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Abstract. Open Pit Mine Planning problems are usually considered in a Mixed Integer Pro-

gramming context. Characterizing each attainable profile by a continuous function yields a con-

tinuous framework. It allows for a more detailed modeling of slope constraints and other material

properties of slanted layers. Although the resulting nonlinear programming problems are in

general non-convex and non-differentiable, they provide certain advantages as one can directly

compute sensitivities of optimal solutions w.r.t. small data perturbations. In this work duality

results are derived for the stationary problems of the continuous framework employing an addi-

tional condition called convex-likeness.
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1 Introduction

In the continuous framework for Open Pit Mine planning any profile is described

by a continuous function. A profile p is called feasible if it satisfies the Dirichlet

boundary condition p(x)− p0(x) = 0 for x ∈ ∂�, the nonnegativity condition

p(x)− p0(x) ≥ 0 for all x ∈ � and the so called slope constraint

3p(x) = lim sup
x̂→x←x̃

|p(x̂)− p(x̃)|

‖x̂ − x̃‖
≤ ω(x, p(x)) (1)
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with an upper semi continuous parameter ω. By construction, 3p(∙) is an upper

semi continuous functional ([11, Theorem 9.2]). The feasible set P ⊂ C(�)

contains all those profiles. The stationary Capacitated Final Open Pit Problem

(CFOP) for a given effort constraint E ∈ R+ reads

min −G(p)

s.t. p ∈ P

Ê(p) ≤ 0

(CFOP)

with Ê(p) = E(p)− E and

G(p) ≡
∫

�

p(x)∫

p0(x)

g(x, τ )dτdx

E(p) ≡
∫

�

p(x)∫

p0(x)

e(x, τ )dτdx

representing the gain generated by a certain profile p and the effort which is

necessary to create it. Here, the densities g, e ∈ L∞(� × Z) are only as-

sumed to be essentially bounded and the effort density has to be strictly pos-

itive, i.e. e(x, z) ≥ e0 > 0 which is a natural assumption. For the analy-

sis of general optimization problems in Banach spaces one normally needs at

least continuous Fréchet differentiability or convexity of the objective func-

tional and the constraint mapping [8]. Problem (CFOP) usually exhibits nei-

ther continuous Fréchet differentiability (consequence of [2, Proposition 5(ii)]

as Gateaux differentiability is necessary for Fréchet differentiability) nor con-

vexity (consequence of [2, Lemma 1] as this property is obtained only for

rather artificial choices of ω).

Although certain additional assumptions on the parameters of the model

ensure these properties, they are not taken into account in this work.

In block models [4] the bound on the slope ω is represented by precedence

relations, which effectively restricts its value to the simple rationals m/n with m

and n typically not exceeding 3. A major advantage of the continuous model is

the possibility to vary ω continuously and to obtain a Lagrange multiplier in the

sense of a measure of the sensitivity for the slope constraint. This is important

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/28 — 14:30 — page 199 — #3

A. GRIEWANK and N. STROGIES 199

as the parameter ω can only be derived by geostatistic tools and hence carry

uncertainties about the exact value. Because the mapping representing the slope

condition is expected to be neither differentiable nor convex an alternative to

the concepts named above needs to be applied. As it is not even expected to be

Lipschitz continuous the direct application of subdifferential calculus will not

yield satisfactory results either.

The article reviews duality results for so called convex-like optimization prob-

lems [8, 9] as these cover a slightly wider class of problems than the properly

convex ones. It is organized as follows.

Section 2 recalls the basic definitions needed for the analysis of convex-like

optimization problems. Moreover basic duality theorems for this class will be

given. It closes with the presentation of a characterization of solutions as saddle

points of the Lagrange functional.

Section 3 applies the duality theory for convex-like optimization problems to

the problem formulation of (CFOP) presented above with p ∈ P being con-

sidered as an implicit hard constraint, i.e. the optimization is done by only

considering feasible profiles. This formulation is a continuous analog to the

well known discrete ones as the values for ω are prescribed and hence equal

some kind of pointwise predecessor relation. Moreover an example shows that

the characteristic convex-likeness is not generally given. The section closes

with a more general theorem which covers at least some instances of the type

given in the example.

In Section 4 the stability constraint is included as a non-implicit constraint in

the optimization process. After the definition of the corresponding range space

of the constraint and the appropriate dual space we may apply again duality

results for convex-like optimization problems.

2 Preliminaries

In general an optimization problem defined on a Banach space X is given by

min F(x)

s.t. g(x) ∈ −CY

x ∈ Ŝ

(P)
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where F : X → R is the objective functional, g : X → Y a vector space

valued constraint mapping with Y being partially ordered by some cone CY and

Ŝ is a nonempty subset of X . To justify the investigation of (P) the feasible set

S = {x ∈ Ŝ|g(x) ∈ −CY } is assumed to be nonempty as well. Problem (P) will

be referred to as primal problem throughout.

A more intuitive access for this problem is obtained when (P) is reformulated

as a penalized optimization problem given in terms of

min
x∈Ŝ

sup
y∈C∗Y

F(x)+ 〈y, g(x)〉. (P′)

Here C∗Y ≡ {y ∈ Y ∗|〈y, x〉 ≥ 0 for all x ∈ CY } represents the so called dual

cone w.r.t. the duality pairing 〈∙, ∙〉Y ∗,Y . Throughout the indices Y ∗, Y will be

left out as it will be clear from the context for which spaces the pairings are

considered.

While if (P) and (P′) are not equivalent in general, it is well known that this

is guaranteed if the ordering cone CY is closed (e.g., see [8, Lemma 6.5]). Now

one introduces the dual problem of (P′) as

max
y∈C∗Y

inf
x∈Ŝ

F(x)+ 〈y, g(x)〉. (D)

For any feasible element x̃ ∈ S of the primal problem and any feasible element

of the dual problem ŷ ∈ C∗ one obtains the weak duality relation

inf
x∈Ŝ

F(x)+ 〈ŷ, g(x)〉 ≤ F(x̃).

Consequently a lower bound for the optimal value of (P) as the relationship has

to hold for the supremum of the left hand side w.r.t. all elements of the dual cone

as well. Note, that so far this infimum might be −∞ and hence it is not possible

to obtain quantitative properties of the solution of the primal problem. As (P)

is neither a convex problem nor F and g are once continuously Fréchet differ-

entiable, one has to generalize one of this concepts to obtain characterizations

of the solutions. One generalization of the well known concept of convexity is

the so called convex-like behavior first introduced in [9]. Here not a function is

assumed to be convex but a set which is constructed with the help of it.
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Definition 2.1 (convex-like). Let S be a nonempty subset of a vector space X .

Moreover let Y be a partially ordered vector space with ordering cone CY .

A mapping ĝ : S → Y is called convex-like if the set Mg = ĝ(S) + CY is

convex in Y .

The concept of convex-likeness indeed covers slightly more functions than the

ones just being convex. For example consider the function g : R→ R2, g(x) =

(sin(x), x) which is convex-like w.r.t. the positive orthant but obviously not

convex. The next step for the introduction of duality results is to ensure of a

constraint qualification. As it is well known, the Slater condition was originally

defined for convex problems but can be generalized to convex-like problems

as well.

Definition 2.2 (generalized Slater condition). Problem (P) satisfies the gener-

alized Slater condition (GSC) if there exists x ∈ Ŝ such that g(x) ∈ −int (CY ).

The following duality result applies the definitions introduced above and can

be found in [8, Theorem 6.7].

Theorem 2.1 (Duality Theorem applying convex-likeness). Consider an op-

timization problem of form (P). Moreover, let the ordering cone CY be closed

and contain interior points, i.e. int (CY ) 6= ∅. Furthermore, let the mapping

(F, g) : Ŝ → R × Y be convex-like w.r.t. the ordering cone R+ × CY in the

product space R× Y .

If (P) is solvable and the generalized Slater condition holds, there exist a

solution of the dual problem (D) as well and the extremal values of both prob-

lems coincide.

Essentially, the proof uses the convexity of the set

M = (F, g)(Ŝ)+ R+ × CY

and the fact, that due to the generalized Slater condition this set contains in-

terior points. We may thus apply the classical Eidelheit separation theorem

([7, Theorem 1.3]) on int (M) and (F(x∗), 0Y ) with x∗ being the optimal

solution of (P).
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One speaks of strong duality when (P) and (D) have solutions whose optimal

values coincide. For optimal solutions of (P) the following characterization can

be given where the proof is adapted from [6, Corollary 5.3].

Theorem 2.2 (characterization of solutions). Consider a problem of form (P).

Moreover let the composite mapping (F, g) : Ŝ→ R× Y be convex-like w.r.t.

the product cone R+ × CY , CY be closed with int (CY ) 6= ∅ and (GSC) be

satisfied.

Then the following assertions are equivalent

(i) x̄ is an optimal solution of (P)

(ii) ∃ȳ ∈ C∗Y s.t. (x̄, ȳ) is a saddle point of the Lagrange functional

L(x, y) = F(x)+ 〈y, g(x)〉

in the sense of L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) for all x, y ∈ S× C∗Y .

Proof. (i)⇒ (ii)

By Theorem 2.1 the dual problem is solvable and the extremal values coincide.

Hence one has

min
x∈Ŝ

sup
y∈C∗Y

F(x)+ 〈y, g(x)〉 ≤ F(x̄)+ 〈ȳ, g(x̄)〉

≤ max
y∈C∗Y

inf
x∈Ŝ

F(x)+ 〈y, g(x)〉

By ĝ(x̄) ∈ −CY and the definition of the infimum it follows

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ)

i.e. the Lagrange functional admits a saddle point.

(ii)⇒ (i)

As L admits an saddle point in (x̄, ȳ) it follows

〈y, ĝ(x̄)〉 ≤ 〈 ȳ, ĝ(x̄)〉∀y ∈ C∗Y .

Consequently, ĝ(x̄) ∈ −CY and thus x̄ is a feasible point of (P). Now the saddle

point provides the assertion by

L(x̄, ȳ) ≤ L(x, ȳ). �
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3 Partial dual w.r.t. capacity constraint

Obviously, (CFOP) is a problem of the general class (P). P ⊂ C(�) is a non-

empty subset of a vector space because at least the initial profile is an element of

this set. For this profile the Dirichlet boundary and the nonnegativity condition

are trivially satisfied. The slope constraint has to be satisfied as we assume

the initial surface to be stable. The range space of the inequality constraint

Ê : P → R is a totally ordered vector space where the ordering is characterized

by the cone R+ = [0,∞). The dual cone is R+ as well. The feasible set S

contains all profiles in P satisfying the capacity constraint. Hence one has

S := {p ∈ P|Ê(p) ∈ −R+}.

By Ê(p0) = −E the set S is nonempty for any effort bound providing a well

defined optimization problem, i.e. for all E ≥ 0. As the ordering cone CY =

R+ is closed w.r.t. any norm, one can pass from (CFOP) to the equivalent

penalized form

min
p∈P

sup
y∈R+

−G(p)+ 〈y, Ê(p)〉. (2)

The corresponding dual problem

max
y∈R+

inf
p∈P
−G(p)+ 〈y, Ê(p)〉 (3)

gives at least a lower bound on the extremal value of the primal problem

(CFOP). The following proposition shows, how strong duality can be achieved.

Proposition 3.1 (strong duality under additional conditions). If the com-

posite mapping (−G, Ê)(P) is convex-like w.r.t. to the product cone R+ × CY ,

then the dual problem (3) is solvable and the extremal values of both problems

coincide.

Proof. That (CFOP) is a problem of the form (P) has been discussed already.

Obviously the ordering cone R+ contains interior points and is closed. By [2,

Proposition 3.1] the primal problem is solvable. Hence it remains to show the

existence of a profile p ∈ P such that Ê(p) ∈ int (R+) which is synonymous to

Ê(p) < 0. Consider the initial profile p0. Obviously this profile is an element
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of the set of feasible profiles P. As E(p0) = 0 holds, one has Ê < 0 as long as

the capacity of the open pit mine is greater than zero, i.e. E > 0. In the case

of E being equal to zero, the only feasible solution for the resulting problem

is the initial profile itself. So no duality analysis has to be done and nothing is

to show. Hence E > 0 is a proper assumption and hence the existence of an

element satisfying the (GSC) is ensured.

The application of Theorem 2.1 completes the proof. �

Hence under additional requirements strong duality can be realized in the

sense of Theorem 2.1, i.e. there is no duality gap. In the case of continuous

gain and effort densities the class of problems which can be considered is sig-

nificantly larger than only the convex problems. Unfortunately, the set of prob-

lems which does not meet this requirement is also of significant size.

The following example describes a simple situation where the requirement

of convex-like behavior of (−G, Ê) is no longer satisfied because of a special

property of the gain functional. However the investigation of convex-like prob-

lems is justified as it covers a fairly large subclass of problems. For the investi-

gation of the example it is necessary to consider the gain-optimal combinations

of the image of the composite mapping.

Definition 3.1 (gain-optimal combinations). For any p ∈ P the pair (−G(p),

Ê(p)) is called combination of gain and effort for the problem (CFOP).

Under all combinations for a certain effort Ẽ a unique gain-optimal combi-

nation maximizes the gain, i.e. max{G(p)|p ∈ P, E(p) = Ẽ}.

Note, that the existence of the gain-optimal combinations is guaranteed anal-

ogously to the proof of existence for solutions of (CFOP).

Example 1 (not convex-like). For simplicity consider � ⊂ R1. Hence all

profiles are located in a rectangle �× Z with the characteristics shown in Fig-

ure 1. The parameters defining the optimization problem are given as follows.

ω ≡ 1 uniformly in �× Z .

e ≡ 1 uniformly in �× Z .

g

{
≡ 1 areas indicated by dark gray

≡ 0 areas indicated by light gray

Comp. Appl. Math., Vol. 30, N. 1, 2011
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The Figures 1 to 6 show profiles representing gain-optimal combinations. Fig-

ure 7 summarizes the development of the gain-optimal combinations and high-

lights particular combinations realized by the following profiles. The sum of

this graph and the positive orthant R2
+ would have to be convex if (−G, Ê) were

convex-like.

W.l.o.g. gain-optimal combinations will be considered for E = 25 as the

shape of (−G, Ê)+ R2
+ remains constant.

Figure 1 shows the unique profile realizing an gain-optimal combination for

Ẽ = 0. This combination, (0,−25), is denoted by a in Figure 7.

Figure 2 depicts a profile representing the gain-optimal combinations for

Ẽ = 9. Any feasible profile with −G(p) = −9 is a representative of this

combination. In figure 7 it can be found at point b.

Figure 3 displays the unique profile yielding the gain-optimal combination for

Ẽ = 21. Any profile excavating less material from the dark gray in favor of

more from the light gray would generate a smaller gain and any profile excavat-

ing more of the dark gray area would violate the slope constraint.

As there is no feasible profile generating more than G(p) = 21 with Ẽ = 22,

Figure 4 shows a realization of the gain-optimal combination (−21,−3).

The excavation process along the gain-optimal profiles is continued by ex-

tending the latter profile such that as much as possible of the valuable material

in layer three is excavated. Figure 5 shows an intermediate state on this excava-

tion process.

This procedure continues until the profile which is obtained fulfills the stabil-

ity condition as an equality everywhere. The corresponding profile can be seen

in Figure 6.

Obviously, the set M which is generated by addition of the first quadrant to

this graph is not convex as for example the line connecting the points c and f

cannot be in the resulting set M .

A remedy for the lack of convex-likeness is applying the convex hull operator

on the image of the composite mapping. This extends the class of problems for

which strong duality can be shown. Recall, that the convex hull of a set K is

the smallest convex set containingK. With the help of this operator, now one is

able to establish the following weakened form of Theorem 2.1.

Comp. Appl. Math., Vol. 30, N. 1, 2011
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Figure 1: (a) Figure 2: (b)

Figure 3: (c) Figure 4: (d)

Figure 5: (e) Figure 6: (f)

Theorem 3.1. If the set (−G, Ê)(p) with p ∈ P has a supporting tangent at

(−G, Ê)(p∗) where p∗ represents the optimal solution of (CFOP), then Theo-

rem 2.1 remains valid without the assumption of convex-likeness on (−G, Ê).
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Figure 7 – Development of gain-optimal combinations.

Proof. The main argument of the proof of Theorem 2.1 consist of the fact that

M = (F, g)(Ŝ)+ R+ × CY

is convex under the additional assumption of convex-likeness of the composite

mapping. Then (F(x∗), 0) can be separated from M .

To avoid the convex-likeness of the composite mapping, one has to ensure, that

(−G(p∗), 0) still can be separated from a convex set containing all combinations

(−G, Ê)(P). Consider the set

MC = conv
(
(−G, Ê)(P)

)
+ R+ × CY .

As a direct sum of two convex sets it is convex as well. By definition,

(−G, Ê)(p∗) is an element of the convex hull conv
(
(−G, Ê)(P)

)
and by

optimality one has (−G, Ê)(p∗) /∈ int (MC). Consequently, with

M := MC + R
2
+

one proofs the claim analogously to Theorem 2.1. �

Comp. Appl. Math., Vol. 30, N. 1, 2011



“main” — 2011/2/28 — 14:30 — page 208 — #12

208 DUALITY RESULTS FOR STATIONARY PROBLEMS

-25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0
efficient combinations

value of effort constraint

va
lu

e 
of

 o
bj

ec
tiv

e 
fu

nc
tio

n 
(-

G
)

(0,-20)

M

Figure 8 – Separation of (0, 20) by a linear functional.

By Example 1 it will be shown, that the given condition indeed covers a wider

class of problems than the convex-like ones.

As one can observe in Figure 7 all convex combinations of the points c and f

for the weights λ ∈ (0, 1) are not contained in M .

If one applies Theorem 3.1 one can separate the point (−G(p∗), 0) from the

set M̃ by a linear functional as long as the upper bound on the total effort is

E ≤ 21. In Figure 8 this can be observed for E = 20.

In fact, it depends strongly on the effort bound Ē whether strong duality can

be obtained or not. From this connection one can derive the following corollary

for (CFOP). Let p∞ denote the globally optimal profile.

Corollary 1. If the global minimum of −G within P is attained by a profile

p∞ ∈ P that satisfies the capacity constraint of the open pit, i.e.

min
p∈P
−G(p) = min

p ∈ P
Ê(p) ≤ 0

−G(p),

there is no duality gap between the primal and the dual problem.
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Proof. Obviously, (−G, Ê)(p∞) has to be an element on the boundary of MC .

Hence Theorem 3.1 is applicable. �

Thus a characterization of the global minimizer can be obtained if p∞ can

be reached without violating the effort constraint. In the next Corollary, pU

denotes the so called ultimate pit representing the maximal profile in the sense of

the lattice structure of P (see [2, Proposition 3]) which can be reached without

considering any effort constraint or gain optimality.

Corollary 2. If E ≥ E(pU ) holds, there is no duality gap between the

primal and the dual problem.

Proof. The global minimizer of the objective has to be attained by the feasible

profiles satisfying the capacity constraint because pU is an upper bound for all

profiles in the optimization process. Hence one can apply Corollary 1. �

A mining engineer can be expected to define the capacity of the mine large

enough to be able to excavate the global minimizer p∞ but not the ultimate

pit pU .

All in all one concludes that the investigation of the gain-optimal profiles is

one of the main challenges in the dualization theory for (CFOP). In the opinion

of the authors, the approach presented by Matheron [10] provides the best frame-

work for this task.

According to Theorem 2.2 the following saddle point property holds for

(CFOP) in the case of (−G, Ê) being convex-like.

Proposition 3.2 (Saddle Point of the Lagrangian). If the composite mapping

(−G, Ê)(P)→ R× R is convex-like w.r.t. the product cone R+ × R+, p∗ is a

solution of (CFOP) if and only if there exist a ȳ ∈ R+ s.t. (p∗, ȳ) is a saddle

point of

L(p, y) = −G(p)+ 〈y, Ê(p)〉.

4 Full Dual w.r.t. capacity constraint and slope constraint

So far, the slope constraint was given implicitly as this condition is included

in the definition of the feasible set. Hence one only obtains a dual variable

for the capacity but not for the stability constraint. A main advantage of the

Comp. Appl. Math., Vol. 30, N. 1, 2011
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continuous approach is the possibility to obtain a dual variable for this one and

get information about the sensitivity for this constraint.

In the following section an extended problem formulation will be analyzed.

In this formulation the stability condition is not longer given implicitly but as an

inequality constraint. The problem is given by

min −G(p)

s.t. p ∈ P̃

3̂(p(∙)) ≤ 0

Ê(p) ≤ 0

(CFOP′)

where 3̂(p(∙)) = 3p(∙)−ω(∙, p(∙)) represents the difference of the local slope

of the profile and the value which it is allowed to be at most in a pointwise

manner. Moreover, P̃ denotes a special subset of the vector space of continu-

ous functions. In general continuous functions do not have to admit a bounded

3p (e.g., g(x) = x3/2 sin(1/x)).

If this quantity is not bounded one is not able to make any assertion on the

difference 3̂. Hence one has to pass from C(�) to a subset of functions sat-

isfying certain regularity conditions. This functions will be in the subspace of

Lipschitz continuous functions Lip(�) which is dense in C(�) and guarantees

the operator 3p(x) at least to be finite for all considered profiles p and all x ∈ �.

The feasible set is now

P̃ ≡
{

p ∈ Lip(�) | p satisfies boundary and nonnegativity condition
}

For the investigation of the duality properties of problem (CFOP′) one has to

know about the range space of the constraint mapping. The first component

is, as shown above, the space of real numbers R1. For the difference of local

Lipschitz constant and ω the following Lemma answers this question.

Lemma 4.1 (range space of the slope constraint). The difference representing

the slope constraint

3̂(p(∙)) = 3p(x)− ω(x, p(x))

is an element of L∞(�) for any profile p ∈ P̃.

Proof. The proof is obvious and hence omitted. �
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To be able to describe the Lagrange multipliers concerning (CFOP′), the dual

space of L∞(�) has to be introduced. According to Yosida and Hewitt [12] this

is the space of finitely additive signed measures or shortly ba space which is a

notation introduced in [5, IX.2.15]. Here ba is short for bounded additive. The

space of the finitely additive signed measure endowed with the norm of total

variation ‖μ‖var is a Banach space and will be referred to as (ba(�), ‖ ∙ ‖var ).

To verify that it is indeed a Banach space see e.g., [1, section 4.19]. The space

of bounded linear functionals on L∞(�) can be identified with this space as it

can be found in [12, Theorem 2.3].

The ordering cone on the vector space L∞(�) contains all functions which

are not negative almost everywhere, i.e.

CL∞(�) ≡
{

f ∈ L∞(�)| f (x) ≥ 0 for almost all x ∈ �
}
. (4)

It is well known that this cone is closed and it’s interior is the set of all essen-

tially bounded functions with an essentially infimum being strictly greater than

zero.

The extended problem formulation (CFOP′) is a problem which is equivalent

to (P) as well. P̃ ⊂ Lip(�) is a nonempty subset of a vector space as at least

the initial profile is contained in it. The range space of the constraint mapping

(Ê, 3̂p) : P̃ → R× L∞(�) is a totally ordered vector space with ordering cone

R+×CL∞(�). The feasible set S contains all profiles in P̃ satisfying the capacity

constraint and the slope constraint, i.e. one has

S =
{

p ∈ P̃|(Ê, 3̂)(p) ∈ −(R+ × CL∞(�))
}

This set is nonempty as well as again the initial profile has to be an element of

it in the case of E ≥ 0. To determine the dual cone of the range space of the

inequality constraint recall the dual space of it.

R+ × ba(�)

The dual cone of the space of essentially bounded functions contains all finitely

additive signed measures assigning any measurable subset of � a non negative

real number, i.e.

C∗L∞(�) ≡
{
μ ∈ ba(�,B(�))|μ(A) ≥ 0 for all A ∈ B(�)

}
. (5)
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Here B(�) denotes the set of all Borel sets in �. The claim will be proven by

contradiction. Let μ be a finitely additive signed measure in the dual cone with

μ(A) < 0 for at least one measurable subset A ⊂ �. The indicator function

χA of this set is an element of the ordering cone of the essentially bounded

functions CL∞(�) as it only attains the values 0 and 1. For this function one

obtains

〈μ, χA〉 =
∫

�

χA(x)dμ(x) =
∫

A

1dμ(x) = μ(A) ≤ 0

what contradicts the definition of the ordering cone.

As the ordering cone R+ × CL∞(�) is closed one might pass from (CFOP′) to

the equivalent penalized form

min
p∈P̃

sup
l ∈ R+

μ ∈ C∗L∞(�)

−G(p)+ 〈l, Ê(p)〉 + 〈μ, 3̂(p)〉. (6)

The corresponding dual problem

max
l ∈ R+

μ ∈ C∗L∞(�)

inf
p∈P̃
−G(p)+ 〈l, Ê(p)〉 + 〈μ, 3̂(p)〉 (7)

gives at least a lower bound on the extremal value of problem (CFOP′). More-

over, under certain additional requirements, it is possible to show the validity of

strong duality what is proven by the following proposition.

Proposition 4.1 (Duality and the Extended Problem). If the composite map-

ping (−G, (Ê, 3̂))(P̃) is convex-like w.r.t. the product coneR+×CY and (GSC)

is satisfied the Theorem 2.1 is applicable.

Hence the dual problem (7) is solvable and the extremal values of both prob-

lems coincide.

Proof. The proof is analogous to Theorem 2.1. �

In the setting of (CFOP′) the existence of a profile in the interior points of the

ordering cone is a non trivial property. As the product cone CY = R+ ×CL∞(�)

is endowed with the product topology, an element lies in the interior of it if it is
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an element of the interior points of both original cones. As the existence of a

profile p with Ê(p) ∈ int (R+) is ensured easily as seen in the preceding section,

this is not clear for the slope condition. For example consider a volume with a

vertical part where no slope is possible for a profile. A two dimensional sketch

of this scenario can be found in Figure 9.

Figure 9 – Volume with vertical inclusion.

Here one can observe immediately, that any profile p has to satisfy

3̂(p)(x) = 0

for all x with ω(x, ∙) = 0. In this case there cannot exist a profile in the interior

of the negative ordering cone of −CL∞(�) as these elements has to be strictly

smaller than zero almost everywhere.

A possible remedy is to assume the initial profile p0 to be an element of the

feasible profiles which does strictly fulfill the slope condition anywhere accord-

ing to [2, Proposition 2.3]. Then a profile in the interior of the product cone

would be guaranteed.

According to Theorem 2.2 the following characterization of solutions for

the extended problem formulation (CFOP′) in the case of (−G, (Ê, 3̂)) being

convex-like can be given.

Proposition 4.2 (Saddle Point property). If the composite mapping

(−G, Ê, 3̂)(P̃)→ R× R× L∞(�)

is convex-like w.r.t. the product cone R+ × R+ × CL∞(�), p∗ is a solution of

(CFOP′) if and only if there exist a (ȳ1, ȳ2) ∈ R+ × ba(�) s.t. (p∗, (ȳ1, ȳ2)) is
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a saddle point of

L(p, y1, y2) = −G(p)+ 〈y1, Ê(p)〉 + 〈y2, 3̂(p)〉.

5 Conclusions

We were able to apply the duality theory for convex-like optimization prob-

lems to the stationary problem (CFOP) and the extended problem formulation

(CFOP′). Correspondingly the existence of Lagrange multipliers for the effort

constraint and also the slope constraint was proven.

Unfortunately this Lagrange multiplier in general only is a measure. This lack

of functional regularity provides a challenge for numerical methods. Typical

remedies are known, e.g. from PDE constraint optimization and can be distin-

guished into two main concepts. The first is to consider an a priori discretized

problem as in [3]. The second one is to regularize the constraint yielding a

Lagrange multiplier that is a function and can thus be conveniently represented

and manipulated numerically.

Suitable numerical schemes are currently under investigation.
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