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1 Introduction

Within the context of digital communication systems, multiple-input-multiple-
output (MIMO) wireless links, that is, systems that using multiple antennas at
the transmitter and the receiver, has emerged. It is used to combat fading from
diversity technique, i.e, different replicas of the same information symbol may be
transmitted over independent channels and are the available at the receiver side.
Notices, in this process, the signal is lost only when all its copies are lost. From
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then on, both the data rate and the performance are improved by many orders
of magnitude with no extra cost of spectrum. This is also the main reason that
the MIMO attracts and motivated much researcher on signal processing. The
key feature of a multiple-antenna system is it ability in exploit the turn multiple-
path propagation, which is traditionally regarded as a disadvantage to wireless
communications, into benefit to the users and result in a diversity again.

In this paper, the diversity can also be obtained at the transmitter by spacing
the transmit antennas sufficiently and introducing a code (called Space Time
Block Codes-STBCs) between the transmitted symbols over M transmit anten-
nas (space) and T symbol periods (time).

Alamouti code [1] was the first practical SBTC proposed in the literature,
based with provides full transmit diversity for systems which works with two
antennas. The Alamouti code is given by codeword matrices, such that, the
matrix operations representing multiplication in the Hamilton quaternions. It is
also one of the most successful STBCs because of its simple structure and it
is great performance and simple decoding. Tarokh et al. [2] proved that STBC
achieves a pairwise error probability (P E P) that is inversely proportional to
SN RM N , where SN R denotes the signal-to-noise ratio, M the number of
transmit antennas and N the number of receive antennas. In this same work,
Tarokh showed that the main code design criterion for the STBCs is the rank
criterion, i.e, the rank of the difference of two distinct codeword matrices has
to be maximal. If this property is satisfied the STBCs is called fully diverse.

Full rate (i.e, the number of transmitted signals corresponds to the number of
information symbols to be sent) and full diversity codes for the 2 × 2 MIMO
systems, were first constructed by Damen et al. [3], using algebraic number
theory. Hassibi in [4] introduced linear dispersion space time block codes (LD-
STBCs), i.e, if two codeword matrices X1, X2 belong to the code C then X1 ±
X2 ∈ C and X1 X2 ∈ C. The idea of LD-STBCs is to spread the information
symbols over space and time. Oggier et al. [5] reformulate the rank criterion for
LD-STBCs, when the codeword matrices are square, saying the STBC is fully
diverse if

| det(Xi − X j ) |2 6= 0, for all Xi 6= X j ∈ C.

By linearity, it follows that | det(X) |2 6= 0 for all nonzero codeword X ∈ C.
Division algebras have been proposed [5], [6], [7], [8] as a new tool for con-

Comp. Appl. Math., Vol. 30, N. 3, 2011



“main” — 2011/11/17 — 17:20 — page 487 — #3

E.D. CARVALHO, A.A. ANDRADE, R. PALAZZO Jr. and J. VIEIRA FILHO 487

structing STBCs, since they are non-commutative algebras that naturally yield
linear fully diverse codes. However, for determining precisely these algebras are
division algebras can be a nontrivial problem. Katok [9] characterized some par-
ticular classes of 2×2 matrices space M2(R) isomorphic to Hamilton quaternion
(division algebra). The construction of this matrix space are based on the exis-
tence of the arithmetic Fuchsian groups, i.e, discrete subgroups of P SL(2,R)
obtained by some arithmetic construction in the hyperbolic plane.

From then on, we proposed one arithmetic construction of the arithmetic
Fuchsian Groups 0 from the self-dual tessellations {4g, 4g}, with g ≥ 2, where
g denotes the genus of the compact surface, it has the hyperbolic plane as uni-
versal covering. This systematic procedure anable us to construction new class
of 2 × 2 STBCs. Additionally, we will show this new class STBCs satisfies the
properties of linear dispersion, full rate and full diversity codes. In fact, accord-
ing to our best knowledge the theory of arithmetic Fuchsian groups required for
giving this notion has never been considered before in this area.

This work is organized as follows. In Section 2, we present the concepts of
Fuchsian group and quaternion order. In Section 3, we determine the Fuchsian
groups 04g from hyperbolic tessellation. In section 4, we shown the Fuchsian
groups 04g are derived from quaternion algebras. In Section 5, we present a new
class of codes via arithmetic Fuchsian groups. Some conclusions are presented
in Section 6.

2 Arithmetic Fuchsian Groups and Quaternion Order

Let F be a totally real number field of degree n ≥ 2 over Q and OF be the ring
of algebraic integers of F . Let {σ1, . . . , σn} the n different embedding F into R.

The quaternion algebra A = (t, s)F is defined as the 4-dimensional vector
space over F , with a basis {1, i, j, i j}, satisfying the conditions i2 = t , j2 = s,
i j = − j i and (i j)2 = −ts, where t, s ∈ Ḟ = F − {0}. The quaternion algebra
A = (t, s)F can be embedded in M

(
2, F

(√
t
))

, i.e, there is a linear map such
that

i 7→

[ √
t 0

0 −
√

t

]

and j 7→

[
0 r1

r2 0

]

,

where s = r1r2. There exists R-isomorphism ρi ,

ρ1 : Aσ1 ⊗ R → M(2,R), ρi : Aσi ⊗ R → H (1)
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with 2 ≤ i ≤ n, where A is non-ramified in ρ1 and ramified in the remaining
ρi ’s.

The element x = x0 − x1i − x2 j − x3i j ∈ A is called conjugate of the
element x = x0 + x1i + x2 j + x3i j ∈ A. The reduced trace and the reduced
norm of an element x ∈ A are defined as Trd(x) = x + x and Nrd(x) =
xx , respectively. Thus the norm Nrd(x) is a quadratic form over F given by
Nrd(xx) = x2

0 − t x2
1 − sx2

2 + tsx2
3 . An order O inA over F is a subring ofA

containingOF , which is finitely generated as anOF -module such that FO = A.
We consider the upper-half plane H 2 = {z ∈ C : I m (z) > 0} equipped with

a Riemannian metric

ds =

√
dx2 + dy2

y
.

With this metric, H 2 is a model of the hyperbolic plane.
Let G be the group formed of all Möubius transformations, T : C → C,

given by T (z) = az+b
cz+d , where a, b, c, d ∈ R and ad − bc = 1. To this transfor-

mation the following pair of matrices are associated

AT = ±

(
a b
c d

)

.

Hence,

P SL(2,R) '
SL(2,R)

{±I2}
,

where SL(2,R) is the group of real matrices with determinant equal to 1 and I2

denotes the 2 × 2 identity matrix. A Fuchsian group 0 is a discrete subgroup
of P SL(2,R), that is, 0 consists of isometries that preserving orientation and
acting on H 2 by homeomorphisms [9] and [12].

For each order O in A, consider O1 as the set O1 = {x ∈ O : Nrd(x) = 1}.
Note that O1 is a multiplicative group. We observe that a Fuchsian group may
be obtained by the isomorphism ρ1 given by the Equation (1) applied in O1.
In fact, if x ∈ O1, then Nrd (x) = det (ρ1 (x)) = 1. From this, it follows
that ρ1

(
O1

)
is a subgroup of SL(2,R). Therefore, the derived group from the

quaternion algebraA = (t, s)F whose order isO, denoted by 0(A,O), is given
by

0(A,O) =
ρ1

(
O1

)

{±I2}
<

SL(2,R)

{±I2}
' P SL(2,R).
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The group0(A,O) is a Fuchsian group [10]. If0 is a subgroup of0(A,O)with
finite index, then 0 is a Fuchsian group derived from a quaternion algebra A,
also called Arithmetic Fuchsian Group. The Möubius transformation is given

by f (z) =
zi + 1

z + i
, whose matrix associated is given by

P =

[
i 1
1 i

]

, (2)

maps H 2 to the Poincaré disc D2 (another Euclidean model for the hyperbolic
plane). The action of P SL(2,R) on H 2 transforms to an action of P SU (1, 1)
on H 2, since

P SU (1, 1) = f.P SL(2,R). f −1. (3)

The group P SU (1, 1) consists of orientations preserving isometries T :
D2 → D2, acting on D2 by homomorphisms. The isometries T are given

by T (z) =
az + c

cz + a
, where a, c ∈ C and |a|2 − |c|2 = 1. For each of these

transformations the following pair of matrices are associated

AT = ±

[
a c
c a

]

.

Theorem 2.1. [9] Let 0 be a Fuchsian group. Then, 0 is derived from a
quaternion algebra A over a totally real number field F if and only if 0
satisfies the following conditions:

(1) If F = Q(tr(T )), where T ∈ 0, then F is a number field of finite degree
and tr(0) is in OF , the ring of algebraic integers of F.

(2) If σ is an embedding of F in C different from the identity, then σ(tr(0))
is bounded in C.

3 Fuchsian Groups from Fundamental Polygon P4g

Let Sg be the fundamental group of a compact closed surface of genus g. The
presentation of Fuchsian group is given by

Sg = 〈a1, b1, a2, b2, . . . , ag, bg|
g∏

i=1

[ai , bi ] = I〉,
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with [ai , bi ] = ai bi a
−1
i b−1

i . Let us consider a regular polygon Pg with 4g edges
and angles between adjacent edges equal to 2π/4g. Hence, the corresponding
fundamental region of self-dual tessellations {4g, 4g} of the hyperbolic plane.
Considering the Poincaré modelD2, and assuming that 0 ∈ D2 is the barycenter
of Pg. Now, we determine the generators of the Fuchsian group 0D2 , where
edge-pairing generators of a regular polygon Pg with 4g edges (fundamental
region of 04g) are hyperbolic transformations, Ti (whose trace tr(Ti ) associated
to Ti is such that tr(Ti ) > 2), where g is the genus of compact surfaceD2/0D2 ,
and whose hyperbolic area is μ(D2/0D2) = 4π(g − 1). If TAi , TBi , where
i = 1, . . . , g, are the hyperbolic transformations determined by matrices Ai , Bi ,
such that TAi (ui ) = u

′

i and TBi (vi ) = v
′

i , then the group 04g generated by
TAi , TBi , where i = 1, . . . , g, is canonically isomorphic to S4g [9]. We can find
an explicit formula for the matrices Ai and Bi that generates the transformations
TAi and TBi , for i = 1, . . . , g. Following exactly the same procedures done by
Katok [9] for the case g = 2 we have the following result.

Proposition 3.1. The elements a, c of the matrix

A1 =

[
a c
c a

]

are given by

|a| = tan
(
(2g − 1)π

4g

)
and arg(a) = −

(g − 1)π

2g
,

|c| =

√

tan2

[
(2g − 1)π

4g

]
− 1 and arg(c) = −

(g − 1)π

4g
,

and the remaining generator matrices are given by Ai = C4i A1C−4i and Bi =
C4i+1 A1C4i+1, for all i = 1, . . . , g, where C is the rotation matrix given by

C =

[
e2π i/4g 0

0 e−2π i/4g

]

.

Example 3.1. If g = 2, then the matrix A1 associated to generator transforma-
tion TA1 ∈ 08 is given by

A1 =

[
(2+

√
2)(1+i)
2

− 4√2((2+
√

2)+i(2+
√

2))
2

− 4√2((2+
√

2)−i(2+
√

2))
2

(2+
√

2)(1−i)
2

]

,
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and the other matrices A2, B1 and B2 are given by conjugation.

Example 3.2. If g = 3, then the matrix A1 associated to generator transforma-
tion TA1 ∈ 012 is given by

A1 =

[
(2+

√
3)+i(3+2

√
3)

2
q[(−1+

√
3)+i(1+

√
3)]

2
q[(−1+

√
3)−i(1+

√
3)]

2
(2+

√
3)−i(3+2

√
3)

2

]

,

where q =
√

3 + 2
√

3 and the other matrices A2, A3, B1, B2 and B3 are given
by conjugation.

Now, taking the corresponding real matrices of P SL(2,R) by isometries f :

H 2 −→ D2 given by f (z) =
zi + 1

z + i
, we obtain the following isomorphism

0H 2 ' P−10D2 P, (4)

where P is the invertible matrix given by the Equation (2). Then by consequence
of the Equation (4), it follows that there is an equivalence between the matrix
spaces 0H 2 and 0D2 . Thus, f (0H 2) = P−10D2 P is a subgroup of P SL(2,R),
where g = 2, 3, and the generator matrices are given by P−1 Ai P = Di and
P−1 Bi P = Ei . In particular, if A1 ∈ f (08) then

P−1 A1 P = D1 =

[
(2+

√
2)+(−2−

√
2) 4√2

2
(2+

√
2)−(

√
2)( 4√2)

2
(−2−

√
2)+(

√
2)( 4√2)

2
(2+

√
2)+(2+

√
2) 4√2

2

]

,

and if A1 ∈ f (012) then

P−1 A1 P = D1 =

[
(2+

√
3)+p(1+

√
3)

2
(3+2

√
3)+p(−1+

√
3)

2
−(3+2

√
3)+p(−1+

√
3)

2
(2+

√
3)−p(1+

√
3)

2

]

,

where p =
√

3 + 2
√

3.

Remark 3.1. If we compute all the generator matrices M = Di or M = Ei ,
for i = 1, . . . , g, of f (04g) it is easy to check that

(1) if g = 2, then

M =
1

2

[
a + b

√
t c + d

√
t

−(c − d
√

t) a − b
√

t

]

, (5)

where, a, b, c, d ∈ Z[
√

2] and
√

t =
√√

2 = 4
√

2, and
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(2) if g = 3, then

M =
1

2

[
a + b

√
t c + d

√
t

−(c − d
√

t) a − b
√

t

]

, (6)

where, a, b, c, d ∈ Z[
√

3] and
√

t =
√

3 + 2
√

3.

Also, it is easy to show the product of these matrices are of the type M and
belong to the group f (0).

4 Fuchsian Groups derived from Quaternion Algebras

In this section, we present a construction that is similar to ones given by Katok
[9]. Let F = Q(θ) field extension of degree 2 and σ2 : F → R be the non-
identity homomorphism belong to Galois group Gal(F/Q) given by σ2(θ) =
−θ . Thus, ψ2 : K → C, defined by ψ2(

√
θ) = i

√
θ is an isomorphism, where

K = F(
√
θ). We consider now a quaternion algebra A [0] over F = Q (θ)

given by

A [0] =
{

λ∑

i=1
ai Ti : ai ∈ F, Ti ∈ 0

}
.

Thus,

A [0] =

{(
a1 b1

−b′
1 a′

1

)

: a, b ∈ K

}

.

Therefore,

Aψ2 = 9 (A [0]) =

{(
a b

−b a

)

: a, b ∈ ψ2 (K ) ,

}

where
9 : A [0] → M(2,C),

is an embedding given by

9 (α) =

(
ψ2 (a1) ψ2 (b1)

−ψ2
(
b′

1

)
ψ2

(
a′

1

)

)

.

Consequently, Aβ2 ⊗ R ' H , [9].

Lemma 4.1. If H ' (−1,−1)R and H1 = {x ∈ H : Nrd(x) = 1} then
T rd(H1) is bound in C.
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Proof. If x = x0 + x1i + x2 j + x3i j ∈ H1, where i2 = j2 = (i j)2 = −1,
and Nrd(x) = x2

0 + x2
1 + x2

2 + x2
3 = 1, then |x0| ≤ 1, and hence T rd(x) =

2x0 ∈ [−2, 2]. Since the converse statement is obviously true it follows that
T rd(x) = 2x0 ∈ [−2, 2].

Theorem 4.1. If g = 2, then the group f (08) is derived from the quaternion
algebra A over the totally real number field Q(

√
2).

Proof. Following the same procedures done by Katok [9] for the case g = 2 ,
we first show that the conditions (1) and (2) of Theorem 2.1 are satisfied by the
elements of f (08). From Remark 3.1, the elements of f (08) are given by

M =
1

2

[
x0 + x1

4
√

2 x2 + x3
4
√

2
−(x2 − x3)

4
√

2 x0 − x1
4
√

2

]

,

where x0, x1, x3, x4 ∈ Z[
√

2] and tr(M) = x0 = a1 + a2

√
2 ∈ Z[

√
2]. In this

way, it follows that Q(tr( f (08))) = Q(a1 + a2

√
2) = Q(

√
2), and tr(M) ∈

Z[
√

2]. Since Q(
√

2) is a totally real quadratic extension of Q, it follows that
the condition (1) of Theorem 2.1 is satisfied. Let σ2 : Q(

√
2) −→ Q(

√
2) be

the non-identity embedding defined by σ2(
√

2) = −
√

2. From Remark 3.1,
it follows that the generators of 08 and therefore all elements of f (08) are
embedded into M2(K ), where K = Q(

√
2)(

√√
2). Thus, σ2 extends to an

isomorphism 92 : K −→ C, where

92(
4
√

2) =

√

−
√

2 = i 4
√

2.

Following exactly the same procedures done by Katok [9], the elements of
f (08) are mapped into matrices in M2(C) of type

M =

[
92(a) 92(b)
92(−b) 92(a)

]

, with a, b ∈ 92(K ),

where we denote this set by A92 ⊕ R ≈ H. Now, if T ∈ f (0), then
tr(T ) = a + a and by Lemma 4.1, it follows that 92(a) + 92(a) ∈ [−2, 2].
However, a + a ∈ K . In this way, 92(a) + 92(a) = 92(a + a) = σ2(a + a),
that is, σ2(a + a) ∈ [−2, 2]. Therefore σ2(tr( f (0))) is bound in C.

Similarly to the previous case, we have the next theorems.
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Theorem 4.2. If g = 3, then the group f (012) is derived from quaternion
algebra A over the totally real number field Q(

√
3).

Theorem 4.3. If f (0) is a Fuchsian group whose generators are matrices in
P SL(2,R) of the type

M =
1

2

[
a + b

√
t (c + d

√
t)

−(a − d
√

t) a − b
√

t

]

, (7)

where a, b, c, d ∈ OF , with
√

t 6∈ OF, then the matrices belong to f (0) are iden-
tified by the elements of the quaternion order O ' (t,−1)OF of the quaternion
algebra A ' (t,−1)F .

The product of two matrices in Theorem 4.3 assumes the same form M .
Furthermore, all the elements of f (0) may be obtained directly as the prod-
uct of the generator matrices and this fact guarantee that all the elements of
f (0) assume the same form M .

Example 4.1. Applying Theorem 4.3 and Remark 3.1 to the matrices belong-
ing to f (08), it follows that these matrices are identified by the elements of
quaternion order A8 = (

√
2,−1)Z[

√
2].

Example 4.2. Applying Theorem 4.3 and Remark 3.1 to the matrices belong-
ing to f (012), it follows that these matrices are identified by the elements of
quaternion order A12 = (3 + 2

√
3,−1)Z[

√
3].

We will denoted by A8(2) and A12(2) the matrix spaces associated to
quaternion order A8 and A12, respectively. As consequence of Equation (4)
and by Theorems 4.1 and 4.2, it follows that the matrix spaces A8(2) and
A12(2) are division algebras. Similarly, by Equation (4), it follows that
MA4g (2) ' P−1A4g(2) for g = 2, 3 and P is the invertible matrix given by
the Equation (2).

5 Space-Time Codes From Division Algebra

In this section, we will characterize algebraically the matrix spaces MA4g (2).
First, we notice each element of matrix space A4g(2) can written as

M =
1

2

[
x + yθ ′ z + wθ ′

−(z − wθ ′) x − yθ ′

]

,
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with x, y, z and w ∈ Z[θ ], where θ =
√

2 if M ∈ A8(2) and θ = 3 + 2
√

3
if M ∈ A12(2).

Proposition 5.1. If M ∈ A4g(2) is given by

M =
1

2

[
x + yθ ′ z + wθ ′

−(z − wθ ′) x − yθ ′

]

, (8)

with x = a1 + a2θ, y = b1 + b2θ,w = c1 + c2θ , z = d1 + d2θ ∈ Z[θ ], where
θ =

√
2, θ ′ = 4

√
2 if M ∈ A8(2) and θ =

√
3, θ ′ = 3 + 2

√
3 if M ∈ A12(2),

then

N = P−1 M P =

1

2

[
(a1 + ic1)+ θ [(a2 + ic2)] θ ′[(d1 + ib1)+ (d2 + ib2)]
θ ′[(d1 − ib1)+ (d2 − ib2)] (a1 − ic1)+ θ [(a2 − ic2)]

]

,
(9)

where a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 ∈ Z[i].

Proof. If H ∈ A4g(2), where H =
1

2

(
x y
z w

)

, then

P−1 H P =

(
(x + w)+ i(y − z) (y + z)+ i(x − w)

(y + z)− i(x − w) (x + w)− i(y − z)

)

, (10)

which concludes the proof.

Example 5.1. If M ∈ A8(2), where

M =
1

2

[
a + b 4

√
2 c + d 4

√
2

−(c − d 4
√

2) a − b 4
√

2

]

,

for a = a1+a2

√
2, b = b1+b2

√
2, c = c1+c2

√
2 and d = d1+d2

√
2 ∈ Z[

√
2],

then

N = P−1 M P =

[
m1

4
√

2m2
4
√

2m3 m4

]

, (11)

with m1 = (a1+ic1)+
√

2(a2+ic2), m4 = m1, m2 = (d1+ib1)+
√

2(d2+ib2)),
m3 = m2, where m denotes the complex conjugation of the element m, and
a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 ∈ Z[i].
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Example 5.2. If M ∈ A12(2), where

M =
1

2

[
a + b

√
3 + 2

√
3 (c + d

√
3 + 2

√
3)

−(c − d
√

3 + 2
√

3) a − b
√

3 + 2
√

3

]

,

for a = a1+a2

√
3, b = b1+b2

√
3, c = c1+c2

√
3 and d = d1+d2

√
3 ∈ Z[

√
3],

then

N = P−1 M P =

[
m1

√
3 + 2

√
3m2√

3 + 2
√

3m3 m4

]

, (12)

where m1 = (a1 + ic1)+
√

3(a2 + ic2), m4 = m1, m2 = (d1 + ib1)+
√

3(d2 +
ib2)), m3 = m2, and a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 ∈ Z[i].

5.1 Construction of Space Time Codes

In order to construction a space time code, we need a complex alphabet which
can be for example belong to ring of algebraic integers Z[i] (QAM symbols). In
the next theorem we given a construction of a space time codes C ⊆ MA4g (2).

Theorem 5.1. Let F = Q(i) and K = F(θ ′), where θ ′ = 4
√

2 or
√

3 + 2
√

3. We
consider the set C ⊆ M4g(2). Then the set C is a space time code, that satisfies
the following properties:

(1) C is linear dispersion space time code,

(2) C is full rate, and

(3) C is full diversity.

Proof.

(1) If X, Y ∈ C, it is easy to see X ± Y, XY ∈ C. Then C is a linear
dispersion space time code.

(2) Notice, for each codematrix N ∈ C given by the matrix of the Equa-
tion (11), it follows that 4 information symbols belongs to the Z[i] given
by a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 what they are encoded. Then C
is full rate.
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(3) If N ∈ C ⊆ M4g(2), then N is given by

N =
1

2

[
(a1 + ic1)+ θ [(a2 + ic2)] θ ′[(d1 + ib1)+ (d2 + ib2)]
θ ′[(d1 − ib1)+ (d2 − ib2)] (a1 − ic1)+ θ [(a2 − ic2)]

]
, (13)

where a1 + ic1, a2 + ic2, d1 + ib1, d2 + ib2 ∈ Z[i]. Now, if H ∈ M4g(2),

where H =
1

2

(
n1 n2

n2 n1

)

, then

f −1(H) =

(
Re(n1)+ I m(n2) I m(n1)+ Re(n2)

−(I m(n1)− Re(n2)) Re(n1)− I m(n2)

)

. (14)

Therefore

f −1(H) =
1

2

[
x + yθ ′ z + wθ ′

−(z − wθ ′) x − yθ ′

]

, (15)

with x, y, z, w ∈ Z[θ ], where θ =
√

2 if M ∈ A8(2) and θ =
3 + 2

√
3 if M ∈ A12(2). As consequence of Equation (4), it follows

that det(H) = det( f −1(H)) ∈ A4g(2). Thus, det(H) 6= 0 and therefore
C is fully diversity.

6 Conclusion

In this work, we constructed a new class of STBCs from symmetric groups
(in this case arithmetic Fuchsian groups) associated with the regular polygon
octogon and dodecagon of self-dual tessellation {8, 8} and {12, 12}, respectively.

However, we known there are infinitely possibilities of tessellations of hy-
perbolic plane by regular polygons. This fact suggest another possibilities of
identifications of arithmetic Fuchsian groups by quaterion orders. Therefore, its
open another possibilities to constructions STBCs that using this theory.
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