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Abstract. In this paper, we propose an efficient numerical method for solving systems of linear

and nonlinear integral equations of the first and second kinds, which avoids the need for special

starting values. The method has also the advantages of simplicity of application and at least six

order of convergence. A convergence analysis is given and accuracy of the method is clarified by

numerical examples.
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1 Introduction

A number of problems in physics, engineering, biology, applied mathematics

and many area of analysis, as well as other branches of science are described by

system of integral equations.

Numerical solution of integral equations have attracted attention of many re-

searchers. Considered methods are including: the methods that include ap-

plications of spline functions [2]; Runge-Kutta method [7]; Chebyshev poly-

nomials method [1]; expansion method [9]; variational method [6]; HPM
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(Homotopy Perturbation Method), ADM (Adomian Decomposition Method)

[11] and RBFN (Radial Basis Function Network) method [3].

In this paper, we propose a block by block method with Romberg quadrature

rule which is a development of the presented method in [4].

The concept of a block by block method for integral equations seems to be

described for the first time by Young [10]. A similar technique for differential

equations was given by Milne [8]. A block method is essentially an extrapolation

procedure and has the advantage of being self starting. As we shall see, it

produces a block of values at a time and it is effective for the long intervals. The

block by block method with Romberg quadrature rule has the following extra

advantages:

1. For the given step size h, the order of convergence is at least h6 while it is

h4 by using Simpson rule [4].

2. By increasing number of blocks, the order of convergence increases such

that it would be at least h8 and h10 respectively for 8 and 16 blocks.

3. At the first step of Romberg rule one can use Simpson rule instead of

trapezoidal rule, then the order of convergence for 4 blocks will be at

least h8.

The rest of the paper is organized as follows. In Section 2, we will present

the method in a simple case (system of two equations) and in Section 3, we

describe the general case. In Section 4, we prove a convergence result. Finally,

we illustrate the performance of the method by comparing the numerical results

of the HPM, RBFN method and the block by block method in Section 5 (see

Table 1).

2 Description of the method

Consider a system of Volterra integral equations (VIEs) of the form

f(x) = g(x) +
∫ x

0
K(x, s, f(s))ds, 0 ≤ s ≤ x ≤ X (2.1)

where

f(x) =
[

f1(x), f2(x), . . . , fn(x)
]T

, g(x) =
[
g1(x), g2(x), . . . , gn(x)

]T
,
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and

K(x, s, f(s)) =









k1(x, s, f1(s), . . . , fn(s))

k2(x, s, f1(s), . . . , fn(s))
...

kn(x, s, f1(s), . . . , fn(s))









.

We assume that the system (2.1) is uniquely solvable. Necessary and sufficient

conditions for the existence and uniqueness of solution for (2.1) can be found in

[5], therefore we assume

(i) g(x) is continuous (i.e. each component is continuous),

(ii) K(x, s, u) is a continuous function for

0 ≤ s ≤ x ≤ X and 0 ≤ ‖u‖ < ∞,

(iii) the kernel satisfies the Lipschtiz condition

‖K(x, s, y) − K(x, s, z)‖ ≤ L‖y − z‖

where the norm is defined as ‖f‖ = max
0≤i≤n

| fi (t)|.

For simplicity, let n = 2 and the number of blocks to be 4. For 8, 16, . . .

blocks the process will be similar. Also, let 0 = x0 < x1 < ∙ ∙ ∙ < xN = X

be a partition of [0, X ] with xi = x0 + ih and h = X/N , (note that N must be

multiple of the number of blocks). Then by putting x = x4m+p in (2.1), we have

f1(x4m+p) = g1(x4m+p) +
∫ x4m

0
k1(x4m+p, s, f1(s), f2(s))ds

+
∫ x4m+p

x4m

k1(x4m+p, s, f1(s), f2(s))ds (2.2)

f2(x4m+p) = g2(x4m+p) +
∫ x4m

0
k2(x4m+p, s, f1(s), f2(s))ds

+
∫ x4m+p

x4m

k2(x4m+p, s, f1(s), f2(s))ds (2.3)

Comp. Appl. Math., Vol. 31, N. 1, 2012



“main” — 2012/4/9 — 13:39 — page 194 — #4

194 A BLOCK BY BLOCK METHOD

for m = 0, 1, 2, . . . , N/4 − 1 and p = 1, 2, 3, 4. Let Fi, j ≈ fi (x j ) for i =

1, 2, . . . , n and j = 0, 1, 2, . . . , N .

If Fi,0, Fi,1, . . . , Fi,4m (i = 1, 2) are known, then the first integral in (2.2)

and (2.3) can be approximated by standard quadrature rules. The second inte-

gral is estimated by Romberg quadrature rule at the points x4m , x4m+1, x4m+2,

x4m+3 and x4m+4, thus a system of eight simultaneous equations is obtained that

is solved for a block of eight values of F . We use the trapezoidal rule for
∫ xu

xv
ki (x4m+p, s, f(s))ds (i = 1, 2) with xu = uh, xv = vh(u, v = 0, . . . , N )

and define

T (0)
i (u, v) :=

xu−v

2

[
ki

(
x4m+p, xv, Fv

)
+ ki

(
x4m+p, xu, Fu

)]
,

T (1)
i (u, v) :=

1

2
T (0)

i (u, v) +
xu−v

2
ki

(
x4m+p, x u+v

2
, F u+v

2

)
,

T (2)
i (u, v) :=

1

2
T (1)

i (u, v) +
xu−v

4

[
ki

(
x4m+p, x u+3v

4
, F u+3v

4

)

+ ki

(
x4m+p, x 3u+v

4
, F 3u+v

4

)]
, (2.4)

T (3)
i (u, v) :=

1

2
T (2)

i (u, v) +
xu−v

8

[
ki

(
x4m+p, x u+7v

8
, F u+7v

8

)

+ ki

(
x4m+p, x 3u+5v

8
, F 3u+5v

8

)
+ ki

(
x4m+p, x 5u+3v

8
, F 5u+3v

8

)

+ ki

(
x4m+p, x 7u+v

8
, F 7u+v

8

)]

where

Fα = (F1,α, F2,α) ≈ ( f1(xα), f2(xα)) for α = v,
u + 7v

8
, . . . , u.

By using the Romberg rule we define

Ai (u, v) :=
64

45
T (2)

i (u, v) −
20

45
T (1)

i (u, v) +
1

45
T (0)

i (u, v),

Bi (u, v) :=
4096

2835
T (3)

i (u, v) −
1344

2835
T (2)

i (u, v)

+
84

2835
T (1)

i (u, v) −
1

2835
T (0)

i (u, v)
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then the second integral in (2.2) and (2.3) can be written as
∫ x4m+p

x4m

k1(x4m+p, s, f(s)) ≈ A1(4m + p, 4m),

∫ x4m+p

x4m

k2(x4m+p, s, f(s)) ≈ A2(4m + p, 4m)

for p = 1, 2, 3, 4. If j p
4 ( j = 1, 2, 3) are not integers, then Fi,4m+ j p

4
(i =

1, 2, . . . , n) will be unknown in (2.4), but they can be approximated by

Lagrange interpolation at the points x4m , x4m+1, x4m+2, x4m+3 and x4m+4. Thus

we obtain

F4m+ 3
2

≈ −5
128 F4m + 15

32 F4m+1 + 45
64 F4m+2 − 5

32 F4m+3 + 3
128 F4m+4,

F4m+ 3
4

≈ 195
2048 F4m + 585

512 F4m+1 − 351
1024 F4m+2 + 65

512 F4m+3 − 45
2048 F4m+4,

F4m+ 9
4

≈ 35
2048 F4m − 63

512 F4m+1 + 945
1024 F4m+2 + 105

512 F4m+3 − 45
2048 F4m+4,

F4m+ 1
2

≈ 35
128 F4m + 35

32 F4m+1 − 35
64 F4m+2 + 7

32 F4m+3 − 5
128 F4m+4,

F4m+ 1
4

≈ 1155
2048 F4m + 385

512 F4m+1 − 495
1024 F4m+2 + 105

512 F4m+3 − 77
2048 F4m+4.

(2.5)

When we use this method with very small step size, we must approximate the

first integrals in a large interval, so we use the Romberg rule with three steps. If

m is even, then
∫ x4m

0
k1(x4m+p, s, f(s))ds ≈ B1(4m, 0),

∫ x4m

0
k2(x4m+p, s, f(s))ds ≈ B2(4m, 0)

and we obtain from (2.2) and (2.3)

F1,4m+p = g1(x4m+p) + B1(4m, 0) + A1(4m + p, 4m),

F2,4m+p = g2(x4m+p) + B2(4m, 0) + A2(4m + p, 4m)
(2.6)
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otherwise
∫ x4m

0
k1(x4m+p, s, f(s)) =

∫ x4

0
k1(x4m+p, s, f(s))ds

+
∫ x4m

x4

k1(x4m+p, s, f(s))ds

≈ A1(4, 0) + B1(4m, 4),
∫ x4m

0
k2(x4m+p, s, f(s)) =

∫ x4

0
k2(x4m+p, s, f(s))ds

+
∫ x4m

x4

k2(x4m+p, s, f(s))ds

≈ A2(4, 0) + B2(4m, 4)

and we obtain

F1,4m+p = g1(x4m+p) + A1(4, 0) + B1(4m, 4) + A1(4m + p, 4m),

F2,4m+p = g2(x4m+p) + A2(4, 0) + B2(4m, 4) + A2(4m + p, 4m).
(2.7)

Therefore for p = 1, 2, 3, 4, (2.6) (or (2.7)) form a system of equations with

the unknowns F4m+1, F4m+2, F4m+3 and F4m+4 which will be linear and non-

linear respectively for linear and nonlinear integral equations. For the linear

case, it is solved via a direct method but for the nonlinear case, the system may

be solved by using an iterative method or by using a suitable software package

such as Maple.

3 The general process

Consider the system of VIEs

f(x) = g(x) +
∫ x

0
K(x, s, f(s))ds, 0 ≤ s ≤ x ≤ X (3.1)

where f , g and K are n-tuples vectors.

Let

0 = x0 < x1 < ∙ ∙ ∙ < xN = X
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be a partition of [0, X ] with the step size h. Similar to previous section, if m be

even, then we will have

F1,4m+p = g1(x4m+p) + B1(4m, 0) + A1(4m + p, 4m),

F2,4m+p = g2(x4m+p) + B2(4m, 0) + A2(4m + p, 4m),

...

Fn,4m+p = gn(x4m+p) + Bn(4m, 0) + An(4m + p, 4m)

for m = 0, 1, . . . , N/4 − 1 and p = 1, . . . , 4.

Otherwise (m be odd), we obtain

F1,4m+p = g1(x4m+p) + A1(4, 0) + A1(4m + p, 4m) + B1(4m, 4),

F2,4m+p = g2(x4m+p) + A2(4, 0) + A2(4m + p, 4m) + B2(4m, 4),

...

Fn,4m+p = gn(x4m+p) + An(4, 0) + An(4m + p, 4m) + Bn(4m, 4)

or equivalently














F1,4m+1 − A1(4m + 1, 4m)
...

F1,4m+4 − A1(4m + 4, 4m)

F2,4m+1 − A2(4m + 1, 4m)
...

Fn,4m+4 − An(4m + 4, 4m)














=














g1(x4m+1) + A1(4, 0) + B1(4m, 4)
...

g1(x4m+4) + A1(4, 0) + B1(4m, 4)

g2(x4m+1) + A2(4, 0) + B2(4m, 4)
...

gn(x4m+4) + An(4, 0) + Bn(4m, 4)














(3.2)

for m = 0, 1, . . . , N/4 − 1. Consequently, at each step we get a system of

4n equations with unknowns F1,4m+1, . . . , F1,4m+4, F2,4m+1, . . . , F2,4m+4, . . .,

Fn,4m+1, . . . , Fn,4m+4.

4 Convergence analysis

Theorem 4.1. The approximation method given by the system (3.2), is convergent

and its order of convergence is at least 6.
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Proof. For simplicity, we prove the theorem for n = 2, the general case is
proved similarly. Define εi, j := |Fi, j − fi (x j )|, then

ε1,4m+1 =
∣
∣F1,4m+1 − f1(x4m+1)

∣
∣

=

∣
∣
∣
∣
∣
h

4m∑

i=0

wi k1 (x4m+1, xi , Fi ) +
7

90
x1k1 (x4m+1, x4m, F4m)

+
7

90
x1k1 (x4m+1, x4m+1, F4m+1) +

6

45
x1k1

(
x4m+1, x4m+1/2, F4m+1/2

)

+
16

45
x1k1

(
x4m+1, x4m+1/4, F4m+1/4

)
+

16

45
x1k1

(
x4m+1, x4m+ 3

4
, F4m+ 3

4

)

−
∫ x4m+1

0
k1(x4m+1, s, f(s))ds

∣
∣
∣
∣ .

By using (2.5), adding and diminishing the terms

h
4m∑

i=0

wi k1 (x4m+1, xi , f(xi )) ,
7

90
x1k1 (x4m+1, x4m, f(x4m)) , . . . ,

16

45
x1k1

(
x4m+1, x4m+ 3

4
,

195

2048
f(x4m) + ∙ ∙ ∙ −

45

2048
f(x4m+4)

)

and using the Lipschitz condition for k1, we obtain

ε1,4m+1 ≤ hc′
4m∑

i=0

(ε1,i , ε2,i ) + hc1(ε1,4m+1, ε2,4m+1) + hc2(ε1,4m+2, ε2,4m+2)

+ hc3(ε1,4m+3, ε2,4m+3) + hc4(ε1,4m+4, ε2,4m+4) + R

where c′ and c1, . . . , c4 are constants and R is the error of the numerical integ-

ration.

Without diminishing universality, we assume that

max
j=4m+1,...,4m+4

εl, j = εl,4m+1, max
l=1,2

εl, j = ε1, j

then

ε1,4m+1 ≤ hc′
4m∑

i=0

ε1,i + hcε1,4m+1 + R,

where c = c1 + c2 + c3 + c4. Hence from Gronwall inequality [5], we have

ε1,4m+1 ≤
R

1 − hc
e

c′
1−hc xn .
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It follow that if n approach to infinity then ε1,4m+1 will close to the 0 and for the

functions k and f with at least sixth order derivatives, we have R = O(h6) and

so ε1,4m+1 = O(h6) and the proof is completed.

5 Numerical results

We consider the following examples to illustrate the theoretical results of

Theorem 4.1 and compare numerical results of the method with the results of

HPM and RBFN method.

Example 1 ([3]). Consider the nonlinear system

sin(x) − x +
∫ x

0

(
f 2
1 (s) + f 2

2 (s)
)

ds = f1(x),

cos(x) − 1/2 sin2(x) +
∫ x

0
f1(s) f2(s)ds = f2(x),

with the exact solutions f1(x) = sin(x) and f2(x) = cos(x).

Example 2. Consider the linear system

ex +
1

6
−

1

6
e2x −

x4

4
+

∫ x

0

(
1

3
es f1(s) + s2 f2(s)

)
ds = f1(x),

x −
1

2
x3 +

∫ x

0

(
x2e−s f1(s) − x f2(s)

)
ds = f2(x)

with the exact solutions f1(x) = ex and f2(x) = x .

Example 3. Consider a triple system of VIEs as

5ex − 4 − 4xex +
∫ x

0
4 f1(s) f2(s)ds = f1(x),

x − 1 − xex + ex −
x2

2
+

∫ x

0
( f1(s) + f2(s)) ds = f2(x),

x2 +
1

15
x5 −

1

3

∫ x

0
(s f1(s) f3(s)) ds = f3(x)

with the exact solutions f1(x) = ex , f2(x) = x and f3(x) = x2.
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Example 4 ([3]). As a final example, we consider a non-linear system of the

first kind VIEs of the form
∫ x

0

(
1 − x2 + s2

) (
f1(s) + f 3

2 (s)
)

ds =
1

6
x6+

1

5
x5+

1

4
(1−x2)x4+

1

3
(1−x2)x3,

∫ x

0
(5 + x − s) ( f1(s) − f2(s)) ds = −

1

4
x4 +

1

3
(6 + x)x3 +

1

2
(−5 − x)x2

with the exact solutions f1(x) = x2 and f2(x) = x .

The results in Tables 1-4 show the absolute errors for the examples 1-4. All

results computed by programming in Maple 11. In Table 1, we show the superi-

ority of the block by block method by comparing its results (for h = 0.05) with

the results of RBFN-MshA (a modified version of Shi’s algorithm) [3] and HPM

[11], where the results of RBFN-MshA obtained with 6 hidden nodes and the

results of HPM obtained with 4 iterations. Moreover,

1. The time of computation in the block by block method is less than that

in the HPM whenever programming of both method is done using Maple

package. Also, according to the structure of HPM, increasing number of

iterations do not affect on the precision.

2. The values of the RBF widths affect significantly on the accuracy of results

and determination of them is still a challenging problem whereas the block

by block method dose not need any starting values.

3. At each step of the RBFN method, the weights are updated by using an

optimization method, but the block by block method is independent of

using any other method. Hence the RBFN method is more complicated

than the block by block method.

Tables 2 and 4 show that the block by block method is an efficient method for

the large values of x , whereas other methods are useless.

6 Conclusion

In this paper, we have shown that the block by block method can achieve at

least 6 order of convergence. Numerical results given in Tables 1-4 confirm this

convergence order and show the high accuracy of the method. The idea can be

applied to other types of integral equations and with other suitable quadrature

rules.
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x
RBFN-MSHA HPM Block by Block

eF1 eF2 eF1 eF2 eF1 eF2

0.1 8.33e−7 9.47e−7 3.365e−04 4.864e−03 1.334e−11 1.741e−10

0.2 2.85e−7 4.37e−7 2.736e−03 1.962e−02 9.542e−11 5.105e−11

0.3 4.35e−7 7.52e−7 8.950e−03 4.394e−02 1.179e−10 2.223e−10

0.4 1.58e−7 1.41e−7 2.053e−02 7.684e−02 2.191e−10 2.116e−10

0.5 5.03e−7 8.75e−7 4.057e−02 1.174e−01 2.487e−10 1.912e−10

0.6 2.67e−7 5.93e−7 6.768e−02 1.636e−01 3.593e−10 2.953e−10

0.7 6.69e−8 6.27e−8 1.052e−01 2.150e−01 4.132e−10 2.559e−10

0.8 2.15e−7 6.08e−7 1.507e−01 2.683e−01 5.598e−10 4.687e−10

0.9 1.16e−6 3.25e−6 2.047e−01 3.224e−01 2.505e−10 2.355e−09

1.0 1.23e−6 3.70e−6 2.630e−01 3.739e−01 2.233e−11 2.323e−09

time — 29.593′′ 1.217′′

Table 1 – Numerical results of example 1.

x F1 eF1 F2 eF2

0.125 1.13314842037 3.270e−08 0.12499999865 1.348e−09

0.250 1.28402539852 1.817e−08 0.24999999640 3.595e−09

0.375 1.45499139217 2.245e−08 0.37499998844 1.156e−08

0.500 1.64872141201 1.413e−07 0.49999999990 1.012e−10

0.625 1.86824601702 5.959e−08 0.62499997030 2.970e−08

0.750 2.11700012510 1.085e−07 0.74999997917 2.083e−08

0.875 2.39887540154 1.076e−07 0.87499995920 4.080e−08

1.000 2.71828240247 5.740e−07 1.00000003811 3.811e−08

1.125 3.08021670501 1.439e−07 1.12499994750 5.250e−08

1.250 3.49034291266 4.480e−08 1.24999998035 1.965e−08

1.375 3.95507663518 8.774e−08 1.37499992899 7.101e−08

1.500 4.48169022877 1.158e−06 1.50000011184 1.118e−07

1.625 5.07841871546 3.217e−07 1.62499991705 8.295e−08

1.750 5.75460262435 5.165e−08 1.74999999033 9.668e−09

1.875 6.52081894972 1.706e−07 1.87499989782 1.022e−07

2.000 7.38905946606 3.367e−06 2.00000025992 2.599e−07

Table 2 – Numerical results of example 2, h = 0.125.
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x F1 eF1 F2 eF2 F3 eF3

0.1 1.1051709 8.703e−12 0.1000000 2.188e−12 0.0100000 5.627e−18

0.2 1.2214027 1.740e−10 0.2000000 4.356e−11 0.0400000 6.047e−16

0.3 1.3498588 2.133e−11 0.3000000 4.528e−12 0.0900000 1.294e−14

0.4 1.4918246 3.402e−10 0.4000000 8.707e−11 0.1600000 4.860e−14

0.5 1.6487212 7.443e−10 0.4999999 1.737e−10 0.2500000 6.149e−13

0.6 1.8221187 4.563e−10 0.5999999 8.254e−11 0.3600000 2.050e−12

0.7 2.0137527 2.289e−09 0.6999999 4.966e−10 0.4900000 6.459e−12

0.8 2.2255409 2.745e−09 0.7999999 5.296e−10 0.6400000 1.652e−11

0.9 2.4596031 4.483e−09 0.8999999 8.952e−10 0.8100000 2.924e−11

1.0 2.7182818 6.707e−09 0.9999999 1.233e−09 1.0000000 6.738e−11

Table 3 – Numerical results of example 3, h = 0.05.

x F1 eF1 F2 eF2

0.2 0.040 0 0.200 0

0.4 0.160 0 0.400 0

0.6 0.360 0 0.600 0

0.8 0.640 1.000e−30 0.800 1.000e−30

1.0 1.000 0 1.000 1.000e−30

1.2 1.440 0 1.200 0

1.4 1.960 1.000e−29 1.400 1.000e−29

1.6 2.560 2.000e−29 1.600 1.000e−29

1.8 3.240 5.000e−29 1.800 0

2 4.000 7.000e−29 2.000 0

2.2 4.840 1.400e−28 2.200 5.000e−29

2.4 5.760 6.600e−28 2.400 3.000e−29

2.6 6.760 1.500e−28 2.600 1.800e−28

2.8 7.840 6.300e−28 2.800 4.000e−28

3 9.000 1.380e−27 3.000 1.310e−27

3.2 10.240 3.800e−27 3.200 4.070e−27

3.4 11.560 1.280e−26 3.400 1.401e−26

3.6 12.960 4.410e−26 3.600 4.364e−26

3.8 14.440 1.935e−25 3.800 1.943e−25

4 16.000 7.883e−25 4.000 7.857e−25

Table 4 – Numerical results of example 4, h = 0.2.
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