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Abstract. In this paper, we explore the block triangular preconditioning techniques applied

to the iterative solution of the saddle point linear systems arising from the discretized Maxwell

equations. Theoretical analysis shows that all the eigenvalues of the preconditioned matrix are

strongly clustered. Numerical experiments are given to demonstrate the efficiency of the pre-

sented preconditioner.
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1 Introduction

We consider the block triangular preconditioner for linear systems arising from

the finite element discretization of the following static Maxwell equations: find

u and p such that
∇ × ∇ × u + ∇ p = f in �

∇ ∙ u = 0 in �

u × n = 0 on ∂�

p = 0 on ∂�

(1.1)
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where � ⊂ R2 is a simply connected domain with connected boundary ∂�, and

n represents the outward unit normal vector on ∂�; u is vector field, p is the

Lagrange multiplier and the datum f is given generic source.

There are a large variety of schemes for solving the Maxwell equations, such

as the edge finite element method [1, 2, 6], the domain decomposition method

[5, 9], the algebraic multigrid method [3] and so on.

Using finite element discretization with Nédélec elements of the first kind

[4, 11, 7] for the approximation of the vector field and the standard nodal ele-

ments for the multiplier, we obtain the approximate solution of (1.1) by solving

the following saddle point linear systems:

Ax ≡

[
A BT

B 0

][
u

p

]

=

[
g

0

]

≡ b, (1.2)

where u ∈ Rn and p ∈ Rm are finite arrays denoting the finite element approx-

imations, g ∈ Rn is the load vector connected with the datum f . The matrix

A ∈ Rn×n corresponding to the discrete curl-curl operator is symmetric positive

semidefinite with nullity m, B ∈ Rm×n is a discrete divergence operator with

rank(B)= m. Specifically, one can see [4, 7, 11] for details.

The form of (1.2) frequently occurs in a large number of applications, such

as the (linearized) Navier-Stokes equations [21], the time-harmonic Maxwell

equations [7, 8, 10], the linear programming (LP) problem and the quadratic pro-

gramming (QP) problem [17, 20]. At present, there usually exist four kinds of

preconditioners for the saddle point linear systems (1.2): block diagonal precon-

ditioner [22, 23, 24, 25], block triangular preconditioner [15, 16, 26, 27, 28, 37],

constraint preconditioner [29, 30, 31, 32, 33] and Hermitian and skew-Hermitian

splitting (HSS) preconditioner [34]. One can [12] for a general discussion.

Recently, Rees and Greif [17] presented the following triangular precondi-

tioner:

Rk =

[
A + BT W −1 B k BT

0 W

]

, (1.3)

where W is a symmetric positive definite matrix and k 6= 0. It was shown

that if A is symmetric positive semidefinite with nullity q (q ≤ m), then the

preconditioned matrix R−1
k A has five distinct eigenvalues: 1 with algebraic
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multiplicity n − m, −k±
√

k2+4
2 with algebraic multiplicity 2q and

−(kη − 1) ±
√

(kη − 1)2 + 4η(1 + η)

2(1 + η)

with algebraic multiplicity 2(m − q) where η > 0 is the generalized eigen-

values of ηAx = BT W −1 Bx . Obviously, if m = q, the preconditioned

matrix R−1
k A has three distinct eigenvalues: 1 and −k±

√
k2+4

2 . This is favor-

able to Krylov subspace methods, which rely on the matrix-vector products

and the number of distinct eigenvalues of the preconditioned matrix [13, 19].

It is well-known fact that the preconditioning technique attempts to make the

spectral property better to improve the rate of convergence of Krylov subspace

methods [14].

In the light of the preconditioning idea, this paper is devoted to giving the new

block triangular preconditioners for the linear systems (1.2). It is shown that,

in contrast to the block triangular preconditioner Rk , all the eigenvalues of the

proposed new preconditioned matrices are more strongly clustered. Numerical

experiments show that the new preconditioners are slightly more efficient than

the preconditioner Rk .

The remainder of this paper is organized as follows. In Section 2, the new

block triangular preconditioners are presented and algebraic properties are

derived in detail. In Section 3, a single column nonzero (1,2) block precondi-

tioner is presented. In Section 4, numerical experiments are presented. Finally,

in Section 5 some conclusions are drawn.

2 Block triangular preconditioner

To study the block triangular preconditioners for solving (1.2) conveniently, we

consider the following saddle point linear systems:

Ax ≡

[
A BT

B 0

][
u

p

]

=

[
g

0

]

≡ b, (2.1)

where A ∈ Rn×n is assumed to be symmetric positive semidefinite with highly

nullity and B ∈ Rm×n(m ≤ n). We assume thatA is nonsingular, from which it

follows that

rank(B) = m and null(A) ∩ null(B) = 0. (2.2)
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Now we are concerned with the following block triangular matrix as a pre-

conditioner:

HU,W =

[
A + BT U−1 B BT

0 W

]

,

where U, W ∈ Rm×m are symmetric positive definite matrices.

Proposition 2.1. Let {xi }
n−m
i=1 be a basis of the null space of B. Then the

vectors (xi , 0) are n − m linear independent eigenvectors of H−1
U,WA with

eigenvalue 1.

Proof. The eigenvalue problem of H−1
U,WA is

[
A BT

B 0

][
x

y

]

= λ

[
A + BT U−1 B BT

0 W

][
x

y

]

.

Then

Ax + BT y = λ(A + BT U−1 B)x + λBT y,

Bx = λW y.

From the nonsingularity of A it follows that λ 6= 0 and x 6= 0. Substituting

y = λ−1W −1 Bx into the first block row, we get

λAx + (1 − λ)BT W −1 Bx = λ2(A + BT U−1 B)x . (2.3)

Assume that x = xi 6= 0 is a null vector of B. Then (2.3) simplifies into

(λ2 − λ)Axi = 0.

Since a nonzero null vector of B cannot be a null vector of A by (2.2) and

A is nonsingular, the following natural property is derived:

〈Ax, x〉 > 0 for all 0 6= x ∈ ker(B).

It follows that Axi 6= 0 and λ = 1. Since Bxi = 0, it follows that y = 0 and

λ = 1 is an eigenvalue of H−1
U,WA with algebraic multiplicity (at least) n − m,

whose associated eigenvectors are (xi , 0), i = 1, 2, . . . , n − m. �
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“main” — 2011/11/25 — 13:34 — page 593 — #5

SHI-LIANG WU, TING-ZHU HUANG and LIANG LI 593

Remark 2.1. From Proposition 2.1, it is easy to get that H−1
U,WA has at least

n − m eigenvalues equal to 1 regardless of U and W . The stronger clustering

of the eigenvalues can be obtained by choosing two specific matrices such as

U = W .

To this end, we consider the following indefinite block triangular matrix as a

preconditioner:

Hs =

[
A + s BT W −1 B (1 + s)BT

0 −W

]

,

where W ∈ Rm×m is a symmetric positive definite matrix and s > 0. The next

lemma provides that all the eigenvalues of the preconditioned matrix H−1
s A are

strongly clustered, whose proof is similar to that of Theorem 2.4 in [36].

Lemma 2.1. Suppose that A is symmetric positive semidefinite with nullity r

(r ≤ m), B has full rank and λ is an eigenvalue of H−1
s A with eigenvector

(v, q). Then λ = 1 is an eigenvalue of H−1
s A with multiplicity n, and λ = 1

s

is an eigenvalue with multiplicity r . The remaining m − r eigenvalues are

λ =
μ

sμ + 1
,

where μ are the nonzero generalized eigenvalues of

μAv = BT W −1 Bv. (2.4)

Assume, in addition, that {xi }r
i=1 is a base of the null space of A; {yi }

n−m
i=1 is a

base of the null space of B; {zi }
m−r
i=1 is a set of linearly independent vectors that

complete null(A) ∪ null(B) to a basis of Rn. Then a set of linear independent

eigenvectors corresponding to λ = 1 can be found: the n −m vectors (yi , 0), the

r vectors (xi , −W −1 Bxi ) and the m − r vectors (zi , −W −1 Bzi ). The r vectors

(xi , −sW −1 Bxi ) are eigenvectors associated with λ = 1
s .

Proof. Let λ be an eigenvalue of H−1
s A with eigenvector (v, q). Then

[
A BT

B 0

][
v

q

]

= λ

[
A + s BT W −1 B (1 + s)BT

0 −W

][
v

q

]

,
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which can be rewritten into

Av + BT q = λ(A + s BT W −1 B)v + (1 + s)λBT q, (2.5)

Bv = −λWq. (2.6)

Since A is nonsingular, it is not difficult to get that λ 6= 0 and v 6= 0. By (2.6),

we get

q = −λ−1W −1 Bv.

Substituting it into (2.5) yields

(λ2 − λ)Av =
(
− sλ2 + (1 + s)λ − 1

)
BT W −1 Bv. (2.7)

If λ = 1, then (2.7) is satisfied for any arbitrary nonzero vector v ∈ Rn , and

hence (v, −W −1 Bv) is an eigenvector of H−1
s A.

If x ∈ null(A), then from (2.7) we obtain

(λ − 1)(sλ − 1)BT W −1 Bx = 0,

from which it follows that λ = 1 and λ = 1
s are eigenvalues associated with

(x, −W −1 Bx) and (x, −sW −1 Bx), respectively.

Assume that λ 6= 1. Combining (2.4) and (2.7) yields

λ2 − λ = μ
(
− sλ2 + (1 + s)λ − 1

)
.

It is easy to see that the rest m − r eigenvalues are

λ =
μ

sμ + 1
. (2.8)

A specific set of linear independent eigenvectors for λ = 1 and λ = 1
s can be

readily found. From (2.2), it is not difficult to see that (yi , 0), (xi , −W −1 Bxi )

and (zi , −W −1 Bzi ) are eigenvectors associated with λ = 1. The r vectors

(xi , −sW −1 Bxi ) are eigenvectors associated with λ = 1
s . �

Remark 2.2. (2.8) gives an explicit formula in terms of the generalized eigen-

values of (2.7) and becomes tightly clustered as μ → ∞. To illustrate this,
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we examine the case s = 1, i.e., H1. We have λ = 1 with multiplicity n + r .

The rest m − r eigenvalues are

λ =
μ

μ + 1
.

Since λ is a strictly increasing function of μ on (0, ∞), it is easy to find that the

remaining eigenvalues λ → 1 as μ → ∞. In [17], authors considered k = −1,

i.e., R−1 and obtained five distinct eigenvalues: λ = 1 (with multiplicity n −m),

λ± = 1+
√

5
2 (each with multiplicity q), the remaining eigenvalues are

λ± =
1 ±

√
1 + 4μ

1+μ

2
(μ > 0),

which lie in the intervals
(

1 −
√

5

2
, 0

)

∪

(

1,
1 +

√
5

2

)

as μ → ∞.

Obviously, the eigenvalues of our preconditioned matrix are more clustered than

those stated in [17]. That is, the preconditioner H1 is slightly better than R−1

from the viewpoint of eigenvalue clustering. In fact, it may lead to the ill-

conditioning of H1 as μ → ∞. Golub et al. [18] considered the minimizing

of the condition number of the (1,1) block of H1. The simplest choice is that

W −1 = γ I (γ > 0), which leads to all the eigenvalues that are not equal to 1 are

λ =
γ δ

1 + γ δ
,

where δ is the positive generalized eigenvalue of δAx = BT Bx . Obviously, the

parameter γ should be chosen to be large such that the eigenvalues are strongly

clustered, but not too large such that the (2,2) block of H1 is too near singular.

From (2.2), it is to get that the nullity of A must be m at most. Lemma 2.1

shows that the higher it is, the more strongly the eigenvalues are clustered.

Combining Lemma 2.1 with (1.2), the following theorem is given:

Theorem 2.1. Suppose that A is symmetric positive semidefinite with nullity

m. Then the preconditioned matrix H−1
s A has precisely two eigenvalues: λ =

1, of multiplicity n, and λ = 1
s , of multiplicity m. Moreover, if s = 1, then
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the preconditioned matrix H−1
1 A has precisely one eigenvalue: λ = 1 with

multiplicity n + m.

Remark 2.3. The important consequence of Theorem 2.1 is that the precon-

ditioned matrix H−1
s A have minimal polynomials of degree at most 2. There-

fore, a Krylov subspace method like GMRES applied to a preconditioned linear

systems with coefficient matrix H−1
s A converges in 2 iterations or less, in exact

arithmetic [38]. By the above discussion, the choice of the optimal parameter s

of the preconditioner Hs is equal to 1. Investigating the preconditioner Rk , it is

very difficult to determine the optimal parameter k.

Next, we consider the positive definite block triangular preconditioner as

follows:

Th =

[
A + h BT W −1 B (1 − h)BT

0 W

]

,

where W ∈ Rm×m is a symmetric positive definite matrix and h > 0.

Similarly, we can get the following results.

Lemma 2.2. Suppose that A is symmetric positive semidefinite with nullity r

(r ≤ m), B has full rank and λ is an eigenvalue of T −1
h A with eigenvector

(v, q). Then λ = 1 is an eigenvalue of T −1
h A with multiplicity n, and λ = − 1

h

is an eigenvalue with multiplicity r . The remaining m − r eigenvalues are

λ = −
μ

hμ + 1
, (2.9)

where μ are defined by (2.4). In addition, {xi }r
i=1, {yi }

n−m
i=1 and {zi }

m−r
i=1 are de-

fined by Lemma 2.1. Then a set of linear independent eigenvectors correspond-

ing to λ = 1 can be found: the n-m vectors (yi , 0), the r vectors (xi , W −1 Bxi )

and the m − r vectors (zi , W −1 Bzi ). The r vectors (xi , −hW −1 Bxi ) are eigen-

vectors associated with λ = − 1
h .

Theorem 2.2. Suppose that A is symmetric positive semidefinite with nul-

lity m. Then the preconditioned matrix T −1
h A has precisely two eigenvalues:

λ = 1, of multiplicity n, and λ = − 1
h , of multiplicity m. Moreover, if h = 1,

the preconditioned matrix T −1
1 A has precisely two eigenvalues: λ = 1, of mul-

tiplicity n, and λ = −1, of multiplicity m.

Comp. Appl. Math., Vol. 30, N. 3, 2011
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From Theorem 2.2, it is not difficult to find that the choice of the optimal

parameter h(> 0) of the preconditioner Th is equal to 1.

3 A single column nonzero (1,2) block preconditioner

We consider the following single column nonzero (1,2) block preconditioner:

T =

[
A + BT W̃ B −bi eT

i

0 W

]

,

where bi denotes the column i of BT , and ei is the i-th column of the m × m

identify matrix,

W = γ I (γ > 0) and W̃ =
1

γ
I +

1

γ
ei e

T
i .

It is not difficult to find that A + BT W̃ B is nonsingular because A is symmetric

positive semidefinite and W̃ is symmetric positive definite.

The spectral properties of T −1A are presented in the following theorem:

Theorem 3.1. The preconditioned matrix T −1A has λ = 1 with multiplicity

n and λ = −1 with multiplicity m − 1. Corresponding eigenvectors can be

explicitly found in terms of the null space and column space of A.

Proof. Let λ be any eigenvalue of T −1A, and z = (x, y) be the corresponding

eigenvector. Then T −1Az = λz, i.e.,
[

A BT

B 0

][
x

y

]

= λ

[
A + BT W̃ B −bi eT

i

0 W

][
x

y

]

. (3.1)

Let Q R = [Y Z ][RT 0T ]T be an orthogonal factorization of BT , where R ∈

Rm×m is upper triangular, Y ∈ Rn×m , and Z ∈ Rn×(n−m) is a basis of the null

space of B. Premultiplying (3.1) by the nonsingular and square matrix

P =






Z T 0

Y T 0

0 I






Comp. Appl. Math., Vol. 30, N. 3, 2011
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and postmultiplying by its transpose gives





Z T AZ Z T AY 0

Y T AZ Y T AY R

0 RT 0











xz

xy

y






= λ







Z T AZ Z T AY 0

Y T AZ Y T AY +
1

γ

(
R RT + rir T

i

)
−ri eT

i

0 0 γ I












xz

xy

y




 .

By inspection, we check λ = 1, which reduces the above equation to







0 0 0

0 −
1

γ

(
R RT + rir T

i

)
R + ri eT

i

0 RT −γ I












xz

xy

y




 = 0.

Immediately, there exist n − m corresponding eigenvectors of the form

(xz, xy, y) = (u, 0, 0) for (n − m) linearly independent vectors u. At the same

time, we can find that there have m linearly independent eigenvectors, corre-

sponding to λ = 1, which can be written (xz, xy, y) =
(
0, x∗

y ,
1
γ

x∗
y

)
. That is,

there exist n linearly independent eigenvectors corresponding to λ = 1.

It is not difficult to get that there exist m − 1 eigenvectors corresponding to

λ = −1. Indeed, substituting λ = −1 requires finding a solution to







2Z T AZ 2Z T AY 0

2Y T AZ 2Y T AY +
1

γ

(
R RT + rir T

i

)
R − ri eT

i

0 RT γ I












xz

xy

y




 = 0.

Vectors xz, xy, y can be found to solve this equation. Consider any x∗ = Z x∗
z +

Y x∗
y in the null space of A. Then AZ x∗

z + AY x∗
y = 0, and we are left with finding

a y such that 


1

γ

(
R RT + rir T

i

)
R − ri eT

i

RT γ I





[
x∗

y

y

]

= 0
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for the fixed x∗
y . Further, we get

1

γ

(
R RT + rir

T
i

)
x∗

y +
(
R − ri e

T
i

)
y = 0, (3.2)

RT x∗
y + γ y = 0. (3.3)

By (3.3), we get y = − 1
γ

RT xy . Substituting it into (3.2) requires 2
γ

rir T
i xy =

0. In general, we can find exactly m − 1 eigenvectors orthogonal to ri . That

is, there are m − 1 eigenvectors of the form (xz, xy, y) = (x∗
z , x∗

y , −
1
γ

RT x∗
y ),

where x∗
y is orthogonal to ri , corresponding to λ = −1. �

Remark 3.1. The following preconditioner was considered in [17], that is,

M̂ =

[
A + BT W̄ B −bi eT

i

0 W

]

,

where W = γ I (γ > 0) and W̄ = 1
γ

I − 1
γ

ei eT
i . In practice, the preconditioner

M̂ can be with riskiness. In fact, if A is a symmetric positive semidefinite matrix

with highly nullity, then A + 1
γ

BT (I − ei eT
i )B may become singular because

I − ei eT
i is symmetric positive semidefinite. In our numerical experiments, we

find that the preconditioner M̂ for solving (1.2) leads to the deterioration of

performance when i = 1. In this case, the preconditioner M̂ is singular.

4 Numerical experiments

In this section, two examples are given to demonstrate the performance of our

preconditioning approach. In our numerical experiments, all the computations

are done with MATLAB 7.0. The machine we have used is a PC-Intel(R),

Core(TM)2 CPU T7200 2.0 GHz, 1024M of RAM. The initial guess is taken

to be

x (0) = 0

and the stopping criterion is chosen as follows:

‖b −Ax (k)‖2 ≤ 10−6‖b‖2.

Example 1. We consider the two-dimensional static Maxwell equations (1.1)

in an L-shaped domain ([−1, 1] × [−1, 1] − [−1, 0] × [0, 1]). For simplicity,

Comp. Appl. Math., Vol. 30, N. 3, 2011
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Figure 1 – 8 × 8 mesh dissection.

we take a finite element subdivision like Figure 1. Information on sparsity of

the relevant matrices is given in Table 1. The test problem is set up so that the

right hand side function is equal to 1 throughout the domain.

Mesh n m nz(A) nz(B) order of A

32×32 2240 961 10948 6926 3201

64×64 9088 3969 44932 29198 13057

128×128 36608 16129 182020 119822 52737

256×256 146944 65025 732676 485390 211969

Table 1 – Values of n and m, nonzeros in A and B, order of A.

Here we mainly test four preconditioners: R−1, H1, T1 and T . From Re-

mark 2.2, based on the condition number of the matrix, it ensures that the norm

of the augmenting term is not too small in comparison with A [35], we set

W −1 = 20 ‖A‖1

‖B‖2
1

I . One can see [35] for details.

It is well known that the eigenvalue distribution of the preconditioned mat-

rix gives important insight in the convergence behavior of the preconditioned

Krylov subspace methods. For simplicity, we investigate the eigenvalue distri-

bution of the preconditioned matrices R−1
−1A and H−1

1 A. Figure 2 plots the

Comp. Appl. Math., Vol. 30, N. 3, 2011
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Figure 2 – Eigenvalues of R−1
−1A (left) and H−1

1 A (right) with 16 × 16 grid.
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eigenvalues of the preconditioned matrices R−1
−1A and H−1

1 A for 16 × 16 grid,

where left corresponds to R−1
−1A and right corresponds to H−1

1 A. It is easy to

see that the clustering of the eigenvalues of H−1
1 A is more stronger than that of

H−1
1 A in Figure 2.

To investigating the performance of the above four preconditioners, in our

numerical experiments some Krylov subspace methods with BiCGStab and

GMRES(`) are adopted. As is known, there is no general rule to choose the

restart parameter ` (` � n + m). This is mostly a matter of experience. To

illustrate the efficiency of our methods, we take ` = 20. In Tables 2 and 3, we

present some results to illustrate the convergence behaviors of BiCGStab and

GMRES(20) preconditioned by R−1, H1, T1 and T , respectively. Here i of T

is equal to 1. Figures 3 and 4 correspond to Tables 2 and 3, which show the

iteration numbers and relative residuals of preconditioned BiCGStab and GM-

RES(20) employed to solve the saddle point linear systems (1.2), where left in

Figures 3-4 corresponds to BiCGStab and right in Figures 3-4 corresponds to

GMRES(20). The purpose of these experiments is just to investigate the influ-

ence of the eigenvalue distribution on the convergence behavior of BiCGStab

and GMRES(20) iterations. “IT” denotes the number of iteration. “CPU(s)”

denotes the time (in seconds) required to solve a problem.

Mesh
R−1 H1 T1 T

IT CPU(s) IT CPU(s) IT CPU(s) IT CPU(s)

32×32 5 0.1563 3 0.0938 3 0.1406 5 0.1563
64×64 5 0.8281 3 0.4844 3 0.8281 4 0.6563

128×128 5 4.7188 3 2.7813 3 6.0156 4 3.6250
256×256 5 24.8906 2 10.0625 3 33.4688 4 19.5469

Table 2 – Iteration number and CPU(s) of BiCGStab method.

From Tables 2-3, it is not difficult to see that the exact preconditioners R−1,

H1, T1 and T are in relation to the CPU time, and the iteration numbers of

the exact preconditioners R−1, H1, T1 and T are insensitive to the changes in

the mesh size by using BiCGStab and GMRES(20) to solve the saddle point

linear systems (1.2). Although the exact preconditioners R−1, H1, T1 and T are

quite competitive in terms of convergence rate, robustness and efficiency, the

preconditioner H1 outperforms the preconditioners R−1, T1 and T from iteration
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Mesh
R−1 H1 T1 T

IT CPU(s) IT CPU(s) IT CPU(s) IT CPU(s)

32×32 3 0.1563 2 0.1250 2 0.1719 3 0.1406
64×64 3 0.8125 2 0.6250 2 1.1094 3 0.7813

128×128 3 4.6719 2 3.7656 2 7.7031 3 4.4844
256×256 3 19.6875 2 14.6563 2 33.0625 3 19.3750

Table 3 – Iteration number and CPU(s) of GMRES(20).

Matrix name order of A n m nnz(A)

GHSindef/k1san 67759 46954 20805 559774

Table 4 – Characteristics of the test matrix from the UF Sparse Matrix Collection.

number and CPU time. Compared with the preconditioners R−1, T1 and T , the

preconditioner H1 may be the ‘best’ choice. Comparing the performance of

BiCGStab to the performance of GMRES(20) is not within our stated goals,

but having results using more than one Krylov solver allows us to confirm the

consistency of convergence behavior for most problems.

Example 2. A matrix from the UF Sparse Matrix Collection [39].

The test matrix is GHSindef/k1san, coming from UF Sparse Matrix Collec-

tion, which is an ill-conditioned matrix from Aug. system modelling the un-

derground of Strazpod Ralskem mine by MFE. The characteristics of the test

matrix are listed in Table 4. The numerical results from using the BiCGStab and

GMRES(20) methods preconditioned by the above four preconditioners to solve

the corresponding saddle point linear systems are given in Table 5. Figure 5 is

in concord with Table 5, where left in Figure 5 corresponds to BiCGStab and

right in Figure 5 corresponds to GMRES(20).

From Table 5, it is easy to see that the preconditioners R−1, H1, T1 and T are

really efficient when BiCGStab and GMRES(20) methods are used to solve

R−1 H1 T1 T
IT CPU(s) IT CPU(s) IT CPU(s) IT CPU(s)

BiCGStab 53 96.3594 17 31.5625 19 38.1563 21 50.6406

GMRES(20) 31 61.3906 13 26.2656 13 27.8906 14 39

Table 5 – Iteration number and CPU(s) of BiCGStab and GMRES(20).
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Figure 3 (to be continue) – Iteration number of BiCGStab (top) and GMRES(20) (bot-

tom).
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Figure 3 (to be continue) – Iteration number of BiCGStab (top) and GMRES(20) (bot-

tom).
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Figure 3 (conclusion) – Iteration number of BiCGStab (top) and GMRES(20) (bottom).
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Figure 4 – Iteration number of BiCGStab (top) and GMRES(20) (bottom) with 256×256.
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Figure 5 – Iteration number of BiCGStab (top) and GMRES(20) (bottom) method for

GHSindef/k1san.
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the saddle point systems with the coefficient matrix being GHSindef/k1san.

It is not difficult to find that the preconditioner H1 are superior to the precon-

ditioners R−1, T1 and T from iteration number and CPU time under certain

conditions. That is, the preconditioner H1 is quite competitive in terms of con-

vergence rate, robustness and efficiency.

5 Conclusion

In this paper, we have proposed three types of block triangular preconditioners

for iteratively solving linear systems arising from finite element discretization

of the Maxwell equations. The preconditioners have the attractive property

to improve the eigenvalue clustering of the coefficient matrix. Furthermore,

numerical experiments confirm the effectiveness of our preconditioners.

In fact, in Section 2, our methodology can extend the unsymmetrical case,

that is, the (1,2) block and the (2,1) block of the saddle point systems are un-

symmetrical.
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