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Abstract. An n × n real matrix P is said to be a generalized reflection matrix if PT = P and
P2 = I (where PT is the transpose of P). A matrix A ∈ Rn×n is said to be a reflexive (anti-
reflexive) matrix with respect to the generalized reflection matrix P if A = P AP (A = −P AP).
The reflexive and anti-reflexive matrices have wide applications in many fields. In this article,
two iterative algorithms are proposed to solve the coupled matrix equations

{
A1 X B1 + C1 X T D1 = M1,

A2 X B2 + C2 X T D2 = M2,

over reflexive and anti-reflexive matrices, respectively. We prove that the first (second) algorithm

converges to the reflexive (anti-reflexive) solution of the coupled matrix equations for any ini-

tial reflexive (anti-reflexive) matrix. Finally two numerical examples are used to illustrate the

efficiency of the proposed algorithms.
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1 Introduction

In this paper we use the following notation. Let Rm×n be the set of all m ×n real
matrices. We use tr(A), AT , ρ(A), λ(A) and λmax(A) to denote the trace, the
transpose, the spectral radius, the eigenvalue set and the maximum eigenvalue
of the matrix A respectively. We denote by Ik and Om×n the k × k identity
matrix and the m × n zero matrix, respectively. We also write them as I and
O , respectively, when the dimensions of these matrices are clear. We define an
inner product as 〈A, B〉 = tr(BT A), then the norm of a matrix A generated by
this inner product is Frobenius norm and is denoted by 〈A, A〉 = ||A||2.

An n × n real matrix P is said to be a real generalized reflection matrix if
PT = P and P2 = I . An n × n real matrix A is said to be a reflexive
(anti-reflexive) matrix with respect to the generalized reflection matrix P if
A = P AP (A = −P AP). Rn×n

r (P) (Rn×n
a (P)) denotes the subspace reflexive

(anti-reflexive) matrices with respect to the n × n generalized reflection matrix
P . The reflexive and anti-reflexive matrices have practical applications in many
areas such as the numerical solution of certain differential equations [1], pat-
tern recognition [6], Markov processes [42], various physical and engineering
problems [7] and so on (e.g. [20, 32, 43]). Chen [3] proposed three applications
of reflexive and anti-reflexive matrices obtained from the altitude estimation
of a level network, an electric network and structural analysis of trusses. The
symmetric Toeplitz matrices, an important subclass of the class of symmetric
reflexive matrices, appear naturally in digital signal processing applications and
other areas [21].

The linear matrix equations, such as AX B = C , AX B + C X D = E and
AX B + C X T D = M , play an important role in linear system theory therefore a
large number of papers have presented several methods for solving these matrix
equations [2, 9, 15, 36]. Research on solving of linear matrix equations has been
actively ongoing for past years. In [5], Dai studied the linear matrix equation

AX B = C, (1.1)

over symmetric matrix X . By using g-inverse, Mitra [38] obtained the common
solution of simultaneous matrix equations

{
A1 X B1 = C1,

A2 X B2 = C2.
(1.2)
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Navarra et al. [39] studied a representation of the solution X to the system of
matrix equations (1.2). The matrix equation

AX + X T C = B, (1.3)

plays important roles in system theory, such as eigenstructure assignment [29],
observer design [4], control of system with input constraint [28], and fault de-
tection [30].

In [40], the necessary and sufficient condition for the existence of the solu-
tion to the matrix equation (1.3) and its solution expression was investigated by
the generalized inverse matrix. In [37], Cramer’s rules for some quaternion ma-
trix equations were obtained within the framework of the theory of the column
and row determinants. Kyrchei [35] considered systems of linear quaternionic
equations and obtained Cramer’s rules for right and left quaternionic systems of
linear equations. In [44, 45, 46], the solutions of the several generalized Sylvester
matrix equations were established. In [24], a family of iterative methods for lin-
ear systems is presented and a least-squares iterative solution to coupled matrix
equations are studied by using the hierarchical identification principle and the
star product. In [26], gradient iterative algorithms for solving Sylvester coupled
matrix equations and general coupled matrix equations are studied by using the
gradient search principle. In [22, 25], Ding and Chen applied a hierarchical iden-
tification principle to study solving the Sylvester and Lyapunov matrix equations.
Also Ding and Chen [23] proposed a hierarchical gradient iterative algorithm and
a hierarchical stochastic gradient algorithm and prove that the parameter estima-
tion errors given by the algorithms converge to zero for any initial values under
persistent excitation. In [8, 10, 11, 12, 13, 14, 17, 18], Dehghan and Hajarian
introduced some efficient iterative methods for solving Sylvester and Lyapunov
matrix equations.

In this paper, we introduce two iterative algorithms, respectively, for the finding
reflexive and anti-reflexive solutions of the coupled matrix equations

{
A1 X B1 + C1 X T D1 = M1,

A2 X B2 + C2 X T D2 = M2,
(1.4)

(including the matrix equations (1.1)-(1.3) as special cases).
The rest of the paper is structured as follows. In Section 2, first we propose two

iterative algorithms for solving (1.4) over reflexive and anti-reflexive matrices.
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Then we study the convergence properties of the iterative algorithms. Two ex-
amples verify the efficiency of the algorithms in Section 3. Section 4 concludes
the paper.

2 Main results

In this section, first we give two systems of matrix equations equivalent to (1.4)
over reflexive and anti-reflexive matrices, respectively. Then we will propose
two efficient iterative algorithms for solving (1.4).

Lemma 2.1. The coupled matrix equations (1.4) have the reflexive solution

X ∈ Rn×n
r (P) if and only if the system of matrix equations






A1 X B1 + C1 X T D1 = M1,

A2 X B2 + C2 X T D2 = M2,

A1 P X P B1 + C1 P X T P D1 = M1,

A2 P X P B2 + C2 P X T P D2 = M2,

(2.1)

is consistent.

Proof. First, we suppose that the coupled matrix equations (1.4) have the reflex-
ive solution X∗ ∈ Rn×n

r (P). By using X∗ = P X∗ P and Ai X∗ Bi + Ci X
∗T Di =

Mi , we have

Ai P X∗ P Bi + Ci P X∗T P Di = Ai X∗ Bi + Ci (P X∗ P)T Di

= Ai X∗ Bi + Ci X
∗T Di (2.2)

= Mi ,

for i = 1, 2. It is follows from (2.2) that the reflexive matrix X∗ is a solution of
the system of matrix equations (2.1).

Conversely assume that the system of matrix equations (2.1) is consistent. Let
X be a solution of the system of matrix equations (2.1). Set

X̃ =
X + P X P

2
. (2.3)
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Therefore X̃ ∈ Rn×n
r (P) and we can get

Ai X̃ Bi + Ci X̃ T Di = Ai

(
X + P X P

2

)
Bi + Ci

(
X + P X P

2

)T

Di

=
Ai X Bi + Ai P X P Bi

2
+

Ci X TDi + Ci P X TP Di

2

=
Ai X Bi + Ci X TDi

2
+

Ai P X P Bi + Ci P X TP Di

2
(2.4)

=
Mi + Mi

2

= Mi ,

for i = 1, 2. Hence X̃ is a reflexive solution of the coupled matrix equations
(1.4). The proof is completed. �

Similarly to the above lemma, we can obtain the following lemma.

Lemma 2.2. The coupled matrix equations (1.4) have the anti-reflexive solution

X ∈ Rn×n
a (P) (P 6= I ) if and only if the system of matrix equations






A1 X B1 + C1 X T D1 = M1,

A2 X B2 + C2 X T D2 = M2,

−A1 P X P B1 − C1 P X T P D1 = M1,

−A2 P X P B2 − C2 P X T P D2 = M2,

(2.5)

is consistent.
According to Theorem 4.3.8 and Corollary 4.3.10 in [33], the systems (2.1)

and (2.5), respectively, are equivalent to









(
BT

1 ⊗ A1
)
+

(
DT

1 ⊗ C1
)
P(n, n)

(
BT

2 ⊗ A2
)
+

(
DT

2 ⊗ C2
)
P(n, n)

(
BT

1 P ⊗ A1 P
)
+

(
DT

1 P ⊗ C1 P
)
P(n, n)

(
BT

2 P ⊗ A2 P
)
+

(
DT

2 P ⊗ C2 P
)
P(n, n)










× vec(X) = vec
(
M1, M2, M1, M2

)
,

(2.6)
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and 








(
BT

1 ⊗ A1
)
+

(
DT

1 ⊗ C1
)
P(n, n)

(
BT

2 ⊗ A2
)
+

(
DT

2 ⊗ C2
)
P(n, n)

−
(
BT

1 P ⊗ A1 P
)
−

(
DT

1 P ⊗ C1 P
)
P(n, n)

−
(
BT

2 P ⊗ A2 P
)
−

(
DT

2 P ⊗ C2 P
)
P(n, n)










× vec(X) = vec
(
M1, M2, M1, M2

)
,

(2.7)

where P(n, n) is a permutation matrix [33]. Now by using the above results and
considering

Z1 :=










(
BT

1 ⊗ A1
)
+

(
DT

1 ⊗ C1
)
P(n, n)

(
BT

2 ⊗ A2
)
+

(
DT

2 ⊗ C2
)
P(n, n)

(
BT

1 P ⊗ A1 P
)
+

(
DT

1 P ⊗ C1 P
)
P(n, n)

(
BT

2 P ⊗ A2 P
)
+

(
DT

2 P ⊗ C2 P
)
P(n, n)










, (2.8)

and

Z2 :=










(
BT

1 ⊗ A1
)
+

(
DT

1 ⊗ C1
)
P(n, n)

(
BT

2 ⊗ A2
)
+

(
DT

2 ⊗ C2)P(n, n
)

−
(
BT

1 P ⊗ A1 P
)
−

(
DT

1 P ⊗ C1 P
)
P(n, n)

−
(
BT

2 P ⊗ A2 P
)
−

(
DT

2 P ⊗ C2 P
)
P(n, n)










, (2.9)

the following lemmas are well known [31, 33, 34].

Lemma 2.3. The coupled matrix equations (1.4) have a unique reflexive solution

with respect to the generalized reflection matrix P if and only if

rank((Z1, vec(M1, M2, M1, M2))) = rank(Z1)

and Z1 has a full column rank. In that case, the reflexive solution of (1.4) can

be expressed by the following form

X =
X1 + P X1 P

2
where

vec(X1) = (Z T
1 Z1)

−1 Z T
1 vec(M1, M2, M1, M2),

(2.10)
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and the homogenous coupled matrix equations

{
A1 X B1 + C1 X T D1 = 0,

A2 X B2 + C2 X T D2 = 0,
(2.11)

have a unique reflexive solution X = 0.

Lemma 2.4. The coupled matrix equations (1.4) have a unique anti-reflexive

solution with respect to the generalized reflection matrix P 6= I if and only if

rank((Z2, vec(M1, M2, M1, M2))) = rank(Z2) and Z2 has a full column rank.

In that case, the anti-reflexive solution of (1.4) can be expressed by the following

form

X =
X1 − P X1 P

2
where

vec(X1) = (Z T
2 Z2)

−1 Z T
2 vec(M1, M2, M1, M2),

(2.12)

and the homogenous coupled matrix equations (2.11)have a unique anti-reflexive
solution X = 0.

If Lemma 2.3 (Lemma 2.4) is applied for finding the reflexive (anti-reflexive)
solution of the coupled matrix equations (1.4), we need to take the inverse of the
large matrix Z T

1 Z1 (Z T
2 Z2). The above method may turn out to be numerically

expensive and are not practical for equations of large systems. Our purpose in
this paper is to obtain two iterative methods without any inverse for solving the
coupled matrix equations (1.4) over reflexive and anti-reflexive matrices. We
extend the idea of the Jacobi and the Gauss-Seidel iterations to solve the coupled
matrix equations (1.4) over reflexive and anti-reflexive matrices.

Suppose that A = M − N is a splitting of the matrix A. The Jacobi and Gauss-
Seidel procedures for solving the linear system Ax = b are typical members of
a large family of iterations that have the form

Mx (k+1) = N x (k) + b, (2.13)

with M = D, N = −(L + U ) for Jacobi and M = D + L , N = −U for
Gauss-Seidel [32]. Here by extending the Jacobi and the Gauss-Seidel iterations
and by applying the hierarchical identification principle [23, 25], we present two
iterative methods for solving the coupled matrix equations (1.4) over reflexive
and anti-reflexive matrices. These iterative methods are derived as follows:
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Algorithm 2.1. To solve (1.4) over reflexive matrix X :

Step 2.1.1. Input matrices A, C ∈ Rr×n , B, D ∈ Rn×s and M ∈ Rr×s ;

Step 2.1.2. Choose arbitrary X (1) ∈ Rn×n
r (P) where P is an n-by-n arbitrary

generalized reflection matrix and a parameter ω ∈ R+;

Step 2.1.3. Calculate

Ri (1) = Mi − Ai X (1)Bi − Ci X (1)T Di , i = 1, 2;

k := 1;

Step 2.1.4. If ||R1(k)|| + ||R2(k)|| = 0, then stop; Else go to step 2.1.5;

Step 2.1.5.

X (k + 1) = X (k)

+
ω

4

2∑

i=1

(
AT

i Ri (k)BT
i + Di Ri (k)T Ci + P AT

i Ri (k)BT
i P + P Di Ri (k)T Ci P

)
;

Ri (k + 1) = Mi − Ai X (k + 1)Bi − Ci X (k + 1)T Di , i = 1, 2;

Step 2.1.6. If ||R1(k + 1)|| + ||R2(k + 1)|| = 0, then stop; Else, let k := k + 1,
go to step 2.1.5.

Algorithm 2.2. To solve (1.4) over anti-reflexive matrix X :

Step 2.2.1. Input matrices A, C ∈ Rr×n , B, D ∈ Rn×s and M ∈ Rr×s ;

Step 2.2.2. Choose arbitrary X (1) ∈ Rn×n
a (P) where P 6= I is an n-by-n

arbitrary generalized reflection matrix and a parameter ω ∈ R+;

Step 2.2.3. Calculate

Ri (1) = Mi − Ai X (1)Bi − Ci X (1)T Di , i = 1, 2;

k := 1;
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Step 2.2.4. If ||R1(k)|| + ||R2(k)|| = 0, then stop; Else go to step 2.2.5;

Step 2.2.5.

X (k + 1) = X (k)

+
ω

4

2∑

i=1

(
AT

i Ri (k)BT
i + Di Ri (k)T Ci − P AT

i Ri (k)BT
i P − P Di Ri (k)T Ci P

)
;

Ri (k + 1) = Mi − Ai X (k + 1)Bi − Ci X (k + 1)T Di , i = 1, 2;

Step 2.2.6. If ||R1(k + 1)|| + ||R2(k + 1)|| = 0, then stop; Else, let k := k + 1,
go to step 2.2.5.

Now convergence properties of Algorithms 2.1 and 2.2 are presented.

Theorem 2.1. If the coupled matrix equations (1.4) have a unique reflexive

solution X, then iterative solution X (k) given by Algorithm 2.1 converges to X

for any initial reflexive matrix X (1), if the parameter ω satisfies the inequality

0 < ω < 2
[ 2∑

i=1

(
||Ai ||

2||Bi ||
2 + ||Ci ||

2||Di ||
2
)]−1

. (2.14)

Proof. We define the estimation error matrix in the form

ε(k) = X (k) − X, for k = 1, 2, . . . (2.15)

By applying (2.15), we can get

Ri (k) = −Aiε(k)Bi − Ciε(k)T Di , for i = 1, 2, (2.16)

Also it is not difficult to obtain

ε(k + 1) = ε(k)

−
ω

4

2∑

i=1

[
AT

i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i + Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci

+P AT
i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i P + P Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci P

]
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Now we can write

||ε(k + 1)||2 = tr
(
ε(k + 1)T ε(k + 1)

)

= ||ε(k)||2 −
ω

2
tr
(
ε(k)T

2∑

i=1

[
AT

i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i

+ Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci

)

+ P AT
i

(
Aε(k)Bi + Ciε(k)T Di

)
BT

i P

+ P Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci P

])

+
ω2

16

∣
∣
∣
∣
∣
∣

2∑

i=1

[
AT

i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i

+ Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci

+ P AT
i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i P

+ P Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci P

]∣∣
∣
∣
∣
∣
2

≤ ||ε(k)||2 −
ω

2

2∑

i=1

tr
(

Aiε(k)Bi

(
Aiε(k)Bi + Ciε(k)T Di

)T

+ Ciε(k)T Di

(
Aiε(k)Bi + Ciε(k)T Di

)T

+ Ai Pε(k)P Bi

(
Aiε(k)Bi + Ciε(k)T Di

)T

+ Ci Pε(k)T P Di

(
Aiε(k)Bi + Ciε(k)T Di

)T )

+
ω2

4

{∣
∣
∣
∣
∣
∣

2∑

i=1

AT
i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i

∣
∣
∣
∣
∣
∣
2

+
∣
∣
∣
∣
∣
∣

2∑

i=1

Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci

∣
∣
∣
∣
∣
∣
2

+
∣
∣
∣
∣
∣
∣

2∑

i=1

P AT
i

(
Aiε(k)Bi + Ciε(k)T Di

)
BT

i P
∣
∣
∣
∣
∣
∣
2

+
∣
∣
∣
∣
∣
∣

2∑

i=1

P Di

(
Aiε(k)Bi + Ciε(k)T Di

)T
Ci P

∣
∣
∣
∣
∣
∣
2}

(2.17)
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≤ ||ε(k)||2 − ω

2∑

i=1

tr
((

Aiε(k)Bi + Ciε(k)T Di

)

×
(

Aiε(k)Bi + Ciε(k)T Di

)T )

+
ω2

2

2∑

i=1

{
||Ai ||

2||Bi ||
2 + ||Di ||

2||Ci ||
2
}
||Aiε(k)Bi + Ciε(k)T Di ||

2

≤ ||ε(k)||2 − ω
[
1 −

ω

2

2∑

i=1

(||Ai ||
2||Bi ||

2 + ||Di ||
2||Ci ||

2)
]

(2.17)

×
2∑

i=1

||Aiε(k)Bi + Ciε(k)T Di ||
2

≤ ||ε(1)||2 − ω
[
1 −

ω

2

2∑

i=1

(||Ai ||
2||Bi ||

2 + ||Di ||
2||Ci ||

2)
]

×
k∑

t=1

2∑

i=1

||Aiε(t)Bi + Ciε(t)
T Di ||

2.

From (2.14) and (2.17), it is not difficult to get

∞∑

t=1

2∑

i=1

||Aiε(t)Bi + Ciε(t)
T Di ||

2 < ∞. (2.18)

The necessary condition of the series convergence (2.18) implies that

lim
t→∞

[
Aiε(t)Bi + Ciε(t)

T Di

]
= Ai

(
lim

t→∞
ε(t)

)
Bi + Ci

(
lim

t→∞
ε(t)T

)
Di = 0,

for i = 1, 2.

By considering Lemma 2.3, we have

lim
t→∞

ε(t) = 0.

The proof of theorem is completed. �

Similar to the proof of the above theorem, we can prove the following theorem.

Theorem 2.2. If the coupled matrix equations (1.4) have a unique anti-reflexive

solution X, then iterative solution X (k) given by Algorithm 2.2 converges to
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X for any initial anti-reflexive matrix X (1), if the parameter ω satisfies the

inequality

0 < ω < 2
[ 2∑

i=1

(
||Ai ||

2||Bi ||
2 + ||Ci ||

2||Di ||
2
)]−1

. (2.19)

Remark 2.1. The convergence factor in (2.14) and (2.19) may also be taken as:

0 < ω < 2

×
[ 2∑

i=1

(
λmax(Ai AT

i )λmax(Bi BT
i ) + λmax(Ci C

T
i )λmax(Di DT

i )
)]−1

.
(2.20)

3 Numerical examples

In this section, we give two examples to illustrate the convergence of Algo-
rithms 2.1 and 2.2, respectively. All the tests are performed by MATLAB.

Example 3.1. As the first example we consider the linear matrix equation

AX B + C X T D = M with

A =











−3.7972 0.7621 0.6154 0.4057 0.0579

0 −3.2532 0.7919 0.9355 0.3529

0 0 −3.4748 0.9169 0.8132

0 0 0 −3.6205 0.0099

0 0 0 0 −3.8103











,

B =











1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1











,

C =











−4.3881 0.2259 0.2091 0 0

0.4235 −4.0637 0.3798 0.7942 0

0.5155 0.7604 −3.4846 0.0592 0.8744

0.3340 0.5298 0.6808 −4.0259 0.0150

0.4329 0.6405 0.4611 0.0503 −3.8072











,
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D =











4.7027 −0.6979 −0.4966 −0.6602 −0.7271

0 4.9568 −0.8998 −0.3420 −0.3093

0 0 4.2523 −0.2897 −0.8385

0 0 0 4.1991 −0.5681

0 0 0 0 4.9883











,

M =











118.0878 −23.1868 −53.8639 −12.1011 −52.2842

−6.3715 105.8088 −24.0695 −58.8678 9.0772

−64.4487 −13.9112 93.5506 1.4371 −69.5242

13.4263 −77.6180 16.4496 111.4427 16.3479

−36.0898 −0.8957 −51.6715 21.7130 141.3938











.

It can be verified that this matrix equation is consistent over reflexive matrices

and has the reflexive solution

X∗ =











−5.5945 0 3.2309 0 2.1158

0 −4.5064 0 3.8709 0

2.0000 0 −4.9497 0 3.6263

0 2.0000 0 −5.2410 0

2.0000 0 2.0000 0 −5.6207











R5×5
r (P),

with

P =











−1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 −1











.

Choose arbitrary initial iterative matrix X (1) = 0. By Algorithm 2.1, we obtain

the sequence X (k). In Figure 1, we report the obtained results with several values

of ω where

δ(k) = log10
||X (k) − X∗||

||X∗||
and r(k) = log10 ||M−AX (k)B−C X (k)T D||.

It can be observed from Figure 1 that Algorithm 2.1 is effective. The effect of

changing the convergence factor ω is illustrated in Figure 1. We see that the

larger the convergence factor ω is, the faster the convergence the algorithm.
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Figure 1 – The results of Example 3.1.

Example 3.2. Consider a pair of matrix equations in the form of (1.2) with the

following parameters:

A1 =











−3.7972 1.5242 1.2309 0.8114 0.1158

0 −3.2532 1.5839 1.8709 0.7057

0 0 −3.4748 1.8338 1.6263

0 0 0 −3.6205 0.0197

0 0 0 0 −3.8103











,

B1 =











3.6756 0 0.6085 0.0576 0.0841

0 3.4508 0 0.3676 0.4544

0 0 3.2324 0 0.4418

0 0 0 3.0784 0

0 0 0 0 3.9943











,

A2 =











5.5536 0.2259 0.2091 0 0

0.4235 5.2233 0.3798 0.7942 0

0.5155 0.7604 5.0513 0.0592 0.8744

0.3340 0.5298 0.6808 5.2317 0.0150

0.4329 0.6405 0.4611 0.0503 5.3431











,
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B2 =











−5.7027 −0.6979 −0.4966 −0.6602 −0.7271

0 −5.9568 −0.8998 −0.3420 −0.3093

0 0 −5.2523 −0.2897 −0.8385

0 0 0 −5.1991 −0.5681

0 0 0 0 −5.9883











,

C1 =











17.1697 −56.8568 33.5482 −25.9479 24.4829

−10.1615 15.8018 −43.9289 33.5031 −33.0153

13.4809 −12.7575 14.0869 −51.7608 15.1875

−26.6155 0.1361 −27.8120 −0.2810 −33.2835

0 −26.2971 0 −26.2605 −3.4625











,

and

C2 =











−2.5771 −169.8176 −31.9603 −121.1339 −26.8271

−68.6326 −25.6598 −158.7006 −36.3862 −152.1132

−9.3473 −87.2429 −35.0790 −174.8441 −43.6301

−65.7124 −26.3748 −77.8285 −38.9935 −98.0133

−7.8789 −83.1321 −31.0110 −83.9174 −30.2760











.

We can verify the pair of matrix equations in the form of (1.2) are consistent over

anti-reflexive matrix X and have the anti-reflexive solution

X∗ =











0 5.0484 0 3.6228 0

2.0000 0 5.1677 0 3.4115

0 2.0000 0 5.6676 0

2.0000 0 2.0000 0 2.0394

0 2.0000 0 2.0000 0











R5×5
a (P).

Taking X (1) = 0, we apply Algorithm 2.2 to compute X (k). The effect of

changing the convergence factor ω is illustrated in Figure 2 where

δ(k) = log10
||X (k) − X∗||

||X∗||
and r(k) = log10

2∑

i=1

||Ci − Ai X (k)Bi ||.

Obviously both δ(k) and r(k) decrease, and converge to zero as k increases.

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 11:08 — page 368 — #16

368 TWO ITERATIVE ALGORITHMS FOR SOLVING COUPLED MATRIX EQUATIONS

Figure 2 – The results of Example 3.2.

4 Concluding remarks

In this paper, we have considered the coupled matrix equations (1.4) over re-
flexive and anti-reflexive matrices. First Algorithms 2.1 and 2.2 were intro-
duced for finding reflexive and anti-reflexive solutions of (1.4). Second the
convergence theorems of the iterative algorithms were presented. The exper-
iments are encouraging and seem to indicate that Algorithms 2.1 and 2.2 work
well for numerical examples. It is interesting to develop the introduced algo-
rithms for solving other linear matrix equations. We leave it as a topic for
further research.
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