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1 Introduction

In this paper, numerical approaches for optimization problems governed by

nonlinear systems of hyperbolic conservation laws are considered. More pre-

cisely, the investigation of optimal control problems subject to the dimension-

less one-dimensional Euler system in conservative variables [1]

u(x, t) = (ρ, ρu, ρ(bθ + u2))(x, t)

given as

∂tρ + ∂x (ρu) = 0, (1a)

∂t (ρu)+ ∂x
(
ρu2 + p

)
= 0, (1b)

∂t
(
ρ

(
bθ + u2

))
+ ∂x

(
ρu

(
bθ + u2

)
+ 2pu

)
= 0, (1c)

where t is the time, x is the spatial coordinate, ρ, u, θ and

p = ρθ

are the density, the flow velocity in the x direction, the temperature, and the

pressure of a gas, respectively. The constant b = 2
γ−1 with γ the specific heat

ratio. The initial conditions are

u0 =
(
ρ0, ρ0u0, ρ0

(
bθ0 + (u0)

2
))

at t = 0, (2)

where ρ0, u0, and θ0 are the given initial density, velocity and temperature,

respectively, as functions of the spatial variable x . This form of the Euler equa-

tion is applied in order to be consistent with the lattice Boltzmann equation as

studied in [1]. Here the main interest is the computation of optimal initial values

u0 = u(x, 0) which match a given desired state ud at time T . The problem is

formulated as

min
u0
J(u(∙, T ), u0; ud) subject to equation (1) and u(x, t = 0) = u0(x). (3)

It is known that in general the semi-group generated by a conservation law is

non-differentiable in L1 even in the scalar, one-dimensional case. A differential

structure on general BV -solutions for hyperbolic conservation laws in one space

dimension has been introduced and discussed in [2, 3, 4, 5, 6]. Based on the
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derived calculus, first-order optimality conditions for systems have been given

in [7]. Theoretical discussion on the resulting non-conservative equations can

be found in [8, 9, 10]. Numerical results in the scalar, one-dimensional case

with distributed control are also presented in [11, 6, 12]. Work on advection

equations has been presented in [13]. For time integration of optimal control

problems, Runge-Kutta schemes have been developed in [17]. In general, it can

be observed that the shock waves that occur in the solution of nonlinear systems

of conservation laws pose a challenge [26, 2, 3, 4, 5, 6, 11, 12].

More recently alternative approaches for developing computational ap-

proaches for optimization problems governed by nonlinear conservation laws

based on adjoint methods have appeared in the literature [26, 15, 14, 16]. These

methods have also been applied to flow models which develop discontinuities in

flow variables, for example, shock waves [26]. Optimal control problems gov-

erned by scalar conservation laws were presented in [26] and specifically for the

inviscid one-dimensional Burgers equation in [14]. Also an adjoint formulation

for the optimization of viscous flows suitable for both structured and unstruc-

tured grids was presented in [15]. Shape optimization of aerodynamic problems

in which a two-dimensional system is governed by the steady Euler equations

were also presented in [16].

The Lattice Boltzmann method (LBM) which is a discretisation of the Lattice

Boltzmann Equations (LBE) has been applied extensively to solve problems

in fluid dynamics. For more details the reader is referred to [20, 19] and the

references therein. The application of the method for the approximation of the

Euler equations was proposed in [1]. The solution of optimization problems in

computational fluid dynamics using the LBM has been presented in [27] where

problems of shape optimization and topology optimization were considered and

the sensitivity method used. The macroscopic models were the incompressible

Navier-Stokes equations [28, 29].

The aim of this paper is to contribute to the development of numerical ap-

proaches for solving optimization problems based on the adjoint method. The

main focus of this paper is to develop simple and efficient numerical approaches

for optimization problems governed by hyperbolic equations. Instead of apply-

ing the nonlinear hyperbolic problems directly, semi-linear problems with linear

flux functions and stiff non-linear source terms are derived. In this framework
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the hyperbolic structure of the constraints is preserved in the asymptotic limit

at the additional expense of increasing the number of equations and introducing

additional source terms (relaxation terms). Two relaxation approaches are con-

sidered: the Lattice-Boltzmann equations (LBE) [18, 19, 1, 20] and the so called

relaxation approximations [21, 22, 23]. For the latter, strong-stability preserving

(SSP) [24] as well as asymptotic-preserving Implicit-Explicit (IMEX) schemes

are applied for time integration of the hyperbolic systems with stiff source

terms [25]. For such relaxation systems, the adjoint equation is derived. More-

over, the optimal flow variables are obtained at the hydrodynamic limit as

the Knudsen number goes to zero. The properties of the relaxation schemes

applied to optimization problems have been discussed in [26] for scalar non-

linear problems. Therefore, in Section 3 a brief presentation of the method

based on relaxation approaches will be given. The formulation of the optimal

control problem as an optimization problem with partial differential equations

is presented in Section 2. The partial differential equations (PDE) are replaced

with either their kinetic approximation formulated as LBEs or their relaxation

approximation in the form of a relaxation system. A brief discussion on the

relaxation method for the control of systems of conservation laws is presented

in Section 3. Thereafter the Euler equations and their approximation using a

Lattice Boltzmann formulation are presented in Section 4. Moreover in this

section, a brief discussion on the convergence of the kinetic model towards the

hydrodynamic model is discussed, see also [1] for a detailed presentation. The

derivation of the adjoint calculus at the kinetic level is presented in Section 4.1.

The numerical formulation of the optimization problem as well as some numer-

ical tests on practical problems of interest are documented in Section 5. Finally,

concluding remarks and future extensions are presented in Section 6.

2 Problem formulation

An optimization problem of the form

Minimize
u0

J(u(∙, T ), u0; ud) =
1

2

∫

R
‖u(x, T )− ud(x)‖

2dx, (4)

where u = (ρ, ρu, ρ(bθ + u2)) is the solution to the Euler equations (1) with

initial data u0 is considered. In (4), ud represents a desired state that needs to be
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approximately attained at time t = T and J(u(∙, T ), u0; ud) is a cost functional

of the tracking type in the form

J(u(∙, T ), u0; ud) =
1

2

∫

R
‖u(x, T )− ud(x)‖

2dx

=
1

2

∫

R

[(
ρ(x, T )− ρd(x)

)2
+

(
m(x, T )− md(x)

)2
(5)

+
(
E(x, T )− Ed(x)

)2
dx

]

where the momentum is denoted as m = ρu and the energy as E = ρ(bθ + u2).

The solution of the optimal control problem (4) poses problems in practice

due to shock waves that can occur in the solution of the flow equation (1) [30,

26]. To overcome these problems, two semi-linear approximations of the Euler

equations (1) namely the Lattice Boltzmann approximation and the relaxation

approximation are applied.

3 Relaxation method for the control of the Euler equation

In [23] a relaxation system was introduced for the derivation of numerical

schemes to approximate a general nonlinear conservation law [21, 22]. A way

to apply hyperbolic relaxation in the case of a scalar conservation law has been

described in [26] and only a brief summary of the application of the relaxation

method for solving problem (3) will be presented here. To simplify the notation,

the nonlinear flux will be denoted by f : R3 → R3 and given as

f (u) =






m
E
b + m2(b−1)

bρ
m E
ρ

+ 2m(ρE−m2)

bρ2




 . (6)

Then, problem (3) is

min
u0
J(u(∙, T ), u0; ud) subject to ∂t u + ∂x f(u) = 0, u(x, 0) = u0 (7)

where ud is the desired state. The relaxation approximation to the optimization

problem (7) reads

min
u0
J(u(∙, T ), u0; ud) subject to






∂t u + ∂x v = 0,

∂t v + A2∂x u = 1
τ
(f(u)− v) ,

u(x, 0) = u0, v(x, 0) = f(u0),

(8)
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where τ > 0 is the relaxation rate and

A = diag(a1, a2, a3) ∈ R3×3

is a given diagonal matrix satisfying the subcharacteristic condition

max
u

‖λk(Df(u))‖ ≤ ak (9)

and λk denotes the k-th eigenvalue of the Jacobian matrix Df(u). The approx-

imation of the conservation law by (8) has a linear transport part combined

with a stiff source term. The characteristic variables of the transport part are

v ± Au. In the small relaxation limit, τ → 0, one obtains, to leading order,

v = f(u) + O(τ ). The numerical discretization is done without using Rie-

mann solvers and originally a first order Upwind scheme and a second order

MUSCL scheme together with a second-order TVD implicit-explicit (IMEX)

time integration scheme has been discussed. The schemes are used in the regime

τ � 1x .

Using a formal Lagrangian approach the linear adjoint equations to (8) are

derived as

− ∂t p − A2∂x q =
1

τ
Df(u)T q, p(x, t = T ) = pT (x),

− ∂t q − ∂x p = −
1

τ
q, q(x, t = T ) = qT (x).

See also [26] for a more detailed presentation for scalar equations. An expan-

sion in terms of τ yields the solution (p, q) which solves the following second-

order equation

−pt − Df(u)T px = τA2pxx .

In [26] the validity of the formal computations in the scalar case has been shown

in view of the approximation of the solution to the minimization problem (7)

and the solution to the relaxation system (8). It can be shown that the discrete

numerical scheme in the limit τ → 0 converges to the continuous adjoint equa-

tion. Furthermore, in the case of a first-order spatial discretization, convergence

to the optimality system for the discretized system is obtained. The relaxation

approximation will be extended to systems and comparisons with the adjoint

calculus derived for the Lattice-Boltzmann approximations will be made.
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Using the cost functional in equation (6) and hence solving, numerically, the

formal first-order optimality system takes the form:

∂t u + ∂x v = 0, u(x, 0) = u0,

∂t v + A2∂x u =
1

τ
(f(u)− v) , v(x, 0) = f(u0),

− ∂t p − A2∂x q =
1

τ
Df(u)T q, p(x, t = T ) = u(x, t = T )− ud(x),

− ∂t q − ∂x p = −
1

τ
q, q(x, t = T ) = 0,

p(x, 0)+ Df(u0)q(x, 0) = 0;

where f is given by the flux of Euler’s system. For forward and adjoint equa-

tions, similar discretizations as in the scalar case in [26], are used.

4 A kinetic approximation of the Euler equation

In this section, the Lattice Boltzmann approximation of the Euler equation pro-

posed in [1] is adapted.

A Lattice-Boltzmann approximation to the compressible Euler equations (1)

is described as follows. Let ξi , where i ∈ {0, . . . , N − 1}, be the molecular

velocity in the x direction of the i-th particle, with N the total number of

molecular velocities. The variable ηi is also introduced – its role will be dis-

cussed later. The velocity distribution function of the i-th particle is denoted

by fi (x, t). The macroscopic variables ρ, u and θ are defined as

ρ =
N−1∑

i=0

fi , m =
N−1∑

i=0

ξi fi and ρ(bθ + u2) =
N−1∑

i=0

(ξ 2
i + η2

i ) fi . (10)

Now the initial-value problem for the kinetic equation is considered:

∂ fi

∂t
+ ξi

∂ fi

∂x
= �i ( f ), i ∈ {0, . . . , N − 1} (11)

where the collision operator, �i ( f ), with f = ( f0, . . . , fN−1), is of the Bhat-

nagar-Gross-Krook (BGK)-type [31]

�i ( f ) =
f eq
i (ρ,m, E)− fi

ε
. (12)
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Therein ε = μ
√

Rθ0
L is the Knudsen number, μ the relaxation time, R is the

specific gas constant, L , θ0 a reference length and a reference temperature,

respectively, and f eq
i (ρ,m, E) is the local equilibrium distribution depending

on the macroscopic variables. The initial conditions are given by

fi = f eq
i (ρ0,m0, E0) at t = 0. (13)

One can integrate the LBE (11) along characteristics to obtain the classical

form of the Lattice Boltzmann method (LBM) [20]. Alternatively, other finite

volume approaches can be applied [32, 23]. To derive a general form for the

adjoint calculus for the optimization problem, the general form (11) is consid-

ered. To recover the Euler equation at the hydrodynamic limits from the Lattice

Boltzmann equation, the following constraints are imposed on the moments of

the local equilibrium distribution f eq
i [1]

N−1∑

i=0

f eq
i = ρ, (14a)

N−1∑

i=0

f eq
i ξi = ρu, (14b)

N−1∑

i=0

f eq
i ξ 2

i = p + ρu2, (14c)

N−1∑

i=0

f eq
i (ξ 2

i + η2
i ) = ρ(bθ + u2). (14d)

It has to be noted here that the collision term conserves mass, momentum and

energy. Hence the distribution functions must also be constrained by

N−1∑

i=0

fi = ρ, (15a)

N−1∑

i=0

fiξi = ρu, (15b)

N−1∑

i=0

fi (ξ
2
i + η2

i ) = ρ(bθ + u2). (15c)
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From now on, the D1Q5 Lattice Boltzmann model for a system with one-

dimension and five molecular velocities will be discussed. The exact form of the

discrete velocities are given as in [1]

ξi =






0, for i = 0;

ν1 cos[(i − 1)π ], for i = 1, 2;

ν2 cos[(i − 1)π ], for i = 3, 4.

(16)

The constants ηi are given as

ηi =

{
η0, for i = 0

0, for i 6= 0.
(17)

Note that ν1 and ν2, with ν2 6= ν1, and η0 are given nonzero constants. The

equilibrium distribution is given in the form [1]

f eq
i = ρAi + mξi Bi , (18)

where

Ai =






b−1
η2

0
θ, for i = 0,

1

2
(
ν2

1−ν2
2

)
[
−ν2

2 +
(
(b − 1)

ν2
2
η2

0
+ 1

)
θ + u2

]
, for i = 1, 2

1

2
(
ν2

2−ν2
1

)
[
−ν2

1 +
(
(b − 1) ν

2
1
η2

0
+ 1

)
θ + u2

]
, for i = 3, 4;

(19a)

and

Bi =






0, i = 0;
−ν2

2+(b+2)θ+u2

2ν2
1

(
ν2

1−ν2
2

) , i = 1, 2;

−ν2
1+(b+2)θ+u2

2ν2
2

(
ν2

2−ν2
1

) , i = 3, 4.

(19b)

It can be pointed out here that the LBE, equation (11), converges in the hydro-

dynamic limit to the Euler equations [1]. The weak solution of the Euler equa-

tions (1) satisfies

∫ ∞

0

∫

R





∂ψ

∂t






ρ

ρu
ρ(bθ + u2)





+
∂ψ

∂x






ρ

ρu2 + p
ρu(bθ + u2)+ 2p u









 dx dt

+
∫

R






ρ0

ρ0u0

ρ0(bθ0 + (u0)
2)





ψ(x, 0)dx = 0,

(20)
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where, ψ(x, t) is a smooth test function of x and t which vanishes for t + |x |

large enough. To obtain the weak solution of the Euler equation from the kinetic

equation system (11), the weak form of the LBE (11) in the form

∫ ∞

0

∫

R

(
∂ψ

∂t
+ ξi

∂ψ

∂x

)
fi −

f eq
i (ρ,m, E)− fi

ε
ψ dx dt

+
∫

R
f eq
i (ρ0,m0, E0)ψ(x, 0)dx = 0,

(21)

where ψ is a test function as above, independent of ε, is considered. In addition,

fi (x, 0) = f eq
i (ρ0,m0, E0). It was proven in [1] that the finite difference form

of the kinetic equation (11) is consistent with the above integral form (21) even

if the mesh width is of order O(ε). According to the analysis of the Boltzmann

equation, shock waves and contact discontinuities are not real discontinuities in

the realm of Lattice Boltzmann simulations, but thin layers of width O(ε) across

which the variable makes an appreciable variation [1]:

Proposition 4.1. [1] Consider a case where the solution fi contains shocks or

contact discontinuities in some region, “the steep region”, where the order of

variation of fi in the space and time variable is O(ε). In other regions which are

called Euler regions, fi has a moderate variation in x and t in the order of unity.

Then the solution fi of (21) in the limit ε → 0 is given by fi = f eq
i (ρ,m, E)

whose macroscopic variableρ, m, E satisfy the weak form of the Euler equation

given by (20).

For the proof, the reader may refer to [1].

4.1 Derivation of an adjoint system using the LBE

The Lagrangian at the microscopic level is given by

L( f, λ) = J(u(∙, T ), u0; ud)−
N−1∑

i=0

∫ T

0

∫

R

×
[
∂t fi + ξi∂x fi −�i ( f )

]
λi dx dt,

(22)

where λi are the Lagrange multipliers or the adjoint velocity distributions. In-

tegrating the second term on the right hand side of equation (22) by parts, one
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obtains

L( f, λ) = J(u(∙, T ), u0; ud)+
N−1∑

i=0

∫ T

0

∫

R
fi
[
∂tλi + ξi∂xλi

]

+�i ( f )λi dx dt −
N−1∑

i=0

∫

R

(
fi (x, T )λi (x, T )

− f eq
i (ρ0(x),m0(x), E0(x))λi (x, 0)

)
dx .

(23)

By taking the variation of the Lagrangian with respect to the state variable fi

and taking into account (10), the following adjoint system is derived

−∂tλi − ξi∂xλi =
N−1∑

j=0

∂� j ( f )

∂ fi
λ j (24)

with a terminal condition

λi (∙, T ) =
(

(
ρ(∙, T )− ρd

) ∂ρ

∂ fi
+

(
m − md

)∂m

∂ fi
+

(
E − Ed

)∂E

∂ fi

)
,

x ∈ R,

(25)

with

∂ρ

∂ fi
= 1,

∂m

∂ fi
= ξi ,

∂E

∂ fi
= ξ 2

i + η2
i . (26)

The adjoint equation (24) has the same structure as the original model (11).

Thus the term on the right hand side of (24) can be referred to as the adjoint

collision operator. In the BGK formulation, the adjoint collision operator has

the form

N−1∑

j=0

∂� j ( f )

∂ fi
λ j =

1

ε




N−1∑

j=0

∂ f eq
j

∂ fi
λ j − λi



 . (27)

For the equilibrium functional given in (18), one obtains

∂ f eq
j

∂ fi
=
∂ f eq

j

∂ρ

∂ρ

∂ fi
+
∂ f eq

j

∂m

∂m

∂ fi
+
∂ f eq

j

∂E

∂E

∂ fi
. (28)
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The partial derivatives of the equilibrium functional with respect to the macro-

scopic variables can be obtained as:

∂ f eq
j

∂ρ
= A j + ρ

∂A j

∂ρ
+ mξ j

∂B j

∂ρ
, (29a)

∂ f eq
j

∂m
= ρ

∂A j

∂m
+ ξ j B j + ξ j m

∂B j

∂m
, (29b)

∂ f eq
j

∂E
= ρ

∂A j

∂E
+ ξ j m

∂B j

∂E
, (29c)

with

∂A j

∂ρ
=






− b−1
η2

0

Eρ−2m2

bρ3 j = 0,

1

2
(
ν2

1−ν2
2

)
((

ν2
2 (b−1)

η2
0

+ 1
)

2m2−Eρ
bρ3 − 2m2

ρ3

)
j = 1, 2,

1

2
(
ν2

2−ν2
1

)
((

ν2
1 (b−1)

η2
0

+ 1
)

2m2−Eρ
bρ3 − 2m2

ρ3

)
j = 3, 4;

(30a)

∂B j

∂ρ
=






0 j = 0,

1

2ν2
1

(
ν2

1−ν2
2

) 4m2+Eρ
bρ3 j = 1, 2,

1

2ν2
2

(
ν2

2−ν2
1

) 4m2+Eρ
bρ3 j = 3, 4;

(30b)

∂A j

∂m
=






− b−1
η2

0

2m
bρ2 j = 0,

1

2
(
ν2

1−ν2
2

)
(
−

(
ν2

2 (b−1)

η2
0

+ 1
)

2m
bρ2 − 2m2

ρ2

)
j = 1, 2,

1

2
(
ν2

2−ν2
1

)
(
−

(
ν2

1 (b−1)

η2
0

+ 1
)

2m
bρ2 − 2m2

ρ2

)
j = 3, 4;

(30c)

and

∂B j

∂m
=






0 j = 0,

− 1

ν2
1

(
ν2

1−ν2
2

) m
bρ2 j = 1, 2,

− 1

ν2
2

(
ν2

2−ν2
1

) m
bρ2 j = 3, 4;
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∂A j

∂E
=






b−1
η2

0

1
bρ j = 0,

1

2
(
ν2

1−ν2
2

)
(
ν2

2 (b−1)

η2
0

+ 1
)

1
bρ j = 1, 2,

1

2
(
ν2

2−ν2
1

)
(
ν2

1 (b−1)

η2
0

+ 1
)

1
bρ j = 3, 4;

(30d)

∂B j

∂E
=






0 j = 0,

1

ν2
1

(
ν2

1−ν2
2

) b+2
bρ j = 1, 2,

1

ν2
2

(
ν2

2−ν2
1

) b+2
bρ j = 3, 4.

(30e)

The adjoint equilibrium distribution can be defined as

λ
eq
i =

N−1∑

j=0

∂ f eq
j

∂ fi
λ j . (31)

Now at the microscopic level, one solves the LBE to obtain solutions fi .

One then takes the moments to obtain the macroscopic variables at any time

0 ≤ t ≤ T . These are then used to solve backward in time the microscopic

adjoint equation (24) for the adjoint variable λi . The solutions thereof are used

together with the optimality condition to obtain the gradient of the cost func-

tion with respect to the control u0.

Remark 4.1. One can derive, formally, using standard techniques, the adjoint

system related to the optimization of Euler flows. The result is a backward

linear system of conservation laws in the adjoint variables [26, 30].

On the other hand, moments of the adjoint Lattice Boltzmann system ob-

tained above are considered. Applying
∑N−1

i=0 to (24), leads to the equation

−∂t3− ũ∂x3 =
1

ε

(
N−1∑

i=0

λ
eq
i −3

)

, (32)

where 3 =
N−1∑

i=0
λi can be seen as an adjoint density and 3ũ =

N−1∑

i=0
ξiλi is

an adjoint momentum. Similarly, one can derive an equation for the adjoint
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momentum and the adjoint energy. The result is a nonlinear system of conser-

vation laws with a source term which depends on the moments of the adjoint

equilibrium distribution. Since the adjoint collision operator is a linear combi-

nation of the derivatives of the equilibrium distributions f eq
j with respect to the

velocity distribution fi , the adjoint equlibrium distribution can not be chosen

freely. Indeed, it was found that the adjoint equilibrium function can be ex-

pressed exactly only if the cost functional is linear in density and velocity. But

this case is not of much interest in practical problems.

5 Numerical results

In the following, the numerical results that were obtained for the two previously

discussed relaxation methods will be presented. All computations have been

done on an Intel Centrino with 1.5 GHz.

Firstly, a brief discussion of the numerical implementation of both schemes

and of the adjoint based optimization algorithm will be given. These are then

applied to smooth and nonsmooth examples. It comes out that both methods

are able to solve not only the smooth problems, but also the problems involving

discontinuities in either the initial data ud(x, t = 0) for the desired state or in

the desired state ud(x, t = T ) itself. Finally, the sensitivity of the numerical

methods presented in this paper with respect to the grid size will be considered.

The results for different grid sizes for the nonsmooth example reveal that the

number of iterations of the optimization algorithm is independent of the grid

size that is used.

5.1 Solution of the forward and backward equations

It can be observed that, for each particle i with speed ξi , the Lattice Boltzmann

equation (11) and its adjoint form (24) are transport equations with source terms.

Therefore, they can be discretized in the finite volume framework with a second

order integration in time and a second order upwind integration in space with

the minmod slope limiters [32] as briefly described below. To start with the

advection equation in the general form
{
vt + avx = g(v), (x, t) ∈ [0, 1] × [0, T ],

v(x, 0) = v0(x), x ∈ [0, 1],
(33)
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where a is the wave speed and g(v) is the source term, which is a function of

the balanced quantity v is considered. A uniform grid in space x j = j1x, j =

0, . . . , K with the space step 1x is applied. The time grid is denoted as tn =

n1t, n = 0, . . . , H and the time step is chosen according to the CFL condition.

In the Lattice Boltzmann formulation, the Courant Number has the form

CFL =
1t

1x
max

i=0,...,N−1
ξi (34)

where ξi are the discrete speeds. In the finite volume framework, the cell I j =

(x j−1/2, x j+1/2) where the cell boundaries are defined as x j+1/2 = 1
2 (x j + x j+1)

is introduced. The cell average of the balanced quantity v(x, t) for the j-th

cell at time tn is denoted as vn
j , j = 0, . . . , K . The considered second order

scheme takes the semi-discrete form [32]

dv j

dt
= −

Fj+ 1
2
− Fj− 1

2

1x
+ g j , (35)

where g j is the cell average of the source term and the numerical flux is given

by

Fj+ 1
2

= a−v j+1 + a+v j +
1

2
|a|

(
1 − |

a1t

1x
|
)
σ j+ 1

2
, (36)

where a+ = max{a, 0} and a− = min{a, 0} and the slope limiters σ j+ 1
2

are

defined as

σ j+ 1
2

=

{
Minmod

(
v j − v j−1, v j+1 − v j

)
if a ≥ 0,

Minmod
(
v j+1 − v j , v j+2 − v j+1

)
if a < 0,

(37)

with

Minmod(x, y) =
1

2
(sgn(x)+ sgn(y)) ∙ min(|x |, |y|).

The Knudsen number is taken here as ε = 10−4 and the spatial and temporal

step are chosen such that the CFL condition is satisfied. For the source term,

the mid-point quadrature rule is applied. The relaxation method is implemented

along the lines of [26]. Here the first-order in space and time relaxation scheme

as presented for the scalar case in Section 2.1 in [23] is employed. Throughout

the numerical tests the relaxation parameter is τ = 10−8.

Both flow solvers will be tested for the shock tube problem which can be

described as follows: A tube is filled with gas and is initially divided by a
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membrane into two sections. The gas on one half of the tube has a higher density

and pressure than on the other one, with zero velocity everywhere. At time

t = 0, the membrane is suddenly removed and the gas is allowed to flow. Net

motion in the direction of the lower pressure is expected. Assuming uniform

flow across the tube, there is variation only in one direction and the 1-D Euler

equations apply. For the simulations, the initial variables are taken as

u0(x) =

{
(1, 0, 3) for x < 0.5

(5, 0, 15) for x > 0.5
(38)

which are compared to the exact solution computed at t = 0.15 on a grid

of N = 400. The numerical solution obtained with the LBE and the re-

laxation method in (8) is presented in Figure 1. The solution obtained with a

D1Q5 Lattice Boltzmann model produces very good results that compare well

with those presented in the literature [33]. Moreover, the first-order relaxation

method also gives satisfactory results.

5.2 The discrete form of the optimization problem

With the space and time discretization described above, the discrete form of the

objective function can then be written as

J(u(∙, T ), u0; ud) =
1x

2

K∑

i=1

‖uH
i − ud i‖

2.

Recall that the vector u = (ρ,m, E) contains the conservative variables which

are the density, the momentum and the energy. For given initial data u0, one can

solve the flow equations for the state variable u(∙, T )(u0) using the LBE or the

relaxation method and the optimization problem (4) can be rewritten as an un-

constrained minimization problem for the reduced cost functional J̃(u0, ud) =

J (u(∙, T )(u0); ud) . At each grid point the gradient of the reduced cost func-

tional can be computed using the adjoint method: for example, from the opti-

mality conditions, one can deduce that the gradient of the reduced cost func-

tional for the LBE satisfies

∇u0,i J̃ = 1x
N−1∑

j=0

∂ f eq
j (ρ0,m0, E0)

∂u0,i
λ j (xi , 0), (39)
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Figure 1 – Plot of the density, momentum, energy and pressure computed at time

t = 0.15 exact (solid line), the Lattice Boltzmann method (◦) and the relaxation

method (+). The relaxation parameter is taken as τ = 10−8 and the Knudsen num-

ber as ε = 10−4.

whereas for the relaxation method

∇u0,i J̃ = p0,i + (Df(u0)
T q0)i (40)

is obtained. Using this gradient information, the solution of the optimization

problem using a steepest descent algorithm applied to the reduced cost func-

tional J̃(u0; ud) is computed. Since the optimal value is known to be zero, the

stopping criterion for the convergence of the optimization algorithm is taken as

|J̃(u0, ud)| < tol,

where tol � 1 is a predefined tolerance.
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Firstly, an optimization problem constrained by a nonlinear hyperbolic sys-

tem, where each equation corresponds to Burger’s equation applied to the cor-

responding component of u = (u1, u2, u3) is considered. The optimization

problem as in (7) is solved using the IMEX scheme. The initial desired state is

chosen such that the solution ud(x, t = T ) has various discontinuities.

5.3 Burger’s equation with discontinuous desired states

For this example, the flux function of the form

f (u) =
1

2

(
u2

1, u2
2, u2

3

)T

is considered. The spatial domain is [0, 2π ], which is discretized with N = 300

grid points. The time interval for this example is taken to be [0, 2], which

is suitably discretized such that the CFL condition is satisfied. Moreover, the

desired state ud is the solution at time T = 2 with the initial data

ud,0 =
(

1

2
sin(x), sin

(π

2
x
)
,

1

2
+ 0.03 x + sin(2πx)

)T

.

The initial control for the steepest descent method is started with an initial guess

of u0 = (0.5, 0.5, 0.5)T . Note that the desired state consists of shock states.

The numerical results for this example are presented in Figure 2. In the nu-

merical results the relaxation method recovers the discontinuities and achieves

optimality.

5.4 Euler equations with smooth desired states

A comparison of both approaches beginning with the case of smooth data in the

domain [0, 1] × [0, T ] will be undertaken next. Again optimal initial data such

that the flow properties at time T match the desired flow properties (at time T )

given by the initial data

ρd,0(x) = 6x2−7x+3.2, md,0(x) = 1.2, Ed,0 = x+1.2 for x ∈ [0, 1] (41)

is sought. The optimization algorithm will be initialised with the initial profile:

ρ0(x) = 6x2 −7x +3, m0(x) = 1.0, E0(x) = x +1.0 for x ∈ [0, 1]. (42)
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Figure 2 – Initial, optimized and target values of u = (u1, u2, u3)
T obtained at T = 2

with the relaxation method for the grid size N = 300.
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The flow equations here are solved up to time T = 0.01 with an optimization tol-

erance tol = 10−4. The initial state computed by the optimal control approaches

(initial), target and optimized states for the LBE and the relaxation method are

displayed in Figure 3.

Both methods converge to the target state and optimality is achieved.

Figure 3 – Density, momentum, and energy: Initial, target and optimized values at

time T = 0.01 for the example with smooth data obtained with the Lattice-Boltzman

approach (left) and the relaxation method (right) for the grid size N = 50.
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5.5 Euler equations with discontinuous optimal control

This example deals with the inverse design of a flow in a 1D shock-tube. Given

a set of measurements on some actual flow at time T, the best estimate for the

initial state that leads to the observed flow is determined. This problem has been

explored before by many authors [30, 28, 29], but here, the linearization of the

flow equation as described above and the underlying derivation of the adjoint

variables for the computation of the gradient of the objective functional is used.

An example taken from [34] is considered. The desired state is the solution of

the Riemann problem with the initial data

ud,0 =

{
(1.1, 0, 3.3), if x < 0.5,

(0.2, 0, 0.6), if x > 0.5
(43)

is computed at terminal time T = 0.03. The state consists of different smooth

and non-smooth waves.

The initial guess for the iterative optimization problem is chosen to be

u0 =

{
(1.0, 0, 3.0), if x < 0.5,

(0.125, 0, 0.375), if x > 0.5.
(44)

A tolerance of tol = 10−4 for the optimization is prescribed. The results, using

the adjoint method combined with the Lattice-Boltzmann and the relaxation

approaches are presented in Figure 4. The initial control u0, the desired state ud ,

the optimized state and solution of the optimized flow at time T are reported in

Figure 5 and it can be observed that the discontinuity is well recovered. It can

also be observed that the discontinuous initial data yields several waves in the

solution.

The results reveal that the approaches presented here, using the Lattice-Boltz-

mann model or the relaxation method, are both able to recover solutions with

discontinuities such as shocks, rarefactions or contact discontinuities.

5.6 Convergence and CPU time

In the following, the convergence behaviour of the schemes presented in this

paper is analysed. Precisely, the convergence of the optimization algorithm
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Figure 4 – Density, momentum, energy: initial, optimized and target obtained at

t = 0.03 with the Lattice-Boltzmann method (left) on a grid with Nx = 400 grid

points and the relaxation method (right) for a grid size of the same size.

using the Lattice Boltzmann and the relaxation approaches in terms of the num-

ber of grid points will be studied. Hence the solution for the discontinuous

example presented in Section 5.5 up to tolerance tol = 10−3 for different val-

ues of the number of discretization points Nx ∈ {50, 100, 150, 200, 250, 300} is

computed. In Table 1 the number of iterations obtained with the first and second

order scheme for the lattice Boltzmann method, and with a first order scheme
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Figure 5 – Initial data, desired state, optimized state u0 and corresponding solution at

time t = T to the Euler equation.
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for the relaxation method, and the CPU times until convergence are presented.

Note that the number of optimization iterations are independent of the grid size

Nx . In Figure 6 the evolution of the cost functional as a function of the number

of optimization iterations is presented. The relaxation approach converges faster

than the lattice Boltzmann approach.

LBE – 1st LBE – 2nd Relaxation – 1st

Nx It. CPU time It. CPU time It. CPU time

50 23 3.634100e+02 23 4.179400e+02 19 1.350000e+00

100 23 5.845300e+02 23 6.931700e+02 19 2.970000e+00

150 23 8.069500e+02 23 9.692400e+02 19 5.580000e+00

200 23 1.002000e+03 23 1.246600e+03 19 8.700000e+00

250 23 1.210620e+03 23 1.527940e+03 19 1.281000e+01

300 23 1.429200e+03 23 1.793410e+03 19 1.779000e+01

Table 1 – Number of iterations (It.) and CPU times (in sec.) for the inverse design in a shock tube

example obtained with the LBM and the relaxation method. Terminal time for the optimization

is T = 0.03.

Figure 6 – Convergence history for the solution of the optimization problem computed

with the LBE approach (left) and the relaxation method (right).

6 Conclusion and future work

In this paper two approaches for the control of flows governed by a system of

conservation laws have been presented namely: the Lattice-Botzmann approach

and the relaxation method, both combined with an adjoint calculus algorithm
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for the optimization. The resulting numerical schemes perform convincingly,

since they are able to handle flows with discontinuities such as shocks or contact

discontinuities. Moreover, for the Euler system, the extension of the optimiza-

tion methods to higher dimensions can be done. Possible difficulties would come

from the boundary conditions. The multidimensional model can be used effec-

tively to solve further interesting problems as they arise in shape optimization or

topology design.
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