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Abstract. Two new powerful mathematical languages, fuzzy set theory and possibility theory,

have led to two optimization types that explicitly incorporate data whose values are not real-valued

nor probabilistic: 1) flexible optimization and 2) optimization under generalized uncertainty. Our

aim is to make clear what these two types are, make distinctions, and show how they can be applied.

Flexible optimization arises when it is necessary to relax the meaning of the mathematical relation

of belonging to a set (a constraint set in the context of optimization). The mathematical language

of relaxed set belonging is fuzzy set theory. Optimization under generalized uncertainty arises

when it is necessary to represent parameters of a model whose values are only known partially

or incompletely. A natural mathematical language for the representation of partial or incomplete

information about the value of a parameter is possibility theory. Flexible optimization, as delin-

eated here, includes much of what has been called fuzzy optimization whereas optimization under

generalized uncertainty includes what has been called possibilistic optimization. We explore why

flexible optimization and optimization under generalized uncertainty are distinct and important

types of optimization problems. Possibility theory in the context of optimization leads to two dis-

tinct types of optimization under generalized uncertainty, single distribution and dual distribution

optimization. Dual (possibility/necessity pairs) distribution optimization is new.
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1 Introduction

Two mathematical languages that are used to express flexibility and generalized

uncertainty are fuzzy set theory and possibility theory (one type of general-

ized uncertainty). Flexibility, as it is used here, pertains to the set relationship

“belonging” or “is an element of”, that is, the relationship ∈ in the context of

a constraint set of an optimization problem. Possibility theory involves pairs

of distributions and is used to model incompletely specified data. Past possi-

bilistic optimization research involved only single distribution optimization. In

what follows, we discuss a new approach to possibilistic optimization which we

call dual distribution optimization which is a newer method. The first, to our

knowledge, to use “flexible” to describe fuzzy optimization is [10] who used

this term to encompass “optimization with vagueness”. They also define what

we call possibilistic optimization as “optimization with ambiguity.” And they

have classified mixed optimization, optimization with vagueness and ambiguity.

Our classification of flexibility centers exclusively on transitional constraint set

belonging, the relationship ∈ is relaxed. Moreover, possibility is only one of

many generalized uncertainties. This presentation focuses on those generalized

uncertainties that can be translated into pairs of functions (possibility/necessity)

which is not part of [10]. Lastly, we do not mix flexible with generalized uncer-

tainty except if they are in separate constraint statements (rows of a matrix in the

case of linear optimization or different components for non-linear optimization

problems). In addition, we consider a mixture of generalized uncertainty types

within one constraint statement which is not a part of the analysis done by [10].

The relevance of this survey is twofold. Firstly, since many optimization

models that are used in practice possess flexibility or possess parameters whose

values are imprecise, the new language of fuzzy sets and possibility theory is not

only an appropriate way to model, but in certain instances, it is the only way to

model. In fact, H.J. Rommelfanger [28] (page 295) states that arguably the most

widely used optimization method is linear programming. He goes on to state

that even though this is true, of the 167 production (linear) programming sys-

tems investigated and surveyed by Fandel (see [6]) only 13 of these were “pure”

deterministic linear programs. Thus, Rommelfanger concludes that even with

this most highly used and applied optimization method, there is a discrepancy
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between classical deterministic linear programming and what is actually done

in practice.

Secondly, many data of parameters to an optimization problem are described

by incomplete, poorly specified, imprecise data. We will limit ourselves to in-

complete information in the data that generate pairs of functions that bound the

imprecision arising from the partial information. When this is the case in the con-

text of optimization, we will argue that optimization that takes into consideration

the entire set of functions delineated by the pair of bounding possibility func-

tions is a useful way to optimize. Generalized uncertainty that lead to bounding

possibility pairs are fuzzy intervals (defined below), interval-valued probability

[35], belief/plausibility measures over nested focal elements [2, 17, 29], clouds

[26], p-boxes [7], and random sets [27] over nested focal elements.

Thus, our contribution in this overview is to present flexible optimization and

optimization under generalized uncertainty in a clear way, highlighting their im-

portance, illustrating their applicability, distinguishing flexible and possibilistic

optimization, and introducing a new approach to optimization under generalized

uncertainty, the dual distribution optimization.

We conclude our introduction with a short description of fuzzy set theory, pos-

sibility theory, generalized uncertainty, and the statement of our optimization

problem. The second section looks at the entities most relevant in flexible and

generalized uncertainty optimization. The third section addresses the optimiza-

tion types themselves and we make concluding remarks in the fourth section.

1.1 Fuzzy sets

Fuzzy sets encode transitional or gradual set belonging.

Definition 1. Fuzzy set: [36] A fuzzy set is a set whose elements possess a degree

of belonging to the set, where the degree is given by a value in the interval [0,1].

A fuzzy set is uniquely defined by a membership function μA : X → [0, 1],

A ⊆ X, where μA(x) denotes the degree to which the element x belongs to the

fuzzy set A. We adopt the convention that the membership function of the empty

set is zero.

Classical set theory characterizes a set in which all elements possess a binary

or Boolean {0,1} degree of belonging, that is, either an element belongs to a set
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or not. Thus, a set is a fuzzy set if belonging is transitional rather than Boolean.

Practically speaking, since we are interested in quantitative optimization, we

are interested in fuzzy sets over the real numbers and we will assume that the

universal set from which we define a fuzzy set is the set of real numbers. A fuzzy

set, say A, is uniquely defined by a continuous concave function μA whose

support is compact and whose range is a subset of [0, 1]. That is, given a support

of [a, b], μA is a continuous concave function on [a, b] where

y = μA(x) =

{
y ∈ [0, 1] for a ≤ x ≤ b

y = 0 otherwise
.

There are generalizations to the assumptions made on the membership function

such as upper semi-continuity rather than continuity, but we will not pursue these

for this exposition. What is important to note is that in the language of fuzzy sets,

μA(x) = 1 means that x belongs to the set A in the classical sense of belonging

(belongs for sure) and μA(z) = 0 means that z does not belong to set A in the

classical sense of not belonging (does not belong for sure). All values between 0

and 1 denote the transition from belonging to not belonging. The mathematical

language of flexibility and the associated algebra and analysis of this language

is fuzzy set theory. The flexibility as developed here is modeled in its native

setting as transitional set membership (belonging). To be sure, one translates the

problem into a approximate real-valued problem. This type of translation is also

done in stochastic optimization problems.

1.2 Generalized uncertainty

Uncertainty is a state of not knowing the exact value or truth of an entity or

proposition/statement [5]. A parameter is uncertain if its value is not known

exactly or precisely. The semantic of uncertainty that we restrict ourselves to

here has at its base partial information about its precise value and generates upper

and lower functions that bound the unknown distribution (or value) due to the

incomplete information. Uncertainty is a state of not knowing with respect to the

given information. Determinism has only one outcome state. Thus, we use the

word “uncertainty” in a narrow way which excludes fuzzy sets. The semantic of

a fuzzy set is “set belonging gradualness” which is uniquely determined by its
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membership function μA(x) and so is distinct from uncertainty which models

partial or incomplete information.

Generalized uncertainty is uncertainty that is not only tied to information

deficiency but is any uncertainty that is non-deterministic and non-unique prob-

abilistic. Generalized uncertainty has an associated set of distributions (bounded

above and below) that contains the unknown distribution. It is uncertain because

it is not known which of the distributions in the set is the appropriate one(s). It

is generalized uncertainty since it includes more than deterministic uncertainty

(error) and probabilistic uncertainty. We will pay special attention to possibility

as one type of generalized uncertainty which is particularly useful since it is rela-

tively easy to use in optimization, has a rich semantic with an algebraic structure

that is able to model problems in which the data arises from partial/incomplete

information.

There are four generalized uncertainty types that can be transformed into

possibility/necessity pairs: 1) intervals, 2) interval-valued probability distribu-

tion (IVPD) pairs [35], 3) clouds [26] Figures 3, and 4) fuzzy interval (see

Fig. 2). More general forms of generalized uncertainty exist, for example be-

lief/plausibility pairs [29] and random sets [27] whose focal elements are nested,

but our focus here are these four types (intervals, IVPDs, clouds, fuzzy intervals)

because there exist methods to directly translate these into possibility/necessity

pairs. Possibility, generally speaking, is a term that we use as the model of lack

of information about the value of an entity. Its definition, is as follows.

Definition 2. A possibility measure is a set-valued function over the σ -field of

a universal set X,

P : A ⊂ σ(X) → [0, 1] such that

Pos(∅) = 0, Pos(X) = 1, (1)

Pos(A ∪ B) = max{Pos(A), Pos(B)}. (2)

There are some continuity assumptions that sometimes are made such as:

Given A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . such that lim
n→∞

An = A, then

lim
n

P(An) = P(lim
n

An) = P(A).
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Remark 1. Given (1) and (2), we can show: 1) monotonicity, that is, A ⊆ B ⇒

P(A) ≤ P(B), 2) an underlying nested set of subsets of σ(X) exists such that

beginning with the nested set, we can define the possibility for all sets of our

σ -field. Moreover, given a possibility on a nested set of sets of the σ -field (with

the boundary conditions), we can define a possibility on all of the σ -field such

that the possibility of a union of two sets is equal to the maximum of the two

possibilities (see [17, 33]). Therefore, given (1) and (2) a generating nested set

of subsets can be constructed so that on this nest (1) and (2) hold. On the other

hand, given a nested set of subsets on which (1) and (2) hold, we can define a

possibility measure on the entire σ -field such that (1) and (2) holds on the σ -

field. The significance of this fact in terms of optimization is that when a random

set or a belief/plausibility measure has nested focal elements, we can define a

bounding pair of possibility measures that encloses the uncertainty as defined by

the random set (or belief/plausibility).

Given a possibility measure (function on sets), a possibility distribution is a

function (on elements of the universal set)

p(x) : X → [0, 1], p(x) = P({x}).

Since we will be dealing, in optimization, with existent objects, there is at least

one x ∈ X such p(x) = 1. Given a possibility measure, its dual Nec, called a

necessity measure, is defined by

Nec(A) = 1 − Pos(AC), (3)

for any measurable set A ⊂ X , where AC is the complement of A. Given (1),

(2) and (3), it is easily shown that,

Nec(∅) = 0, Nec(X) = 1,

Nec(A ∩ B) = min{Nec(A), Nec(B)}.

The dual of a possibility distribution, called a necessity distribution, is the func-

tion

n(x) : X → [0, 1], n(x) = Nec({x}).

If we know the possibility of a set A, the possibility of the complement of A,

Pos(AC), is not derived as Pos(AC) = 1 − Pos(A) in contradistinction to

probability, its dual, necessity is required [3]. That is, Nec(A) = 1 − Pos(AC),

so that Pos(AC) = 1 − Nec(A).
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1.3 Optimization

A real-valued (deterministic) optimization problem has the general form:

z = min f (c, x), (4)

subject to gi (a, x) ≤ b i = 1, . . . , M1, (5)

h j (d, x) = e j = 1, . . . , M2. (6)

The constraint set is denoted by

� = {x |gi (x, a) ≤ bi , i = 1, . . . , M1, h j (x, d) = e j , j = 1, . . . , M2}.

It is assumed that � 6= ∅. The values of a, b, c, d and e are data, parame-

ters. Thus, to highlight the main thesis of this study, our general model can be

reformulated as

z = min f (x, c)

x ∈ �(a, b, d, e),

where we denote the constraint set as a function of the input parameters for

emphasis. From our point of view, when the ∈ of “element of �” is relaxed,

then we have flexible optimization. The constraint set � is crisp, real-valued,

but belonging to � is soft, transitional, or gradual. From the point of view of

generalized uncertainty, data, a, b, d, e, that arises from incomplete, imprecise

information generate a constraint set � that is defined by a set of distributions.

Likewise, if data element c is a generalized uncertainty type, the objective is a

sets of enclosed functions.

2 Fundamental entities of generalized uncertainty analysis

We outline the relationship between fuzzy intervals and possibility distributions

next.

2.1 Intervals

An interval is a compact connected set of real numbers X = [x, x] = {x |x ≤

x ≤ x}. Intervals are key to the mathematical operations on generalized uncer-

tainty types in that the level sets of upper/lower (possibility/necessity) bounds of
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distributions and indeed level sets of fuzzy numbers are intervals. In particular,

one way to compute with generalized uncertainties is via intervals arising from

level sets and hence we discuss intervals in a little bit of detail next.

An interval may be considered as a type of fuzzy interval (see Fig. 1). An

interval possesses a triple nature, that of an interval number [x] ≡ {x, x} con-

sisting of two elements (and ordered pair of numbers (x, x), x ≤ x), that of a set

[x] = {x |x ≤ x ≤ x}, or that of a single-valued linear function with non-negative

slope over the compact real set [0, 1],

f (λX ) = wXλX + x, 0 ≤ λX ≤ 1, wX = x − x ≥ 0. (7)

This third view we call a constrained interval (see [18]) because the variable λX

is constrained to be in [0, 1]. This point of view means that intervals belong to a

space of linear single-valued function over compact domains with non-negative

slopes which is distinct from the space of interval numbers which is the upper

left half-plane in R2 determined by y ≥ x . We favor this third view of intervals

since it yields a richer algebraic structure. Intervals may model non-specificity

or information deficiency. At the same time, intervals may also represent a fuzzy

set, a fuzzy interval (number), with a membership function

μ[a,b] =

{
1 x ∈ [a, b]

0 otherwise
. (8)

For example, if we have an interval [1, 4], then it can represent a fuzzy set

μ[1,4] in the sense of (8) (see Fig. 1). However, the interval [1, 4] as a piece

of partial or incomplete information of an unknown value, defines upper and

lower possibilities that bound all (cumulative) distributions whose supports are

in [1, 4]. That is, in the context of sets of probabilities, if all that is known is that

the support of the probability lies in the interval [1, 4], the possibility

p(x) =

{
1 if x ∈ [1, ∞)

0 if x ∈ (−∞, 1)
(9)

and necessity

n(x) =

{
1 if x ∈ [4, ∞)

0 if x ∈ (−∞, 4)
(10)
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pair bound all cumulative probability distributions that have support in [1, 4].

Note that the middle possibility distribution

u(x) =






1
3 x − 1

3 if x ∈ [1, 4]

1 if x ∈ [4, ∞)

0 otherwise

(11)

is the cumulative of the uniform distribution whose support is [1, 4] and corre-

sponds to choosing a “midpoint”. The cumulative representing the entire prob-

ability being 1 (the real number 1), is the possibility (9). The cumulative repre-

senting the entire probability being 4 (the real number 4), is the necessity (10).

We prove that this is true in the general case of an arbitrary fuzzy interval in the

next section.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Figure 1 – An interval as a possibility/necessity pair.

2.2 Fuzzy intervals

The entities of analysis that are used in flexible and generalized uncertainty

optimization are called fuzzy numbers and their generalizations are called fuzzy

intervals which we formally define next.

Definition 3. A fuzzy number is a fuzzy set with a continuous concave mem-

bership function and one and only one value, x∗, such that μ(x∗) = 1, where x∗

is the “fuzzified” number. The set of numbers for which the membership values

are one is called the core. A fuzzy interval, depicted as a trapezoid in Figure 2,

is a fuzzy number except the core does not have to be a singleton but may be an

interval.
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Figure 2 – Fuzzy interval – possibility, necessity.

There are various views and applications of fuzzy intervals. A fuzzy interval

can be used to enclose a set of probability distributions where the bounds are

constructed from the fuzzy interval (dashed black line being the possibility and

dotted gray line being the necessity in Fig. 2). To prove this, let μ(x) be the

membership function of a fuzzy interval and Pr(A) be probability measures for

which

sup
a∈A

μ(a) ≥ Pr(A) (12)

where A = (−∞, x] for x ∈ R. Define

Pos(A) = sup
a∈A

μ(a). (13)

Pos(A) so defined, is a possibility measure since

Pos(∅) = sup
a∈∅

μ(a) = 0

Pos(X) = sup
a∈X

μ(a) = 1, and

Pos(A ∪ B) = sup
x∈A∪B

μ(x)

= sup
x∈A

μ(x) or sup
x∈B

μ(x)

= max{sup
x∈A

μ(x), sup
x∈B

μ(x)}

= max{Pos(A), Pos(B)}.
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Thus, Pos(A) defined by (13) satisfies (1) and (2) and so it is a possibility. Given

this definition of possibility (13), the following holds.

Pos(A) = sup
a∈A

μ(a) ≥ Pr(A) for all measurable A.

Nec(A) = 1 − Pos(AC) or

Pos(AC) = 1 − Nec(A). Now,

Pos(AC) ≥ Pr(AC) = 1 − Pr(A) or

Pr(A) ≥ 1 − Pos(AC) = Nec(A). Thus,

Nec(A) ≤ Pr(A) ≤ Pos(A). (14)

That is, when we define a possibility by (13), we generate a possibility/necessity

dual pair of bounding measures for all probabilities that satisfy (12). Therefore,

a fuzzy interval can be viewed as encoding a family of probabilities, the set

of probability measures Pr(A) defined by (12). Thus, a fuzzy interval, as a

piece of incomplete information, encodes a family of probability bounded by a

possibility/necessity pair (14).

2.3 Possibility intervals

The mathematical structure of possibility theory was first developed by [37]

and more extensively articulated in [3, 4]. There are several ways to construct

possibility and necessity distributions from generalized uncertainty types. We

highlight four ways one can generate possibility/necessity pairs.

1. [22] Given a set of probability measures 4 = {probα(A), probα(A) ∈

L ⊆ R, α ∈ I, where I is an index set, L a set of measurable subsets of

R},

Pos1(A) = sup
α∈I

probα(A), probα(A) ∈ 4, (15)

Nec2(A) = inf
α∈I

probα(A), probα(A) ∈ 4. (16)

2. [14] Given an unknown cumulative distribution function F(x) which is

known to exist inside a bounding pair of functions F(x) ∈ [F(x), F(x)]

Comp. Appl. Math., Vol. 31, N. 3, 2012
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(a p-box, [7]), we can construct necessity and possibility (not necessarily

duals) distributions such that the probability measure is bounded by

Pr(A) ∈ [Nec2(A), Pos1(A)], (17)

for all measurable sets A.

3. [26] Given a cloud (see Fig. 3), it can be translated into a possibility/ne-

cessity pair (see [19]) where a cloud over a set M is a mapping x that

associates with each ξ ∈ M a (non-empty, closed and bounded interval)

x(ξ), such that,

(0, 1) ⊆
⋃

ξ∈M

x(ξ) ⊆ [0, 1]. (18)

A real cloudy number is a cloud over the set R of real numbers. χ[a,b]

(χ being the characteristic function) is the cloud equivalent to an interval

[a, b]. That is, an interval provides only information about the support

without additional probabilistic content. A cloudy vector is cloud over Rn ,

where each component is a cloudy number. In many applications the level

x(ξ) may be interpreted as giving lower and upper bounds on the degree of

suitability of ξ ∈ M as a possible scenario for data modeled by the cloud

x. This degree of suitability can be given a probability interpretation by

relating clouds to random variables, (19).We say that a random variable x

with values in M belongs to a cloud x over M , and write x ∈ x, if

Pr(x(x) ≥ α) ≤ 1 − α ≤ Pr(x(x) > α) ∀ α ∈ [0, 1]. (19)

This approach gives clouds an underlying interpretation as the class of

random variables x with x ∈ x.

4. Given a fuzzy interval, one can generate a possibility/necessity pair using

(13) and (3) such that (14) holds.

The most prevalent approach is to define the entities of interest in optimization

(the coefficients and/or the right-hand side values, for example) to be fuzzy inter-

vals in which case they will be able to model both gradualness or transition and

lack of specificity/information either as a single distribution or as pairs of distribu-

tions. If the coefficients arise from probability-based possibility, constructions

1-4 above, then this generates upper and lower possibility optimization, dual

distribution optimization when both bounds are used.

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Figure 3 – Cloud.

3 Intervals, fuzzy set theory, and possibility theory in optimization

We next look at optimization according to the nature of the constraint set.

Intervals can represent uncertainty in a parameter value (a, b, c, d, e of (4),

(5) and (6)). This is the point of view of [8, 11, 21, 22]. However, [24] and [30]

approach interval linear programs from a strictly interval perspective, where [8]

uses both views. Historically, intervals have been used in global optimization

[16]. In fact, many interval analysis researchers maintain that interval analysis

in optimization is part of deterministic global optimization. Its aim is finding

good, provable bounds on ranges of functions that contain the global optima.

Our point of view for this exposition is that intervals may be used in and of

themselves to represent uncertainties when all that is known are the bounds on

parameters in which case an interval can model transitional set belonging (8) or

the lack of information or specificity (9), (10).

3.1 Fuzzy and possibility optimization and semantics

Next what is meant by decision-making in the presence of flexibility and gener-

alized uncertainty is defined [20].

1. Fuzzy decision making: Given the set of real-valued (crisp) decisions, �,

and fuzzy sets {F̃i | i = 1 to n}, find the optimal decision in the set �.

Comp. Appl. Math., Vol. 31, N. 3, 2012
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That is,

sup
x∈�

h
(

F̃1(x), . . . , F̃n(x)
)

, (20)

where h : [0, 1]n → [0, 1] is an aggregation operator [17] often taken

to be the min operator, and F̃i (x) ∈ [0, 1] is the fuzzy membership of x

in fuzzy set F̃i . The decision space � is a set of real numbers, and the

optimal decision satisfies a mutual membership condition defined by the

aggregation operator h. This is the method of Bellman and Zadeh [1],

Tanaka, Okuda and Asai [31, 32], and Zimmermann [38], who were the

first (in this order) to develop fuzzy mathematical programming. While

the aggregation operator h historically has been the min operator, it can

be, for example, any t-norm that is consistent with the context of the

problem and/or decision methods [15].

2. Possibility decision making: Given the set of real-valued decisions, �,

and the set of possibility distributions representing the uncertain out-

comes from selecting decision Ex = (x1, . . . , xn)
T denoted 9x = {F̂ i

x , i =

1, . . . , n}, find the optimal decision that produces the best set of possible

outcomes with respect to an ordering U of the outcomes. That is,

sup
9x ∈9

U (9x), (21)

where U (9x) represents an “evaluation function” (loosely, utility) of the

set of distributions of possible outcomes 9 = {9x |x ∈ �}. The decision

space 9 is a set of possibility distributions 9x : � → [0, 1] resulting from

taking decision x ∈ �. For example, if F̂x = 2̂x1 + 3̂x2, where 2̂ and 3̂

are the possibility numbers 2 and 3, then each Ex = (x1, x2)
T generates the

possibility distribution F̂x = 2̂x1 + 3̂x2.

Remark 2. For fuzzy sets F̃i , i = 1, …, n, given x , [F̃1(x), . . . , F̃n(x)]T is a

real-valued vector. Thus, we need a way to aggregate the components of the

vectors into a single real-value. This is done by a t-norm, min for example. For

possibility, given x , 9x = {F̂ i
x , i = 1, . . . , n} is a set of distributions, so we

need a way to turn this set of distributions into a single real-value which may

be implemented using an evaluation function or a generalized expectation with

recourse, for example.
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3.2 Fuzzy decision making using fuzzy optimization – flexible optimization

Fuzzy decision making using fuzzy optimization was first operationalized by

Tanaka, Okuda, and Asai [31, 32], and then by Zimmermann [38]. This approach,

based on Bellman and Zadeh [1], transforms systems of inequalities Ax ≤ b

and the objective function into aspirations. The results are what is commonly

called soft constraints, where the number b to the right of the inequality is a

target such that, if the constraint is less than or equal to b, the membership

value is one (the constraint is satisfied with certainty), and, if the constraint

is greater than b + d, (for an a-priori given d ≥ 0), the membership is zero

(the constraint is not satisfied with certainty). Here, the objective function is

translated into a target, say z = f (x, c) ≥ t∗, and t∗ translated into an aspiration.

In between, the membership function is interpolated so that it is consistent with

the definition of a fuzzy interval membership function in the context of the

problem. Linear interpolation was the original form [38]. This models a fuzzy

meaning of inequality that is translated into a fuzzy membership function and is

the source of our use of the designation of flexible programming for these classes

of optimization problems. The α-level represents the degree of feasibility of the

constraints, consistent with the aspiration that the inequality be less than b but

definitely not more than b + d . Thus, the objective, according to [38], is to

simultaneously satisfy all constraints at the highest possible level of preference

as measured by the α-levels of the membership functions. The approach of [38]

is not always Pareto optimal. It must be iterated – fix the constraints at bounds

and re-optimize.

Another related form of flexibility is allowing constraint violations to be mea-

sured by a possibility (necessity) or probability distribution [9]. These methods

fall within a goal satisfaction approach in optimization in which the highest

degree of feasibility (the goal in this case) is sought.

A different method is that of aggregate goal attainment which maximizes

an overall measure of aggregate goal satisfaction. The aggregate sum of goal

attainment focuses on maximizing the cumulative satisfaction of the goals. The

surprise function [23, 25] is one such measure for an aggregate set of (fuzzy)

goals. If

hard yi = (AEx)i ≤ bi ⇒ soft yi = (AEx)i ≤ b̃i , (22)
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where the right-hand side values of the soft constraint are fuzzy intervals, the

transformation into a set of aggregate goal satisfaction problem using the surprise

function as the measure for the cumulative goal satisfaction is attained as follows.

A (soft) fuzzy inequality (22) is translated into a membership function, μi (x) of

the fuzzy set {(Ax)i ≤ b̃i }. The associated surprise function is

si (x) =
(

1

μi (x)
− 1

)2

. (23)

These functions are added to obtain a total surprise

S(Ex) =
∑

i

si ((AEx)i ) =
∑

i

(
1

μi (x)
− 1

)2

. (24)

Note that (24) is an aggregation operator. A best compromise solution based on

the surprise function is given by the nonlinear optimization problem

min z = S(Ex) =
∑

i

(
1

μi (x)
− 1

)2

, (25)

subject to x ∈ � (possibly hard constraints). (26)

The salient feature is that surprise uses a dynamic penalty for falling outside pre-

ferred membership values of one. The advantage is that the individual penalties

are differentiable convex functions which become infinite as the values approach

the endpoints of the support. Moreover, the sum of convex functions is convex so

that a local optimal of (25), (26) is a global optimum. Additionally, this approach

is computationally tractable for very large problems [23] and is Pareto optimal.

3.3 Single possibility distribution decision making

One method of generalized uncertainty optimization [13] allows all constraint

violations at an established cost or penalty and minimizes the expected average,

a generalization of expected value [12, 13]. This approach considers all possible

outcomes as a weighted expected average penalty. The expected average may be

considered to be a type of evaluation function (utility). This particular evaluation

function takes violations as penalties on all outcomes of the constraints. It

optimizes over sets of possibility distributions that define the preferred levels

of violation. The approach used in [13] is a possibility generalization of the

recourse models in stochastic optimization.
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3.4 Dual possibility distribution decision making under uncertainty

Dual distribution optimization is an optimization in which both upper and lower

bounds on expectation given the uncertainty are constructed. Given the upper

and lower expectation, methods that yield minimum maximum regret have been

developed by [33] and [34] to obtain a satisficing compromise solution.

3.5 Mixed fuzzy and possibility decision making: mixed possibility and

probability optimization methods

An optimization problem containing a mixture of uncertainty together in one

or more constraints we called mixed optimization. Problems in which one type

of uncertainty or flexibility occurs in a parameter of a constraints and another

uncertainty or flexibility parameter occurs in another constraint (each constraint

having a single type of uncertainty or flexibility) have been studied by [21].

There are other problems in which two or more types of uncertainty occur in two

or more parameters of a single constraint. Thus, within a quantitative setting,

there are two cases for the mixed problem.

1. A problem that contains flexible constraints and generalized uncertainty

parameters, but each type is in one constraint and each constraint has only

one type:

(a) The flexible constraints can be translated using the surprise method

according to [25] or by using the α-levels according to [38]

(b) The generalized uncertainty can be translated, for example, into pos-

sibility constraint penalties according to [13]. The resulting trans-

lated system is then optimized such that if α-levels are used one

obtains a Pareto optimal by fixing constraints at bounds and re-

optimizing. With the surprise approach, this is unnecessary.

2. Two or more uncertainty parameters appear in the same constraint: One

must consider a generalized theory such as IVPDs [21, 22, 33, 34]. An

effective way to solve mixed problems, once it is translated into a general-

ized over arching uncertainty theoretical setting such as IVPDs, is to state

it as a generalized recourse model. This is the approach found in [19, 33]

and [34].
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4 Conclusion

The data which goes into a flexible optimization and generalized uncertainty

optimization problem were delineated and specified. Each type of data not only

is comprised of a membership or possibilistic function, but possesses a semantic

which is the crucial key in determining the optimization type with its associated

solution method. It is not the functional representation (membership function,

possibility distribution) of the data entity that determines the optimization type,

it is the semantic, since the functional representation of a member function is

indistinguishable from a possibility distribution. Moreover, our exposition em-

phasized and delineated the differences between fuzzy set theory and possibility

as it impacts optimization problems that use these entities. We indicated how

the semantics are important in distinguishing which of the various approaches

must be used in obtaining a solution.
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