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Abstract. In this article we test the accuracy of three platforms used in computational mod-

elling: MatLab, Octave and Scilab, running on i386 architecture and three operating systems

(Windows, Ubuntu and Mac OS). We submitted them to numerical tests using standard data sets

and using the functions provided by each platform. A Monte Carlo study was conducted in

some of the datasets in order to verify the stability of the results with respect to small departures

from the original input. We propose a set of operations which include the computation of matrix

determinants and eigenvalues, whose results are known. We also used data provided by NIST

(National Institute of Standards and Technology), a protocol which includes the computation of

basic univariate statistics (mean, standard deviation and first-lag correlation), linear regression and

extremes of probability distributions. The assessment was made comparing the results computed

by the platforms with certified values, that is, known results, computing the number of correct

significant digits.
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1 Introduction

Mathematical modelling aims at solving complex problems which can be de-
scribed in a rigorous mathematical way that enables the use of computers for
finding the solution.

Many mathematical models which arise in diverse areas as engineering, bioin-
formatics and ecology rely on partial differential equations (PDE) or ordinary
differential equations (ODE), where the high number of variables requires strong
computational effort in their solution.

The final output is the result of a myriad of often disregarded intermediate
computations. To illustrate this, when a finite element mesh is used to perform a
structural analysis, computing matrix inversions and determinants are important
commonplace operations which are rarely checked.

The search for best approximate solutions, considering some reasonable
bounds of errors, imposes tight accuracy requirements on the computational
platforms and its libraries or functions. When dealing with huge structures de-
scribed by irregular meshes, for instance, algorithms for domain partitioning
and parallel computing are often needed, and the correctness of the results is
still more critical. Such partitioning algorithms are usually based on either topo-
logical or spectral methods, which assess the algebraic properties of the graph
associated to the mesh [1, 16]. That is, the mesh can be associated to a dual
graph, such that the vertices correspond to the finite elements and the edges rep-
resent the connectivity of the elements which share common boards. If a graph
is connected, then it is shown that the second eigenvalue of its Laplacian matrix
is positive [7]. The components of the second eigenvector are associated with
the corresponding vertices of the graph and can be used to assign weights for
partitioning of the graph.

In complex problems with many variables and values, minute errors in obtain-
ing the eigenvalue and eigenvector or a matrix determinant, in calculating an
average, a standard deviation or a correlation coefficient, can lead to erroneous
decisions. Computational platforms offer libraries and functions for carrying out
these calculations. When it comes to modelling large problems, with complex
variables, good, or at least controlled, responses are fundamental.

Little attention has been drawn to assess these platforms under the diversity
of operational systems and hardware considering the accuracy of the results.
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Examples of such assessments are found in [3, 4, 6, 9]. Most of these studies,
usually limited to spreadsheets, follow the methodology suggested by McCul-
lough [10, 11, 12, 13, 14]: constasting results with the certified values provided
by the Statistical Reference Datasets (StRD) produced by the National Institute
of Standards and Technology (NIST) [15]. We add a Monte Carlo study to the
protocol in some of the datasets in order to verify the stability of the results
with respect to small departures from the original input. Besides statistical tests,
in [8] we proposed additional tests that employ operations on matrices in order
to assess the scientific platforms from this viewpoint.

In this work we test three numerical scientific platforms: Octave 3.2.4,
Scilab 5.3 and Matlab R2011a, under the three well known operating systems:
Windows XP Professional SP 2, Linux Ubuntu 10.4 and Mac OS X Leop-
ard 10.5.6, whenever the former are avaliable. In all cases, i386 architecture
hardware was employed, and double precision computation was enforced.

Outline. The remainder of this work is organized as follows. Section 2 dis-
cusses how accuracy is measured. Section 3 presents the results obtained assess-
ing basic statistics (subsection 3.1), probability distribution functions (subec-
tion 3.2), linear regression (subsection 3.3) and operations on matrices (subsec-
tion 3.4). Section 4 concludes the paper.

2 Measuring accuracy

Errors in computational simulations can occur and arise from diferents sources.
They range from modelling errors, defined by the difference between real world
and the computable model, to numerical errors introduced in the solution of
the problem. The latter are (i) round-off errors, (ii) truncation and discretiza-
tion errors, or (iii) numerical instability. Usually the availability to imple-
mentation details of the algorithms is very limited and, even when available,
other factors, like hardware, compiler, operational system, may compromise
the software accuracy.

Considering such limitations, many authors (see, for instance, [3, 4, 6, 9]) adopt
the strategy of measuring the software accuracy from the user viewpoing, that is,
comparing the results provided by the software with certified values known to be
correct. The certified values and datasets employed in this study are obtained in
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the Statistical Reference Datasets from the National Institute of Standards and
Technology (NIST) [15]. We also measure the stability of the results by Monte
Carlo, and propose a strategy that considers the results of operations on matrices.

In the first strategy, statistical descriptive measures are assessed: the mean, the
standard deviation and the first lag coefficient of autocorrelation. Linear regres-
sion and quantiles of tail probabilities of usual distributions are also computed.

The LRE (base-10 logarithm of the absolute value of the relative error) is
computed as a measure of the accuracy of the functions. LRE is approximately
the number of matching significant digits between the certified and obtained
values:

LRE(x, c) =

{
− log10

|x−c|
|c| if c 6= 0,

− log10 |x | otherwise,
(1)

where x is the result of evaluation function computed by the software under
assessment and c is the certified value.

The following convention was adopted: when LRE(x, c) ≥ 1 we consider
only one decimal place. If 0 ≤ L RE(x, c) < 1, it is assumed zero, that is,
no correct digit was found. If the value was very far from the certified, “–” is
used; the word ‘Inf’ is used to mean that there is a perfect match, and when the
platform returns an error, it is denoted by ‘NA’.

LREs were computed using the R platform (http://www.r-project.org/),
whose excellent numerical properties were checked in [3].

In order to assess the stability of the results, we propose a Monte Carlo pro-
cedure for some of the datasets used to compute the precision of statistical de-
scriptive measures. A bootstrap estimate of the L RE produced by each platform
for each measure (mean, standard deviation and first lag coefficient of autocor-
relation) was computed for each of the four real-world datasets plus PiDigits.
One hundred independent vectors of the same size of the original ones were
obtained sampling with reposition from each original data set. Certified values
were computed using R. These vectors were submitted to each platform, and the
resulting observed quantities were contrasted with the certified values producing
100 L REs for each quantity of interest. These last values were used to compute
an estimate of the standard deviation:

sL RE =

√√
√
√ 1

99

100∑

r=1

[L RE(r) − L RE]2,
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where L RE denotes the “true” logarithm of the absolute value of the relative
error, which was observed with the original dataset. This procedure does not
belong to the original protocol, but it allows verifying how stable the resuts are
with respect to relatively small perturbations of the dataset.

The second strategy deals with operations on matrices. We propose two assess-
ments: the first is to compute the determinant of a 2 × 2 matrix whose certified
value is zero |M | = 0. Consider the matrix

M =

(
b bε

s/ε s

)

,

with arbitrary values b, s, ε.
The numerical computation of the determinant with built-in functions will

guarantee that the intermediate values (bε) and (s/ε) are evaluated. The values
we proposed to be assessed are b = 10 j and s = 10− j , with j ∈ 0, 1, . . . , 15,
and

ε = 0. 9 ∙ ∙ ∙ 9︸ ︷︷ ︸
k times

, k ∈ {1, . . . , 15}.

The measure of accuracy is the result of the logical comparison of the computed
value and zero in the platform under assessment. That is, the interest in such
case is not the value itself but the result of comparison.

We also propose another assessment considering spectral graph theory. The
interest in this proposal is that the Laplacian matrix is directly related to many
properties of the graph as, for instance, connectivity [5].

Let G = (V, E) be a non-directed finite graph without loops such that V =
{w1, w2, . . . , wn} is the set of vertices and E is the set of edges. Denote by
deg(wi ) the degree of vertex wi . Let D be the diagonal degree matrix with
entries deg(wi ) and A be the adjacency matrix with elements ai j , which take
value 1 if there is an edge between wi and w j . The Laplacian matrix L(G) of G
is the difference between D and A, i.e., L(G) = D − A. Fiedler [7] noted that:

• The number of zero eigenvalues of L(G) is the number of connected
components in the graph;

• If λ1, . . . , λn are the eigenvalues of L(G), then 0 = λ1 ≤ λ2 ≤ ∙ ∙ ∙ ≤ λn .

• If the second smallest eigenvalue λ2 is greater then zero, λ2 > 0, then G
is connected and λ2 is called algebraic connectivity.
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Considering algebraic connectivity, we propose an accuracy assessment based
on the class of complete bipartite graphs. In such graphs we have two subsets
of vertices, say V1 and V2, such that no connections exists between vertices
belonging to the same subset, and each vertex from V1 is connected to every
vertex from V2. Let m and n be the cardinality of V1 and V2, respectively. If we
denote this bipartite graph by Km,n , its Laplacian matrix has the following form:

L(Km,n) =
















n 0 ∙ ∙ ∙ 0 −1 ∙ ∙ ∙ −1
0 n ∙ ∙ ∙ 0 −1 ∙ ∙ ∙ −1
...

. . .
...

...
...

0 ∙ ∙ ∙ 0 n −1 ∙ ∙ ∙ −1
−1 ∙ ∙ ∙ −1 −1 m ∙ ∙ ∙ 0
...

. . .
...

...
...

−1 ∙ ∙ ∙ −1 −1 0 ∙ ∙ ∙ m
















. (2)

For this Laplacian matrix, Bolloboas [5] showed that the eigenvalues are λ1 = 0,
λm+n = m + n and there are n − 1 eigenvalues whose value is m, and m − 1
eigenvalues whose value is n.

In order to do the assessment, we considered two special cases: one with
almost perfect balance Km,m+1, and other with almost the worst possible balance
K2,2m−1, where m ∈ {9, 99, 999}. We formed examples of three sizes of graphs:
small, medium and big. The assessment is based upon the observation of seven
quantities:

(i) the LRE of the smallest eigenvalue (λ1 = 0) denoted `1,

(ii) the LRE of the biggest eigenvalue (λm+n = m + n) denoted `m+n ,

(iii) the LRE of the sum of the eigenvalues (
∑m+n

i λi = 2mn) denoted `S ,

(iv) the minimum LRE of those eigenvalues that should take value n (there are
m − 1 of them) denoted `n ,

(v) the minimum LRE of those eigenvalues that should take value m (there
are n − 1 of them) denoted `m , and

(vi,vii) the percentage of eigenvalues which test equal to m and to n (being the
correct answers n − 1 and m − 1, respectively) denoted `N and `M .
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3 Results

In this section we present the results of applying the two strategies described
in the previous section. The tables present the accuracy of the three program-
ming ambients under assessment running (whenever available) under Windows
(‘Win’), Linux (‘Lin’) and Mac OS (‘Mac’), in 32 and 64 bits architecture.

3.1 Basic statistics

The univariate summary statistics we assessed are the sample mean, the sample
standard deviation and the sample first lag correlation of nine datasets (Table 1).
These datasets are classified by NIST in three levels of numerical difficulty:
low, average and high. The datasets with low difficulty are Lew, Lottery,
Mavro, Michelso (these four datasets come from real world experiments), NumAcc1
and PiDigits. The average difficulty datasets are NumAcc2 and NumAcc3, while
NumAcc4 is the only high difficulty dataset. The certified values were calculated using
multiple precision arithmetic to obtain 500 digits answers.

The command mean is common to all platforms. The standard deviation in Octave
and MatLab is computed with the command std, whereas the Scilab command is
st_deviation. For computing the correlation, Scilab provides the function correl
which, surprisingly and in spite of what is informed in the documentation, returns the
covariance rather than the correlation; the correlation was obtained dividing this result
by the product of the sample standard deviations of the subvectors. In Octave we used
the command Correl(v(1:n-1), v(2:n)), and in Matlab the command applied
was corr(v(1:n-1), v(2:n)), considering in both the vector v of size n ≥ 3.

The values in parenthesis are the bootstrap estimates of the standard deviation of
L REs, sL RE . Whenever ‘Inf’ was observed, L RE = 16, i.e., the highest possible
accuracy in double precision, was used.

3.2 Statistical functions

The distributions herein assessed are the binomial (Table 2), Poisson (Tables 3 and 4),
gamma (Table 5), normal (Table 6), χ2 (Table 7), beta (Table 8), t-Student (Table 9) and
F (Table 10).

The commands to compute all the distributions, except for the beta in Matlab and
Octave, are the same: binocdf for the binomial, poisscdf for the Poisson, gamcdf
for the gamma, norminv for the normal, cdfchi for the χ2, tinv for the t-Student,
and finv for the F law. The command beta_cdf computes beta distribuition in
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Platform OS P
i
D
i
g
i
t
s

L
o
t
t
e
r
y

L
e
w

M
a
v
r
o

M
i
c
h
e
l
s
o

N
u
m
a
c
c
1

N
u
m
a
c
c
2

N
u
m
a
c
c
3

N
u
m
a
c
c
4

Sample Mean

Octave

Windows Inf(0) Inf(0.99) Inf(0) Inf(0.04) Inf(0.04) Inf Inf Inf Inf

Linux Inf(0.04) Inf(10.44) Inf(11.45) Inf(11.35) Inf(10.94) Inf Inf Inf Inf

Mac Os Inf(0) Inf(0.99) Inf(0) Inf(0.33) Inf(0.43) Inf Inf 14.0 Inf

MatLab
Windows 16.0(0) 15.1(0.89) 16.0(0) 16.0(0.35) 15.4(10.87) 16.0 14.0 15.0 13.9

Linux 16.0(0) 16.0(0.03) 16.0(0) 16.0(0.35) 16.0(11.48) 16.0 14.0 14.0 13.9

Scilab

Windows Inf(0.04) 8.1(6.28) Inf(0) Inf(0.04) Inf(0.04) Inf Inf Inf 7.7

Linux Inf(0) 8.1(7.92) Inf(0) Inf(0.33) Inf(0.43) Inf Inf Inf 7.7

Mac OS Inf(0) 8.1(7.92) Inf(0) Inf(0.33) Inf(0.43) Inf Inf Inf 7.7

Sample Standard Deviation

Octave

Windows Inf(0.88) Inf(0.24) Inf(0.87) 13.1(2.94) 13.9(1.96) Inf Inf 9.5 8.3

Linux Inf(11.08) Inf(9.88) Inf(10.80) 13.1(10.88) 13.9(10.88) Inf Inf 8.3 Inf

Mac Os Inf(1.76) Inf(0.35) Inf(0.42) 13.1(2.75) 13.8(1.99) Inf Inf 9.5 8.3

MatLab
Windows 14.8(0.70) 16.0(0.35) 15.2(0.53) 13.8(2.06) 13.9(12.85) 16.0 16.0 9.4 8.2

Linux 14.8((0.70) 16.0(0.35) 16.0(0.41) 13.8(2.06) 13.9(12.85) 16.0 16.0 9.4 8.2

Scilab

Windows 7.9(4.79) 8.1(6.12) 8.2(6.01) 4.1(6.33) 6.2(6.5) Inf Inf Inf Inf

Linux 7.9(8.01) 8.1(7.67) 8.2(7.5) 4.1(11.79) 6.2(9.62) Inf Inf Inf Inf

Mac OS 7.9(6.47) 8.1(7.67) 8.2(7.41) 4.1(11.59) 6.2(9.62) Inf Inf Inf Inf

Sample First Lag Correlation

Octave

Windows 4.0(0.48) 2.1(0.67) 2.6(0.75) 1.8(0.56) 3.6(1.90) 0 3.0 3.0 3.0

Linux 4.0(2.10) 2.1(0.60) 2.6(0.50) 1.8(0.55) 3.6(1.81) 0 3.3 3.3 3.3

Mac Os 4.0(1.05) 2.1(0.67) 2.6(0.75) 1.8(0.58) 3.6(1.52) 0 3.0 3.0 3.0

MatLab
Windows 3.9(6.06) 2.0(3.49) 2.6(4.08) 1.7(2.78) 3.5(4.82) 0 3.3 3.3 3.3

Linux 3.9(6.06) 2.0(3.49) 2.6(4.08) 1.7(2.78) 3.5(4.82) 0 3.3 3.3 3.3

Scilab

Windows – – – 0(1.75) 0(2.09) 0.5 0 0 0

Linux – – – 0(2.09) 0(2.09) 0.5 0 0 0

Mac OS – 0(2.39) 0(2.40) 0(1.75) 0(2.09) 0.5 0 0 0

Table 1 – LREs for the basic statistics and bootstrap estimates of selected standard

deviations.
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Octave, while Matlab provides the command betainv. Scilab provides cdfbin,
cdfpoi, cdfgam, cdfnor, cdfchi, cdfbet, cdft and cdff for computing the
binomial, Poisson, gamma, normal, χ2, beta, t-Student and F quantiles, respectively.

Pr(X ≤ k) Matlab Octave Scilab

k Certified Win Lin Win Lin Mac Win Lin Mac

1 8.96114E-308 3.0 3.0 0 0 0 Inf Inf Inf
2 4.61499E-305 3.0 3.0 0 0 0 8.0 8.0 8.0

100 1.39413E-169 1.0 1.0 0 0 0 7.0 7.0 7.0
300 2.91621E-42 0 0 0 0 0 7.0 7.0 7.0
400 3.89735E-13 0 0 0 4.0 4.0 6.0 6.0 6.0
410 3.19438E-11 0 0 0 6.0 6.0 6.0 6.0 6.0

Table 2 – Binomial distribution, n = 1030 and p = 1/2.

Pr(X = k) Matlab Octave Scilab

k Certified Win Lin Win Lin Mac Win Lin Mac

0 1.38390E-87 5.6 5.6 6.0 6.0 6.0 7.0 7.0 7.0
103 1.41720E-14 1.4 1.4 1.0 1.0 1.0 2.0 0 0
315 1.41948E-14 0 0 0 0 0 0 0 0
400 5.58069E-36 6.4 6.4 6.0 6.0 6.0 0 0 0
900 1.73230E-286 6.0 6.0 6.0 6.0 6.0 0 0 0

Table 3 – Poisson probabilities, λ = 200.

3.3 Linear regression

NIST offers eleven datasets to perform linear regression analysis. The datasets are
divided into numerical difficulty levels: two of low level, (Norris and Pontius),
two of average level, (Noint1 and Noint2) and seven of high level. Table 11 presents
the smallest LRE of each regression, and the LRE of the residual standard deviation
(RSD) of each fit.

Octave and Matlab do not provide explicit functions for performing linear regression.
Rather than that, linear regression is computed solving a least squares problem, and the
data requires prior preparation for that. Scilab provides the function reglin to obtain
the coefficients and RSD.
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Pr(X ≤ k) Matlab Octave Scilab

k λ Certified Win Lin Win Lin Mac Win Lin Mac

1E+05 1E+05 0.500841 1.0 1.0 1.0 1.2 1.0 7.0 7.0 7.0
1E+07 1E+07 0.500084 7.0 7.0 7.0 7.0 7.0 6.0 6.0 6.0
1E+09 1E+09 0.500008 7.0 7.0 7.0 7.0 7.0 6.0 6.0 6.0

Table 4 – Poisson distribution functions, λ = 200.

Pr(X ≤ x) Matlab Octave Scilab

x α Certified Win Lin Win Lin Mac Win Lin Mac

0.1 0.1 0.827552 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
0.2 0.1 0.879420 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.2 0.2 0.764435 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.4 0.3 0.776381 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
0.5 0.4 0.748019 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

Table 5 – Gamma distribution functions, β = 1.

Matlab Octave Scilab

p Certified z p Win Lin Win Lin Mac Win Lin Mac

5E-1 0 Inf Inf Inf Inf Inf 0 0 0
1E-198 -30.0529 7.0 7.0 7.0 7.0 7.0 3.0 3.0 3.0
1E-300 -37.0471 7.0 7.0 7.0 7.0 7.0 1.0 1.0 1.0

Table 6 – Normal quantiles, μ = 0 and σ = 1.

Pr(X > x) = p Matlab Octave Scilab

p n Certified x Win Lin Win Lin Mac Win Lin Mac

2E-1 1 1.64237 5.6 5.6 5.6 5.6 5.6 5.3 5.3 5.3
1E-7 1 28.3740 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4
1E-7 5 40.8630 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

1E-12 1 50.8441 6.6 6.6 7.1 7.1 7.1 6.3 6.3 6.3
0.48 778 779.312 6.3 6.3 4.4 4.4 4.4 6.2 6.2 6.2
0.52 782 779.353 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

Table 7 – The χ2 distribution.
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Matlab Octave Scilab

p Certified Win Lin Win Lin Mac Win Lin Mac

1E-2 2.94314E-01 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1E-3 1.81386E-01 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0
1E-4 1.12969E-01 5.4 5.4 5.0 5.0 5.0 5.0 5.0 5.0
1E-5 7.07371E-02 6.2 6.2 6.0 6.0 6.0 6.0 6.0 6.0
1E-6 4.44270E-02 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1E-7 2.79523E-02 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0
1E-8 1.76057E-02 6.3 6.3 6.0 6.0 6.0 6.0 6.0 6.0
1E-9 1.10963E-02 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0

1E-10 6.99645E-03 6.7 6.7 7.0 7.0 7.0 7.0 7.0 7.0
1E-11 4.41255E-03 6.7 6.7 7.0 7.0 7.0 7.0 7.0 7.0
1E-12 2.78337E-03 5.9 5.9 6.0 6.0 6.0 6.0 6.0 6.0
1E-13 1.75589E-03 6.1 6.1 6.0 6.0 6.0 6.0 6.0 6.0

1E-100 6.98827E-21 6.8 6.8 7.0 0 0 7.0 7.0 7.0

Table 8 – Beta quantiles, α = 5 and β = 2.

Pr(X > x) = p Matlab Octave Scilab

p Certified x Win Lin Win Lin Mac Win Lin Mac

1E-8 3.18310E+07 0 0 0 0 0 6.0 6.0 6.0
1E-11 3.18310E+10 0 0 0 0 0 6.0 6.0 6.0
1E-12 3.18310E+11 – – – – – 6.0 6.0 6.0
1E-13 3.18310E+12 0 0 0 0 0 6.0 6.0 6.0

1E-100 3.18310E+99 – – – – – 8.0 8.0 0

Table 9 – The t-Student distribution, n = 1.

Pr(X > x) = p Matlab Octave Scilab

p Certified x Win Lin Win Lin Mac Win Lin Mac

1E-5 4.05285E+09 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
1E-6 4.05285E+11 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0

1E-12 4.05285E+23 4.0 4.0 4.0 4.0 4.0 6.0 6.0 6.0
1E-13 4.05285E+25 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1E-100 4.05285E+199 – – Inf Inf Inf 0 0 0

Table 10 – The F distribution, n1 = n2 = 1.
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Matlab Octave Scilab

Data Windows Linux Windows Linux Mac OS Windows Linux Mac OS

β̂ RSD β̂ RSD β̂ RSD β̂ RSD β̂ RSD β̂ RSD β̂ RSD β̂ RSD

Filip 7.1 8.2 7.1 8.2 0 1.1 0 1.1 0 1.1 0 0 0 0 0 0
Longley 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Norris 13.4 14.1 13.4 14.1 0 1.8 12.1 1.8 12.3 1.8 7.9 1.3 8 1.3 10.0 1.6
Noint1 0 0 0 0 Inf 2.8 Inf 2.8 Inf 2.9 0 0 0 0 0 0
Noint2 0 0 0 0 Inf 2.3 Inf 2.3 Inf 2.3 0 0 0 0 0 0

Pontius 3.6 13.2 3.6 13.2 6.4 1.6 7.1 1.6 6.2 1.6 8.0 1.4 8.0 1.4 5.5 1.4
Wampler1 9.3 9.4 9.3 9.4 7.0 4.8 6.9 4.6 6.6 4.4 4.0 3.5 3.1 3.5 2.7 4.1
Wampler2 Inf 14.2 Inf 14.2 9.6 9.3 9.8 9.5 9.8 0 6.9 8.5 6.2 8.5 6.0 8.3
Wampler3 0 14.2 0 14.2 6.9 0 7.0 0 6.6 0 2.9 0 3.5 0 2.7 0
Wampler4 0 1.6 0 1.6 6.9 0 7.0 0 6.6 0 2.9 0 3.5 0 2.7 0
Wampler5 0 1.6 0 1.6 6.5 0 7.0 0 6.2 0 2.9 0 3.5 0 2.7 0

Table 11 – LRE of linear regression results.

3.4 Results on decisions based on matrices

The command det is used by all three platforms under assessment to compute determi-
nants. As proposed Section 2, the evaluation is based on comparing the results with the
certified value zero, rather than on the numerical value itself. This is due to the fact that
more often than not what users are interested upon is a decision, and not a numerical
value.

Curiosily, the number of correct results of comparing |̃M | with zero was the same,
that is, exactly 146 for the three platforms under assessment.

The results of computing spectral graph analyses are presented in Table 12.

4 Conclusions

Regarding the computation of basic statistics, Table 1 shows that the mean poses little
difficulty for the platforms, with the exception of Octave for Linux, which presented
the smallest number of LRE in five of the nine datasets (LRE(x, c) ≤ 7). Surprisingly,
these five datasets offer low numerical difficulty.

When computing the standard deviation, Octave presented the bests results when
comparing with others two platforms. The version tested here was better than the one
tested before (see [8]). Scilab presented an unacceptable low accuracy in a single dataset,
for which LRE(x, c) ≤ 5.

As in other studies, c.f. reference [2], the first-lag sample autocorrelation is a chal-
lenging quantity to compute. None of the platforms here tested provided acceptable
results. All of them computed LRE(x, c) ≤ 5, and Scilab had the worst performance.
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Scilab is also the worst platform with respect to the stability of the results, as measured
by estimated standard variation of the observed L RE . As can be noted in Table 1, all
conclusions about the standard deviation may be reverted with small perturbations of
the original input, e.g., the best results which were produced for the Lew dataset can be
turned into unacceptable by subtracting sL RE from the observed L RE .

Two other cases are notorious for their instability: the sample mean and the sample
standard deviation, both computed by Octave under Linux. In most of the other cases,
small perturbations of the original input do not change the conclusion about the precision.

Scilab presented the best performance when dealing with the binomial and t-Student
distributions, and also when computing the cumulative distribution function of the Pois-
son law (LRE(x, c) ≥ 6). In this last, Octave and MatLab presented better results that
their previous versions (see [8]).

When computing the F distributions, Octave produced the best results, mainly if
compared with its previous version; as presented by Frery et al. [8], this platform had
produced the worst answers. But Octave fails to produce acceptable results when deal-
ing with the binomial and t-Student laws. Regarding the normal distribution, MatLab
and Octave obtained the same good results, while Scilab produced bad results. The
three platforms were acceptable when dealing with the gamma law, that is, in this case
LRE(x, c) ≥ 6.

Matlab and Octave failed at computing the t-Student distribution; in every assessed
case, there was no match or they returned an error message. This is a serious issue due
to the widely spread use of this distribution in statistical tests.

Six out of eleven linear regression datasets were not adequately dealt with by any of the
considered platforms. Only Matlab provided acceptable results for Filip, Norris,
Wampler1 and for Wampler2. Wampler2 was acceptably treated by Octave under
Windows and Linux and Scilab under the three operational systems. Again, no single
platform can be advised as safe for the linear regression problems here considered.

Suprisingly, the same results were provided by the three platforms when making
decisions about the determinant of ill-conditioned matrices under the three operating
systems. The number of erroneus result was acceptable, that is only 94 in 240 logical
comparisons with the value zero. Nevertheless, users are advised to be very careful
when testing equality between a value of interest and a numerical computation involving
determinats in these platforms.

The assessment based on spectral graph analysis presented a very consistent behavior
with respect to the problem size (the bigger the graph, the worse the answer), being
`M and `N the most sensitive quantities across all platforms and operating systems,
and they can be reported as good in most cases. The first and last eigenvalues (`1 and
`m+n) are always dependable if computed in double precision and then tested in single
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precision, being the latter consistently more precise than the former. The balance of
bipartite connected graphs did not have a strong impact on the results, except for the
percentage of correct eigenvalues.

Extreme care must be taken when making decisions about graphs based on their
spectral properties. As a rule of the thumb, double-precision computation is advised,
but the comparison to known values should be made rounding or, at most, using at most
floating point representation.

Regarding the variability among operating systems, MatLab and Octave were equiv-
alent and more consistent than Scilab in most of the situations under assessment.

The results are the same in platforms under 32 and 64 bits operating systems, so the
latter were not reported in the tables.
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