the boundary forces vary by small increments from

zero to the given ones and to compute corresponding approximate solutions by

successive linearization. The general idea seems to be of purely mathematical

concern regarding linearization between successive boundary value problems.

The problems are usually formulated with domains in the initial reference con-

figuration, i.e., in Lagrangian formulation.

From mathematical viewpoint, the basic idea of the present method (SLA) is

similar to the other incremental methods, except that it is formulated using the

current state as the reference configuration and not relying on the incremental

loading as the driving force for further deformations. Consequently, it would

be possible to prove existence and uniqueness of successive incremental solu-

tions with proper regularity conditions on the current state of the body (see for

example [6]).

The conceptually simpler approach of the present method with successively

updated Lagrangian formulation at each step is mainly motivated from phys-

ical viewpoint. It also has an advantage that the prescription of (incremental)

boundary data is simpler and straightforward, if we remember that in Lagrangian

formulation, the corresponding boundary tractions to be prescribed in the ini-

tial reference configuration generally depend on the surface geometry of the

deformed configuration.

For example, in the problem of pure shear considered in this paper, knowing

that the shear tractions have to be applied tangentially on the (slanted) surfaces of

the deformed body (see Fig. 1), if one try to prescribe the boundary tractions on

the initial undeformed body, one might encounter a difficulty that the magnitude

as well as the direction of the tractions to be prescribed will also depend on

the deformation of the surface which is itself unknown before the problem is

solved, i.e., the boundary conditions depend on the solution itself, or at least, on

the previous incremental solution. In the present method, however, it does not

cause any difficulties at all, because in consecutive steps, it is a linear problem.
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Therefore, the difference between applying the corresponding tractions on the

surfaces of the consecutive states is of higher orders which is insignificant in the

linear approximation.

Another advantage of this formulation for (nearly) incompressible elastic body

lies in the elimination of the pressure from the integration of the equation of

mass balance. This is possible due to the assumption of near-incompressibility,

so that unlike the usual formulation there is no need to consider the pressure as

an unknown variable in addition to the unknown displacement vector function.
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