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Abstract. This paper reports experiments on the use of a recently introduced advection bounded

upwinding scheme, namely TOPUS (Computers & Fluids 57 (2012) 208-224), for flows of prac-

tical interest. The numerical results are compared against analytical, numerical and experimental

data and show good agreement with them. It is concluded that the TOPUS scheme is a competent,

powerful and generic scheme for complex flow phenomena.
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1 Introduction

The need to solve advection-dominated PDEs (Partial Differential Equations)

is ubiquitous throughout computational fluid dynamics applications. In order
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to achieve physically relevant numerical solutions for these equations, one in-

evitably requires to equip the computational algorithm with some high resolution

upwind (bias) scheme for the convective fluxes.

High resolution upwind schemes, an extension of the monotonicity preserving

first-order upwind scheme by the use of non-linear limiters, have successful been

employed for the simulation of a variety of PDEs; since advection of scalars to

non-linear conservation laws (see, for instance, [1]). However, their adaptation

to PDEs for predicting flow field in the presence of shocks or steep gradients

is not so common in the literature and, in particular, their application to incom-

pressible free surface flows at high Reynolds numbers is hindered by the moving

boundary. For achieving this goal, we have described in [2] a high degree polyno-

mial upwind-based TVD (Total Variation Diminishing) finite difference scheme,

called TOPUS (Third-Order Polynomial Upwind Scheme).

TOPUS is based on the application of the TVD/CBC (Convection Boundedness

Criterion) stability criteria combined with the conditions of Leonard [3]. This

scheme has been presented (see [2]) in both the normalized variables and also

as a flux limiting technique, and has been shown to possess three important

features: simplicity, robustness and generality of application. The main point

of that paper was to demonstrate that the TOPUS scheme can be employed to

solve a wide range of linear and non-linear PDE, preserving total variation as

time integration evolves. The authors have also made a variety of comparisons of

different upwind TVD schemes, namely CUBISTA [4] , ADBQUICKEST [5],

SMART [6], SUPERBEE [7], van Albada [8], and van Leer [9, 10, 11], with the

TOPUS scheme for several computational fluid dynamics benchmark cases, such

as advection of scalars, gas dynamics and simple flows. However, even with the

relative success obtained with the (original) TOPUS scheme [2], there is still the

need for improved it to enable fluid flow computations to be used routinely in

engineering practice.

In the present article, we aim to extend the TOPUS scheme to simulate fluid

flow problems of increasing complexity, and to answer the basic question: what

reliable, accurate and easy-to-program upwinding scheme should be employed

for fluid dynamics with jump discontinuities? The emphasis of the study is

not to trace the evolution of upwind-biased schemes, nor to provide rigorous
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analysis for them, but rather to present the versatility of the TOPUS scheme

for resolving more complicated PDEs than those reported in authors’s earlier

paper [2]. In addition, the paper intends to supply results of simulations for both

(representative) compressible and incompressible flows. These computations

aim to acquaint the researcher in computational fluid dynamics with the virtues

of the TOPUS scheme.

The remainder of the paper is organized as follows. In the next section, it

is presented a summary of the TOPUS scheme and its modification used in this

work. In Section 3, computational results and applications are made by means of

a series of numerical experiments for a variety of PDEs. Finally, some concluding

remarks are drawn in Section 4.

2 Summary of the TOPUS scheme and its modification

In this section, we review the (original) TOPUS scheme [2], an upwinding tech-

nique for approximation of cell interface values in reconstruction formulas, and

its modification on Cartesian meshes in the framework of the finite difference

method.

The normalized generic form (see Leonard [3]) of a high resolution upwind

scheme for advection term discretizations is given by

φ̂ f = φ̂ f (φ̂U ),

where φ̂ f and φ̂U are, respectively, the normalized values of the convected vari-

able φ at the boundary interface f between two control volumes and at the

neighboring upwind node U . According to Leonard [3, 12], a bounded high

resolution second and/or third order accurate scheme (in general, non-linear)

within the CBC region must pass through points O(0, 0), Q(0.5, 0.75), P(1, 1)

and with inclination of 0.75 at Q. Passing through Q will provide second or-

der accuracy and passing through Q with a slope of 0.75 will give third order

accuracy.

A modification of the TOPUS scheme is constructed by assuming that the

variable φ̂ f is related to φ̂U by a fourth degree polynomial function for

0 < φ̂U < 1, and by the NECBC1 (New CBC) scheme of Jian et al. [13]

for φ̂U ≤ 0 and φ̂U ≥ 1. In the original TOPUS scheme (see [2]), the NECBC1
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scheme is replaced by the FOU (First Order Upwind) scheme. By imposing

the conditions of Leonard presented above, plus the condition that φ̂ f is a con-

tinuously differentiable function at P , one obtains

φ̂ f =






αφ̂4
U + (−2α + 1) φ̂3

U +
(

5α − 10

4

)
φ̂2

U +
(

−α + 10

4

)
φ̂U ,

φ̂U ∈ (0, 1),

3

4
φ̂U , φ̂U ≤ 0,

3

4
φ̂U +

1

4
, φ̂U ≥ 1,

(1)

where

φ̂(.) =
(
φ(.) − φR

)/(
φD − φR

)

is the normalized variable of Leonard and α is a free parameter. The notations

φD , φU and φR represent, respectively, the value of the variable φ at Down-

stream, Upstream and Remote-upstream locations, which are selected according

to the sign of the advection velocity (upwind/downwind direction) at the inter-

face f . The motivation for choosing this compact stencil for TOPUS scheme

is its computational efficiency, reducing the amount of storage and exchange of

information, and simplifying the implementation of the boundary conditions.

The corresponding flux limiter for the original TOPUS scheme, which was

used for the simulation of conservation laws (see [2]), can be written, in a com-

monly used notation, as

ψ(r f ) = max





0,

0.5
(∣∣r f

∣
∣ + r f

) [
(1 − 0.5α)r2

f + (4 + α)r f + (3 − 0.5α)
]

(1 +
∣
∣r f

∣
∣)3





, (2)

where r f is a local smoothness measure satisfying Sweby’s monotonicity preser-

vation condition (see, for example, [1]) when it tends to zero, and it is given by

r f =
φx | f

φx |g
≈
1φ f

∇φg
, (3)

where 1 and ∇ are forward and backward difference operators, respectively.

The original TOPUS scheme inside the TVD region of Harten can be found in
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[2]. The results and applications presented in the next section were generated

by using the free parameter α equal to 2, since for this value of α the scheme

has guaranteed to be oscillation-free and has provided satisfactory results for

standard problems (see [2]).

It should be stated that, in the most simulations presented in this work, diver-

gence has been observed with the use of the original (frozen TOPUS) version of

the TOPUS scheme (2) (for compressible flows). And, from the insight gained

of the modified van Albada limiter (see [14]), the following improvement to the

TOPUS limiter is proposed

ψ(a, b) =
(2ba2 + ε)a + (6a2b + ε)b

(a2b3 + 3a2b2 + 3a2b + a3 + 2ε)a
, (4)

where a = φD − φU and b = φU − φR; ε is a small parameter that prevents

indeterminacy in regions of zero gradients and is taken to be of O(δx
3), δx being

the mesh spacing. This modification for the TOPUS limiter is similar in many

respects to that of [8, 14] and [15], and is being exploited in this work to prevent

spurious numerical oscillations at large flow gradients and discontinuities (e.g.

shocks), improve numerical (global) convergence, and handle the clipping and

squaring effects of smooth extrema.

The reader is referred to Ferreira et al. [2] to see how TOPUS may be in-

corporated into the discretized form of a number of PDEs. In addition, in this

reference, it is provided a discussion concerning the stability of the computations

and the choice of the CFL (Courant-Friedrichs-Lewy) parameter. The issue of

non-linear stability for the TOPUS scheme is also addressed in [2] by checking

the numerical time dependent total variation on progressively refined meshes.

We should, however, remark that in practice it seems that for many problems

spatial accuracy is more crucial than temporal accuracy; hence in the calcula-

tions presented in this paper, for simplicity, the first order Euler method has

been used for marching in time.

Computations of the inviscid flows are performed by using the CLAWPACK

software package of LeVeque [16], incremented with the TOPUS and other up-

winding schemes presented in this work. CLAWPACK is a general purpose and

open-source software developed at the University of Washington for resolving

hyperbolic PDEs. This software, in the context of finite volume methodology,
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uses the Godunov’s method with a correction term; one can provide additional

code for initial and boundary conditions and add new limiters. Incompressible

viscous flows are simulated by using the primitive variable (front-tracking/fini-

te difference) Marker-And-Cell (MAC) technique: this is a special case of the

projection method of Chorin [17] described by Harlow and Welch [18] (see also

McKee et al. [19]). This method, associated with the upwind TOPUS scheme

(and other upwinding schemes), has been incorporated into the Freeflow code of

Castelo et al. [20] to solve complex incompressible moving free surface flows.

3 Simulation results and applications

In authors’s earlier paper [2], representative 1D/2D test cases have been pre-

sented so that the methods discussed could be compared. In this section, other

2D validation cases, as well as verification tests, will be presented. The flexibility

and robustness of the TOPUS scheme are considered by solving complex flows in

two or three space dimension. In both cases, a comparison with well recognized

high-resolution schemes is also performed. The objective here is to investigate

whether the TOPUS scheme could effectively solve a real engineering prob-

lem. Seven test cases have been selected in order to assess the behaviour of

the TOPUS scheme, namely three inviscid compressible flows and four viscous

incompressible flows with moving free surfaces.

3.1 2D inviscid compressible flows

In this section, the TOPUS scheme is used to compute 2D non-linear system of

hyperbolic PDEs of the form

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
= 0, (5)

where U is the conservative state vector, and F(U) and G(U) are the convec-

tive flux vectors along the x- and y-directions, respectively. The specific flows

simulated here are: (i) the circular dam-break, modelled by the inviscid shallow

water equations; (ii) the steady transonic flow around the NACA 0012 airfoil,

modelled by Euler’s equations; and (iii) the compressible Orszag-Tang MHD

vortex, modelled by ideal magnetohydrodynamics (MHD) equations.
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Test case 1 (Circular dam-break problem). The TOPUS scheme is initially

tested for the simulation of the collapse of a circular dam, a free surface shallow

flow described in details by Stecca et al. [21] and modelled by Eq. (5) with the

conservative state vector and convective flux vectors given by





U = (h, hu, huv)T ,

F =
(

hu, hu2 +
1

2
gh2, huv

)T

,

G =
(

hv, huv, hv2 +
1

2
gh2

)T

,

where h is the water depth; u and v are the x and y velocities, respectively; and

g is the acceleration of the gravity. The aim in this test is to demonstrate the

ability of the TOPUS scheme of accurately reproducing shock and rarefaction

waves. As presented by Stecca and co-authors, the problem consists of the in-

stantaneous breaking of a cylindrical tank initially filled with 2.5 m deep water

at rest. The circular column of water is suddenly released and, then, a shock

wave propagates in the radial direction (outwards) while a rarefaction wave

moves inwards. The wave generated by the breaking of the tank propagates

into still water with an initial depth of 0.5 m. The computed results for the water

depth h(x, y, t) (sliced on the x-axis) are compared with the results provided by

Stecca et al. [21]. The mesh used was 100 × 100 computational cells and the

reference solution was obtained by using the SUPERBEE scheme on a fine mesh

of 1000 × 1000 cells and at CFL number 0.9. Figure 1 displays comparisons,

using two different values of the CFL number (CFL=0.10 and 0.45), between

the results of [21] and those obtained with the TOPUS scheme. From this figure,

one can see that the numerical method equipped with the TOPUS captures the

essential physical mechanism of the problem and provides the best numerical

solution. Moreover, the scheme shown to be less dissipative than other schemes.

In addition, one can observe some oscillations (almost imperceptible) appearing

in Figure 1(a); this can easily be removed by refining the mesh.

Test case 2 (Transonic flow around the NACA 0012 airfoil). The second prob-

lem is that of a steady inviscid compressible flow over a NACA 0012 airfoil at

freestream Mach number M∞ = 0.8 and angle-of-attack αat = 1.25 deg. This

Comp. Appl. Math., Vol. 31, N. 3, 2012
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(a) CFL = 0.10

(b) CFL = 0.45

Figure 1 – Results for water depth h at two CFL numbers using TOPUS and the schemes

presented in [21] (FORCE, RUSANOV and GODUNOV-HLL), and reference solution

(SUPERBEE).
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problem is modelled by Eq. (5) with the conservative state and convective flux

vectors given by





U = (ρ, ρu, ρv, E)T ,

F =
(
ρu, ρu2 + p, ρuv, (E + p)u

)T
,

G =
(
ρv, ρuv, ρv2 + p, (E + p)v

)T
,

E =
p

(γ − 1)
+

1

2
ρ(u2 + v2), γ = 1.4,

where E is the total energy, ρ is the density, and p is the pressure; other variables

have been defined previously. This test case is computed using a mesh size of

251 points over the airfoil surface, 151 points in radial direction and the farfield

boundary is set at 70 chords of radius. The CFL number is set as a constant

value of 0.8 and the maximum density residual for accepting convergence is

chosen to be 10−7. The pressure coefficient distributions, C p, on the upper and

lower surfaces of the airfoil obtained with TOPUS and van Albada limiters

are plotted in Figure 2. From this figure, it is seen that both TOPUS and van

Albada limiters provide similar results, showing that the strength of the shock

is in good agreement with the ones given in literature. These data also indicate

that TOPUS is slightly less dissipative than the van Albada limiter at the shock.

Away from the shock waves, both TOPUS and van Albada schemes produce

almost identical results.

Further investigation of these results can be achieved by inspecting the en-

tropy generated by the numerical solutions. Hence, Figure 3 presents the entropy

generated at the airfoil surface by the two schemes for the same flight condition.

The clear conclusion from this figure is that the entropy generated by the two

schemes is quite comparable. One can see that TOPUS creates slightly more

entropy at the airfoil surface than the van Albada limiter. Again, these results

emphasize that TOPUS has essentially the same shock capturing characteristics

as the widely used van Albada limiter for such inviscid transonic applications.

Finally, drag and lift coefficients (Cd and Cl) are summarized in Table 1;

besides the comparison between TOPUS and van Albada schemes, we have in-

cluded results for the present test case obtained by Zhou et al. [22], Caughey

[23], Rizzi [24], Jameson and Martinelli [25], Pulliam and Barton [26], Du et

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Figure 2 – Results obtained with TOPUS and van Albada limiters for the pressure

coefficient for a NACA 0012 airfoil at M∞ = 0.8 and αat = 1.25 deg.

Figure 3 – Entropy generated at the airfoil surface by TOPUS and van Albada calcula-

tions of the flow over a NACA 0012 airfoil at M∞ = 0.8 and αat = 1.25 deg.
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Scheme Cd Cl

Zhou et al. [22] 0.0220 0.3575

Caughey [23] 0.0237 0.3695

Rizzi [24] 0.0230 0.3513

Jameson and Martinelli [25] 0.0220 0.3575

Pulliam and Barton [26] 0.0236 0.3618

X. Du et al. [27] 0.0223 0.3453

Venkatakrishnan [14] 0.0231 0.3540

van Albada 0.0240 0.3500

TOPUS 0.0242 0.3497

Table 1 – Aerodynamic coefficients, Cd and Cl , for NACA 0012 airfoil at Mach 0.8 and

1.25◦ angle of attack.

al. [27] and Venkatakrishnan [14]. Such data provide for a more quantitative

comparison of the presently proposed scheme. One can see in Table 1 that the

present results for lift and drag coefficients are between those provided by the van

Albada limiter and those provided by the centered schemes. Again, the current

results are very close to those provided by the van Albada limiter, except that we

obtain a slightly higher value of lift coefficient, which is probably a consequence

of the less dissipative behavior at the shock, as previously discussed, and also

a somewhat higher drag coefficient. We believe that the higher drag coefficient

is associated with the fact that TOPUS is generating slightly more entropy at

the airfoil surface than the van Albada limiter, as indicated in Figure 3. Hence,

TOPUS produces more spurious drag than the van Albada limiter, explaining the

higher Cd values. However, one should notice that, clearly, such additional spu-

rious drag is quite lower than what is generated by the other schemes compared

in Table 1. Furthermore, the current results for both lift and drag coefficients are

well within the ranges reported in literature.

Test case 3 (The Orszag-Tang MHD vortex). The interaction of a moving

plasma with a magnetic field which produces shocks, vortices and other smooth

structures is simulated here. This vortical flow field contains many significant

features of MHD turbulence and has been a challenging benchmark test to check

the accuracy of upwinding schemes (see [28] and references within). When
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compared to the Navier-Stokes equations, the MHD equations are more compli-

cated since they support a family of waves that propagates at different speeds in

an anisotropic manner. This problem is modelled by Eq. (5) with the conservative

state vector and convective flux vectors given by





U =
(
ρ, ρu, ρv, ρw, Bx , By, Bz, E

)T
,

F =
(
ρu, ρu2 + p∗− 0.5B2

x , ρuv−Bx By, ρuw −Bx Bz, 0, Byu−Bxv,

Bzu − Bzw, (E + p∗)u − (u ∙ B)Bx

)T
,

G =
(
ρv, ρuv − Bx By, ρv

2 + p∗ − 0.5By, ρuw +Bx Bz, Bxv−Byu,

0, vBz − wBy, (E + p∗)v − (u ∙ B)By

)T
,

E =
1

2
(ρ|u|2 + |B|2)+

p

γ − 1
, γ = 1.67,

where u = (u, v, w)T and B = (Bx , Bz, Bz)
T represent, respectively, the

velocity and magnetic fields, and p∗ = p + (1/2)|B|2 is the total pressure.

For the simulation of this complex flow, the computational domain is set as

[0.2, π ] × [0.2, π ], with double-periodic boundary conditions and initial con-

ditions given by

(ρ, u, v, w, Bx , By, Bz, p)T

= (γ 2,−sin(y), sin(x), 0,− sin(y), sin(2x), 0, γ )T .

Figure 4 shows this property along the line z = 0.625π obtained with the

ADBQUICKEST [5] and TOPUS schemes at CFL of 0.8, and the scheme of

Balbas et al. [28] at the more restrictive CFL condition of 0.4. From this fig-

ure, one can see that the results with TOPUS are comparable to the published

results in above reference and show its ability to capture shocks sharply as well

as resolving the central vortex.

In the following, the observed accuracy of the TOPUS scheme on this complex

flow is assessed by marching to a fixed time of t = 5 at CFL number of 0.75.

Table 2 gives the L1 errors and the corresponding orders of convergence for the

TOPUS, ARORA-ROE [7], ADBQUICKEST, SUPERBEE and MC schemes.

One can see that, practically, the same order (≈ 2.56 as the mesh is refined) is

observed for all schemes.
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Figure 4 – Pressure distribution along the line z = 0.625π at t = 3.14.

TOPUS ARORA-ROE ADB SUPERBEE MC

Mesh L1 order L1 order L1 order L1 order L1 order

162 1.06 − 1.07 − 1.08 − 1.09 − 1.07 −

322 0.272 1.97 0.446 1.27 0.277 1.96 0.283 1.94 0.276 1.96

642 0.066 2.04 0.067 2.74 0.0669 2.05 0.0679 2.06 0.0668 2.04

1282 0.0143 2.20 0.0143 2.22 0.0144 2.22 0.0145 2.23 0.0144 2.22

2562 0.00239 2.57 0.00239 2.59 0.00239 2.59 0.00239 2.60 0.00239 2.59

Table 2 – L1 error and convergence order estimates for the density ρ on Orszag-Tang

MHD turbulence problem at t = 0.5 and CFL = 0.75.

3.2 2D and 2.5D viscous incompressible flows

From now on, computational results for 2D and axisymmetric (2.5D) viscous

incompressible flows involving free surfaces are presented. The basic equa-

tions for the simulation of incompressible fluid flows are the Navier-Stokes and

mass conservation equations which describe the conservation of momentum and

mass, respectively. In Cartesian or cylindrical coordinates, these equations are

Comp. Appl. Math., Vol. 31, N. 3, 2012
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given by

∂u

∂t
+

1

r τ
∂(r τuu)

∂r
+
∂(vu)

∂z
=−

∂p

∂r
+

1

Re

∂

∂z

(
∂u

∂z
−
∂v

∂r

)
+

1

Fr2
gr , (6)

∂v

∂t
+

1

r τ
∂(r τuv)

∂r
+
∂(vv)

∂z
= −

∂p

∂z
+

1

Re r τ
∂

∂r

(
r τ

(
∂u

∂z
−
∂v

∂r

))
+

1

Fr2
gz, (7)

1

r τ
∂(r τu)

∂r
+
∂v

∂z
= 0, (8)

where u = u(r, z, t) and v = v(r, z, t) are, respectively, the components in the

r− and z−directions of the local velocity vector field of the fluid; p is the ratio

of scalar pressure field to constant density. The non-dimensional parameters

Re = U0 L0/ν and Fr = U0/
√

L0 g denote the associated Reynolds and Froude

numbers, respectively, in which U0 is a characteristic velocity scale, L0 is a

characteristic length scale, and ν is the kinematic molecular viscosity coefficient

(constant) and g = [gr , gz]T is the gravitational acceleration. The parameter

τ in Eqs. (6) and (8) is used to specify the coordinate system, namely: when

τ = 0, Cartesian coordinates are considered (r is interpreted as x and z as y);

and when τ = 1, cylindrical coordinates are assumed.

Test case 4 (A 2D liquid jet impinging onto a solid smooth surface at high

Reynolds number). This problem concerns a 2D smooth fluid jet impinging

normally onto a horizontal surface at high Reynolds number. This free surface

flow (in a laminar regime) has been selected because there is (see [29]) an ap-

proximate analytical solution for the thickness of the fluid layer flowing on the

horizontal (rigid) surface. It is difficult to simulate this problem because the free

surface boundary conditions must be specified on an arbitrarily moving bound-

ary. The calculations reported below were obtained by using the 2D version of

the Freeflow code [20]. This code, equipped with TOPUS, ADBQUICKEST

and CUBISTA schemes, ran this problem at a Reynolds number of 2.0 ×103,

which was based on the maximum velocity U0 = 1.0 m/s and diameter of the

inlet 2a = 0.02 m. The distance between the inflow section and the rigid wall

(the inflow-to-plate distance) was 0.037 m. The boundary conditions were the

usual no-slip at the solid surface and no-shear stress at the free surface. A mesh
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Figure 5 – Numerical results with ADBQUICKEST, CUBISTA and TOPUS schemes,

and the analytic solution of Watson.

size of 200 × 50 (δx = δy = 0.001 m) computational cells was employed. By

using this mesh, a comparison was made between the free surface height (the

total thickness of the layer h), obtained from the numerical method and from the

analytical viscous solution of Watson [29]. This is displayed in Figure 5 using the

ADBQUICKEST, CUBISTA and TOPUS schemes. One can see from this figure

that the numerical results using the TOPUS scheme are generally in good agree-

ment with the analytical solution, displaying small differences in some regions

of the flow. It can also be observed, from this figure, that ADBQUICKEST and

CUBISTA gave similar results, with TOPUS providing marginally better ones.

Test case 5 (A 2.5D liquid jet impinging onto a solid smooth surface at moder-

ate Reynolds number: a stationary circular hydraulic jump). When a 2.5D jet

of liquid impinges on a flat (horizontal) plate it can, for certain moderate values

of the Reynolds number, create a (circular) hydraulic jump. This occurs at a crit-

ical radius, where there is a sudden transition from shallow rapidly flowing fluid

to deep, much slower flowing fluid. A better understanding of this phenomenon
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and the instabilities when it is turbulent is of commercial interest, since jet im-

pingement is often used in cooling systems and the flow of the fluid beyond the

jump can degrade the efficiency of the system. Probably, the first author to study

the influence of fluid viscosity on the jump radius was Watson [29]. The purpose

of this test is three-fold. Firstly, we wish to demonstrate that the TOPUS scheme

is capable of simulating this complex moving free surface flow, with emphasis

on the total thickness of the fluid layer h of the liquid and on the position of the

jump. Secondly, we wish to compare the numerical solutions obtained with the

approximate analytic results of Watson [29] where appropriate. Finally, we wish

to check the effect of the numerical parameters δx = δy (spatial resolution) and

the δt (time step) on the numerical results. The study was carried out by varying

one parameter while keeping the other constants.

We begin by verifying that the TOPUS scheme provides good estimates for

the position of the jump. For this, the scaling relations for the radius of the jump

r jump =
(

27g−1/4

2−1/435π

)2/3

Q2/3 H−1/6ν−1/3

of Brechet and Néda [30], and r jump = Q5/8ν−3/8g−1/8 of Bohr et al. [31] were

used for comparison. The radius of the inlet a0 = 0.008 m and the velocity

of the fluid at this boundary U0 = 3.75 × 10−1 ms−1 have been used as the

scaling parameters. The jet flow rate Q = πU0a0
2 = νRea0 = 0.75 × 10−5

m3s−1, producing a Reynolds number of 250, and a constant inflow-to-plate

distance of H = 0.03 m were employed in the simulations. The jump was

identified as the location where the derivative ∂h
∂r possesses its maximum (see

[32]). The 2.5D version of the Freeflow code [20] equipped with the TOPUS

scheme was run on this problem using three meshes, namely 200 × 126 (δx =

δy = 0.00025 m); 400 × 252 (δx = δy = 0.000125 m) and 800 × 504 (δx = δy =

0.000625 m) computational cells (known hereafter as Mesh I, Mesh II and Mesh

III, respectively). Table 3 shows the jump radii obtained from the simulation

results and the theoretical scaling laws. One can see that the calculated estimates

for the jump with the TOPUS scheme on the three meshes, particularly the one

on the fine mesh (Mesh III), are in reasonable agreement with the theoretical

scaling law of Brechet and Néda [30], a result that has later been experimentally

verified by Hansen et al. [33].
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Scaling TOPUS

Reference [30] Reference [31] Mesh I Mesh II Mesh III

1.3 × 10−2 5.9 × 10−2 1.8 × 10−2 1.6 × 10−2 1.4 × 10−2

Table 3 – Numerical and theoretical results for jump radii.

A comparison was then performed between the fluid layer h, obtained from

the numerical results and the viscous/inviscid solution of Watson [29]; this is

displayed in Figure 6. The numerical solutions were calculated by using Meshes

I, II and III at a time step of 1.3 × 10−4s. We restricted the analysis to the region

0.2 < (r/a0)Re− 1
3 < 0.8 because Watson’s analysis is only valid under the

restriction r >> a0 and the presence of the outflow-boundary (see [29]). One

can clearly see that the numerical solutions do not show oscillatory behavior,

and as the mesh size is decreased, the solution converges, indicating the con-

vergence of the method for this complex non-linear free surface flow. Watson’s

approximate solution is only valid over a restricted range of r and the results

presented in Figure 6 are extremely good over that range. In fact, when the mesh

was refined once more (Mesh IV = 1600 × 1008) the numerical solution (not

shown) converged to a solution very close to that obtained in Mesh III.

Finally, in order to check the effect of the time step on the numerical solution

we compute, on the Mesh I (200×126), the fluid layer h using different time steps

(from 10−3s to 10−6s). In Figure 7, the numerical results of three simulations

using the time steps 1.3 × 10−4s, 6.5 × 10−5s and 2.7 × 10−6s are presented.

It can be seen that no significant effect was detected in the numerical solutions

by reducing or increasing the time step. The independence of results with such

time step variations shows that the time step of the order of 10−4 used for the

computation of the circular hydraulic jump is appropriate for obtaining accurate

results.

3.3 Applications: Full 3D moving free surface flows

We conclude this paper by demonstrating the applicability of the TOPUS to

more realistic engineering problems, namely: collapse of a liquid block and

circular hydraulic jump. These flows are of significant industrial and environ-
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Figure 6 – Numerical results and analytical solutions of Watson. δ is the boundary

layer thickness.
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Figure 7 – Calculated fluid layer h on the Mesh I (200 × 126) using three different

time steps.
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mental importance but are difficult to simulate because the boundary conditions

must be specified on an arbitrarily moving surface. The governing equations for

simulating unsteady incompressible Newtonian free surface flow in three space

dimensions are the momentum equations and the continuity equation. In index

notation they are, respectively, given by

∂ui

∂t
+
∂ui u j

∂x j
= −

∂p

∂xi
+

1

Re

∂

∂x j

( ∂ui

∂x j

)
+

1

Fr2 gi , i = 1, 2, 3, (9)

∂ui

∂xi
= 0, (10)

where all quantities have previously been defined. The 3D version of the Free-

flow simulation system (see [20]), equipped with the MAC methodology and

TOPUS scheme, was used in a similar way to previous sections. Details of the

free surface boundary conditions can be found in [19].

Test case 6 (Collapse of a liquid portion of fluid). Results are presented now

for the collapse of a column of water onto a horizontal wall for 2D and 3D cases.

This free surface flow problem was first studied experimentally in detail by Martin

and Moyce [34], and more recently by Koshizuka and Oka [35] to investigate the

spreading velocity and the falling rate of water columns. By using the TOPUS

scheme, we performed a simulation of this unsteady free surface flow. The

geometry used is a fluid column (a = 0.05 m wide and 2a = 0.1 m high) in the

2D case and a fluid block (b = 0.05 m length, a = 2b width and c = 2b height)

in the 3D case, both in hydrostatic equilibrium and confined between walls.

Initially, a wall is instantaneously removed and the fluid is subject to gravity

and free to flow out along a rigid horizontal wall. Our transient 3D numerical

simulation of this free surface problem is illustrated in Figure 8.

In order to compare with the experimental data given by Martin and Moyce

[34] and Koshizuka and Oka [35], the free-slip boundary condition was used to

model the flow at the walls. The Reynolds number based on the characteristic

length D = 2a and the characteristic velocity U =
√

D|g| was chosen to be

Re ≈ 99 × 103 (|g| = 9.81 ms−2). The meshes used in this problem were:

150 × 75 (δx = δy = 0.002 m) computational cells in the 2D case; and 150

× 50 × 75 (δx = δy = δz = 0.002 m) computational cells in the 3D case.
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Figure 8 – Simulation of the 3D broken dam problem at different times.

Figure 9 shows the 2D/3D numerical results and the experimental data for the

position of the fluid front Xmax versus time (the 3D numerical results were

obtained by a cutting plane at position y = 0.05m). As shown in this figure,

both 2D and 3D calculations with TOPUS agree fairly well with the experimental

data especially in comparison with the results of Martin and Moyce [34] and

Koshizuka and Oka [35]. In order to provide a stiffer test for the performance of

TOPUS we compared the calculated surge front position (as a function of non-

dimensional time) against other sophisticated techniques, for example, smoothed

particle hydrodynamics (SPH), boundary element method (BEM), level set and

an approach by Ritter (see Colagrossi and Landrini [36]). Figure 10 displays this

comparison and, once more, TOPUS compares very favorably with these more

recent results, giving us confidence in the numerical solution.

Test case 7 (Circular hydraulic jump). In a similar manner to the 2.5D simu-

lation case (see Test case 5.), a 3D jet of viscous fluid at high Reynolds number

was projected onto a horizontal rigid wall with an appropriate prescribed velocity

U0, so that a hydraulic jump would occur. The Reynolds number, based on the

maximum velocity U0 = Umax = 1.0 m/s and diameter of the inlet D = 0.05 m,

was 1.0×103. The mesh used was 120×120×10 computational cells. Figure 11

shows a qualitative comparison between the experimental results of Ellegaard
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Figure 9 – Computation and experimental data for the fluid front Xmax versus time.

/

( / )

Figure 10 – Computation and experimental data for Xmax versus time – several data

presented by Colagrossi and Landrini [36] and TOPUS scheme.
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Experimental result of Ellegaard et al. [37]

Numerical simulation with TOPUS

Figure 11 – A 3D comparison between the experimental and numerical simulation for a

hydraulic jump.

et al. [37] and the results obtained with our numerical method. One can clearly

see from this figure that the numerical method captured, at least qualitatively,

the essential physical mechanism (e.g. the circular hydraulic jump and surface

waves on subcritical region) of this complex free surface flow.

4 Conclusions

In this paper, an alternative practical upwinding scheme (TOPUS) for advection

term discretization has been presented. Several numerical experiments have

been performed to verify the accuracy and non-oscillatory shock resolution of
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this approach to more complicated fluid dynamics PDEs than those presented

by Ferreira et al. [2]. Applications of the method to a number of free surface

flow problems with increasing complexity have also been presented.

The main conclusions that can be drawn are:

(i) TOPUS scheme is simple to implement in multidimensional problems. An

additional advantage of the scheme is that it produces physical solutions

for both hyperbolic and parabolic systems;

(ii) the performance of the TOPUS scheme performed well on different nu-

merical tests, providing good comparisons to experiment, especially con-

sidering high Reynolds numbers and complex flow physics; and

(iii) the advantages of the improvement in the TOPUS scheme is apparent –

convergent computation and wide applicability for both compressible and

incompressible flows.
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