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Abstract. In this paper, a new family of survival distributions is presented. It is derived by

considering that the latent number of failure causes follows a Poisson distribution and the time

for these causes to be activated follows an exponential distribution. Three different activation

schemes are also considered. Moreover, we propose the inclusion of covariates in the model

formulation in order to study their effect on the expected value of the number of causes and on the

failure rate function. Inferential procedure based on the maximum likelihood method is discussed

and evaluated via simulation. The developed methodology is illustrated on a real data set on

ovarian cancer.
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1 Introduction

As well known, although the exponential distribution provides a simple, ele-

gant and close form solution to many problems in lifetime testing and reliability

studies, it does not provide a reasonable parametric fit for some practical ap-

plications where the underlying failure rates are nonconstant, presenting mono-

tone shapes. In recent years, in order to overcame such problem, new classes
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of models were introduced based on modifications of the exponential distribu-

tion. Gupta and Kundu (1999) proposed a generalized exponential distribution,

this family can accommodate data with increasing and decreasing failure rate

function. Adamidis and Loukas (1998) introduced the exponential-geometric

distribution with decreasing failure rate. Kuş (2007) proposed a two-parameter

distribution known as exponential-Poisson distribution, which has decreasing

failure rate. Tahmasbi and Rezaei (2008) proposed another modification of the

exponential distribution with decreasing failure rate function. This distribution is

known as logarithmic-exponential distribution. Cancho et al. (2011) introduced

the Poisson-exponential distribution with increasing failure rate. This model

is derived in a complementary risks scenario (Louzada-Neto, 1999), where the

lifetime associated with a particular risk is not observable, rather we observe

only the maximum lifetime value among all risks.

In this paper we proposed a class of hierarchical models with latent compet-

ing risks and different activation schemes, where the lifetime associated with a

particular risk is not observable, rather we observe only the minimum, maxi-

mum or a randomly lifetime value among all risks, with the lifetimes following

an exponential distribution. We consider, that the number of latent competing

risks (or causes) is modeled by a zero truncated Poisson distribution, with our

formulation has several particular cases, including the models proposed by Kuş

(2007) and Cancho et al. (2011).

The paper is organized as follows. In Section 2, we introduce the new dis-

tribution and present its properties. Section 3 we carry out inference for the

Poisson-exponential regression model, discuss some measures of model selec-

tion. Section 4 we present the results of a simulation study and in Section 5 the

methodology is illustrated on a real ovarian cancer data set. Some final comments

are presented in Section 6.

2 The model

Let M denote the unobservable number of causes related to the occurrence of an

event of interest for an individual in the population. Assume that M has a zero

truncated Poisson distribution with probability mass function given by

P(M = m) = pm =
e−θ θm

m!(1 − e−θ )
, m = 1, 2 . . . , θ > 0. (1)
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The time for the j th cause to produce the event of interest is denoted by Tj ,

j = 1, . . . , M . We assume that, conditional on M , the Tj are independent

and identically distributed with cumulative distribution function G(t). Also,

we assume that T1, T2, . . . are independent of M . Further, consider the order

statistics of the Tj ’s, T(1) ≤ T(2), . . . , T(R) ≤ . . . ≤ T(M). The observed lifetime

can be defined by the random variable Y = T(R), where R = 1, 2, . . . , M is

dependent of M . In many biological process, R indicates the resistance factor

of the immune system of the individual. In other words, as in Cooner et al.

(2007), R out of N causes are required to produce the event of interest. The

resistance factor can be a fixed constant, a function of M or a random variable

specified through a conditional distribution on M .

In this paper we deal with three specifications for R. Firstly, we assume

that given M , the conditional distribution of R is uniform on {1, 2, . . . , M}

(random activation scheme). Under this setup, the distribution function for Y

given M = m and R = r , is given by

FY |m,r (y) = P[Y ≤ y|M = m, R = r ]

=
m∑

j=r

(
m

j

)
(G(y)) j (1 − G(y))m− j .

(2)

Also, we can demonstrate that the marginal distribution function of Y is given

by

Frandom(y) =
∞∑

m=1

m∑

r=1

P[T(R) ≤ y|M = m, R = r)]

× P[R = r |M = m]P[M = m]

= 1 −
∞∑

m=1

{
m∑

r=0

(m − r)B(r, m, G(y))

}
1

m
pm

= 1 − (1 − G(y))

∞∑

m=1

pm = G(y),

(3)

where B(x, m, G(y)) is probability mass function (pmg) of binomial distribution

with parameters, m and G(y) and pm is given in (1).
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Note that, in (3), the distribution function of Y is the same as the distribution

of the latent random variables Tj ’s. If we consider that R = r (fixed), then the

marginal distribution of Y is given

F(y) =
∞∑

m=1

I B(F(y); r, m − r + 1)pm

=
∞∑

m=1

m
(

m − 1

r − 1

) ∫ G(y)

0
ur−1(1 − u)m−r du pm,

(4)

where I B(x; a, b) is incomplete beta function and pm is given in (1).

As a second setup, the so-called first activation scheme (Cooner et al., 2007), we

suppose that the event of interest happens due to any one of the possible causes,

but for R = 1. Then, the observed failure is Y = Z(1) = min{T1, . . . , TM}. In

this case the marginal distribution of Y in (4) is given by

Ffirst(y) =
1 − e−θG(y)

1 − e−θ
, y > 0. (5)

In a third scenario, also known as the last activation scheme (Cooner et al.,

2007), the event of interest only takes place after all the M causes have been

occurred, so that R = M and the observed failure time is Y = Z(M) =

max{T1, . . . , TM}. The marginal distribution of Y in (4)is given by

Flast(y) =
e−θ(1−G(y)) − e−θ

1 − e−θ
, y > 0. (6)

The relationship between the distribution functions in (3), (5) and (6) is

described in next proposition.

Proposition 2.1. Under some conditions on the models in (3), (5) and (6), for

any distribution function G(y), Flast(y) ≤ Frandom(y) ≤ Ffirst(y) for y > 0.

Proof. We know that A(y) = 1−e−θG(y)

G(y)
is a decreasing function in y, indeed,

let

B(y) = θG(y)e−θG(y) + e−θG(y) − 1,

B ′(y) = −θ2g(y)G(y)e−θG(y) < 0
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and limy→0 B(y) = 0 thus B(y) < 0, ∀y. So

A′(y) =
g(y)[θG(y)e−θG(y) + e−θG(y) − 1]

G(y)2
=

g(y)B(y)

G(y)2
< 0, ∀y > 0,

and as

lim
y→∞

A(y) =
1 − e−θG(y)

G(y)
= 1 − e−θ ,

then,

1 − e−θG(y)

G(y)
≥ 1 − e−θ , ∀y, i.e.,

1 − e−θG(y)

1 − e−θ
≥ G(y), ∀y.

Similarly, we can prove the Flast(y) ≤ Frandom(y) ∀y. �

Considering different choices for the distribution of latent random variables

Tj ’s, new families of distribution can be obtained. For instance, the exponential-

Poisson distribution proposed by Kuş (2007) is obtained by considering that

the variable Tj ’s follows an exponential distribution with failure rate func-

tion, λ > 0, under the first-activation scheme, members of this family of

distribution have decreasing failure rate functions. For properties of this dis-

tribution interested readers can refer to Kuş (2007). The counterpart distribu-

tion is proposed by Cancho et al. (2011), with observed time failure given

by Y = max(Z1, . . . , Z M) (last-activation), which has increasing failure rate

function.

We may consider an extension of the exponential-Poisson (EP) models un-

der latent competitive risks and different activation schemes, by including co-

variates in the modeling. Particularly, in order to study the effect of covari-

ates on the value expected of number of causes (E(M) = η), we change the

parametrization of the models in (5) and (6) in order to include E(M) = η

in the expressions. The solution in the parameter θ of the equation, θ/(1 −

e−θ ) = η is given by W0 = η + W (− ηe−η), where W (∙) stands for the

Lambert W function (Corless et al., 1996). The Lambert W (∙) function has

been used in the solution of many problems in mathematics and engineering,

and then the mathematical softwares Mathematica, Maple and R have intro-

duced it in their packages.

Comp. Appl. Math., Vol. 31, N. 3, 2012
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In this context, we obtain the survival, failure rate and density functions

presented in Table 1 for the unobserved failure time T following exponential

distribution with failure rate λ > 0. Figure 1 portrays distinct behaviors of the

survival functions (top panel) and the failure rate functions (bottom panel) in

Table 1. These plots illustrate the flexibility afforded by our proposal.

Activation f (y) S(y) h(y)

First ηλe−λy−W0(1−e−λy) e−W0(1−e−λy) − e−W0

1 − e−W0

W0λe−λy

1 − e−W0e−λy

Last ηλe−λy−W0 e−λy 1 − e−W0e−λy

1 − eW0

W0λe−λy−W0e−λy

1 − e−W0e−λy

Random λe−λy 1 − eλy λ

Remark. W0 = η + W (− ηe−η), where W (∙) is the Lambert W function (Corless et al., 1996).

Table 1 – Survival function (S(y)), hazard function (h(y)) and density function ( f (y))

for exponential-Poisson under different activation schemes.

3 Inference

Let us consider the situation when the failure time Y in Section 2 is not com-

pletely observed and it is subjected to right no-informative censoring. Let Ci

denote the censoring time. In a sample of size n, we then observe

ti = min{Yi , Ci } and δi = I(Yi ≤ Ci ),

where δi = 1 if Ti is a failure time and δi = 0 if it is right censored, for

i = 1, . . . , n.

Let xi and zi denote the covariate vector. We relate the model parameters η

and λ to covariates xi and zi by adopting the following link functions,

log(ηi ) = x>
i β and log(λi ) = z>

i γ , (7)

i = 1, . . . , n, where β and γ denote vectors of coefficients, and xi and zi

can be equals. This model will be referred to as the Poisson-exponential (PE)

regression model.

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Figure 1 – Top panel: Survival function of the PE distribution. Bottom panel: Failure

rate function of the PE distribution. With η = 6 and λ = 2.

With the expression (7) we can write the likelihood of ϑ = (β>, γ >)> under

right non-informative censoring as

L(ϑ; D) ∝
n∏

i=1

f (ti ; ϑ)δi S(ti ; ϑ)1−δi , (8)

where D = (t, δ, x, z), t = (t1, . . . , tn)> and δ = (δ1, . . . , δn)
>, whereas

f (∙; ϑ) and S(∙; ϑ) are the density and surviving functions in Table 1.
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From the likelihood function in (8), the maximum likelihood estimation of

the parameter ϑ is carried out. Numerical maximization of the log-likelihood

function `(ϑ) = log L(ϑ; D) is accomplished by using existing software. In

this paper, the software R (see, R Development Core Team, 2009) was used

to compute maximum likelihood estimates (MLE). The Lambert W function

in Table 1 can be found in the R package emdbook. Covariance estimates for

the maximum likelihood estimators ϑ̂ may also be obtained using the Hessian

matrix. For large samples, confidence intervals may be conducted by using the

large sample distribution of the MLE which is a normal distribution with the

covariance matrix as the inverse of the Fisher information. More specifically,

the asymptotic covariance matrix is given by I−1(ϑ) with I(ϑ) = −E[J(ϑ)]

such that J(ϑ) = ∂2`(ϑ)/∂ϑ∂ϑT . Since it is not possible to compute the Fisher

information matrix I(ϑ) due to the censored observations (censoring is random

and non-informative), it is possible to use the matrix of second derivatives of

the log likelihood, −J(ϑ), evaluated at the MLE ϑ = ϑ̂ , which is a consistent

estimator. The required second derivatives are computed numerically.

Besides estimation, hypothesis testing is another key issue. Let ϑ1 and ϑ2

be two proper disjoint subsets of ϑ . We aim to test H0 : ϑ1 = ϑ01 against

H1 : ϑ1 6= ϑ01, ϑ2 unspecified. Let ϑ̂0 maximize L(ϑ;D) constrained to H0 and

define the log-likelihood ratio statistic as wn = 2
(
`(ϑ̂) − `(ϑ̂0)

)
, where `(∙) is

the log-likelihood. Under H0 and some regularity conditions, wn converges in

distribution to a chi-square distribution with dim(ϑ1) degrees of freedom.

Different models can be compared penalizing over-fitting by considering the

Akaike information criterion given by AI C = −2`(ϑ̂)+2#(ϑ) and the Schwartz

information criterion defined by SI C = −2`(ϑ̂) + #(ϑ) log(n), where #(ϑ) is

the number of model parameters. The model with the smallest value of any of

these criteria (among all models considered) is commonly taken as the preferred

model for describing the dataset.

4 Simulation

In this section we present the results of a simulation study performed in or-

der to evaluate the performance of the EMVs of parameters of the Poisson-

exponential regression model in terms of their biases, standard errors and root

mean squared errors. Without loss of generality, in this study we considered

Comp. Appl. Math., Vol. 31, N. 3, 2012
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the Poisson-exponential regression model with increasing failure rate function

(first-activation) with two covariates, xi and zi , being that, xi generated from

a Bernoulli distribution with parameter 0.5 and zi generated from a uniform

distribution on the range [0, 1]. The failure times were simulated from the

quantile function of model (via the inversion method) with parameter ηi =

exp(β10 + β11xi ) and λi = exp(β20 + β21zi ), where β = (1, 1) and γ =

(−1, −1). Censoring time were generated from an uniform distribution [0, τ ],

where τ controlled the proportion of censoring, which is considered here equals

to 0% and 10%. We considered sample sizes n equal to 30, 50, 100 and 200.

For each configuration, we conducted 1,000 replicates and then we averaged

the estimates of the parameters, the standard errors and the square root of the

mean square errors.

The Table 2 show that the bias of the MLEs β and θ , and their standard errors

and root mean squared errors become smaller when the sample size increases

and the percentage of censored observations is smaller.

0% of censored 10% of censored
Sample size Parameter

Mean S.D. RMSE Mean S.D. RMSE

30

β0 0.803 1.743 1.750 0.650 1.841 2.193

β1 1.643 0.571 1.692 2.012 1.955 2.968

γ0 –1.323 1.794 1.8213 –1.614 1.2311 1.565

γ1 –0.981 0.227 1.416 –1.251 1.1311 1.3211

50

β0 1.233 1.366 1.386 1.589 1.734 2.123

β1 1.098 0.340 1.536 2.082 1.851 1.981

γ0 –1.629 1.693 1.793 –1.733 1.135 1.521

γ1 –0.996 0.164 1.422 –1.362 1.127 1.334

100

β0 1.130 1.031 1.038 1.486 1.859 2.586

β1 1.073 0.255 1.477 1.783 1.733 1.788

γ0 –1.331 1.369 1.407 –1.662 1.094 1.433

γ1 –0.993 0.125 1.411 –1.227 1.078 1.235

200

β0 1.126 0.915 1.785 1.377 1.692 1.957

β1 1.052 0.180 1.459 1.282 1.581 1.682

γ0 –1.177 0.921 1.776 –1.262 0.998 1.213

γ1 –0.999 0.087 1.398 –1.129 0.968 1.129

Table 2 – Averages of the MLEs, and their standard errors (S.D.) and square root of mean

square errors (RMSE) for parameters of PE regression model under a first-activation

scheme.
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5 Application

In this section we reanalyze the data extracted from Collett (2003). The data

describe a study of 26 women diagnosed with ovarian cancer submitted to

chemotherapy. The data consist of the survival times yi (in months) of patients

and several prognostic covariates such as: x1i : treatment (0 = single, 1 = com-

bined), x2i : age of patient in years, x3i : extent of residual disease (0 = incom-

plete, 1 = complete) and x4i : performance status (0 = good, 1 = poor).

Firstly, in order to identify the shape of a lifetime data failure rate function

we shall consider, as a crude indicative, a graphical method based on the TTT

plot (Aarset, 1985). In its empirical version the TTT plot is given by

G(r/n) =

[( ∑r
i=1 Yi :n

)
+ (n − r)Yr :n

]

( ∑r
i=1 Yi :n

) ,

where r = 1, . . . , n and Yi :n represent the order statistics of the sample. It has

been shown that the failure rate function is increasing (decreasing) if the TTT

plot is concave (convex). Figure 2 (top panel) shows the TTT plot for the consid-

ered data, which is concave indicating an increasing failure rate function, which

can be properly accommodated by a Poisson-exponential regression model with

increasing failure rate. This proposal indicates that all causes were responsible

for activating the event of interest (last-activation scheme).

Firstly, we consider the following EP regression model with all covariates, i.e,

log(ηi ) = β0 + β1x1i + β2x2i + β3x3i + β4xii ,

and

log(λi ) = γ0 + γ1x1i + γ2x2i + γ3x3i + γ4x4i , i = 1, . . . , 26,

Table 3 presents the MLEs of the coefficients. The QQ plot of the normalized

randomized quantile residuals (Dunn and Smyth, 1996; Rigby and Stasinopou-

los, 2005) in Figure 2 (bottom panel) suggests that the Poisson-exponential

regression model yields an adequate fit. Each point in Figure 2 (bottom panel)

corresponds to the median of ten sets of ordered residuals.

Considering the LR statistics in Section 3 we tested the following hypothesis,

H0 : β2 = β3 = β4 = γ1 = γ3 = γ4 = 0, resulting, a LR statistics wn equals to

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Figure 2 – Top panel: Empirical scaled TTT-Transform for the data. Bottom panel:

QQ plot of the normalized randomized quantile residuals with identity line for the REP

model each point corresponds to the median of ten sets of ordered residuals.

2.18, with g.l = 6 and p-value = 0.902, indicating that the effect coefficients

are no significant in the model. Thus, the final Poisson-exponential regression

model becomes the one given by

log(ηi ) = β0 + β1x1i , and log(λi ) = γ0 + γ2x2i , i = 1, . . . , 26.

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Parameter Estimate (est) Standard error (se) |est| / se

β0 2.130 2.585 0.824

β1(treatment) 0.787 1.104 0.713

β2(age) –0.010 0.050 0.200

β3(residual) –0.574 1.240 0.463

β4(performance) 0.700 1.378 0.509

γ0 –6.345 1.898 3.344

γ1(treatment) –0.013 0.604 0.0207

γ2(age) 0.066 0.036 1.893

γ3(residual) 0.069 0.622 0.111

γ4(performance) 0.517 0.804 0.643

Table 3 – MLEs for the parameters of the Poisson-exponential regression model.

Parameter Estimate (est) Standard error (se) |est| / se

β0 1.283 0.482 2.658

β1(treatment) 0.950 0.485 1.960

γ0 –7.171 1.315 –5.452

γ2(age) 0.084 0.020 4.237

Table 4 – Maximum likelihood estimates for the final model.

Table 4 shows the MLEs and their standard errors of the parameters for final

Poisson-exponential regression model. We note the covariate treatment is signif-

icant (at 5%) for the expected value of number of causes, while that the covariate

age is significant (at 1%) in the failure rate.

From the standpoint of practical researchers there is interest in inferences

about the expected number of competing causes that operate in the occurrence

of the event of interest. The answer for this question is directly obtained by con-

sidering the MLEs of the final Poisson-exponential regression model parameters

in Table 4, after an application of the delta method. We then obtain the estimates

of the expected number of competing causes related to the occurrence of the

event of interest, stratified by treatment, which are equal to 3.605 for single and

9.325 for combining.

Comp. Appl. Math., Vol. 31, N. 3, 2012



“main” — 2012/11/20 — 19:15 — page 629 — #13

FRANCISCO LOUZADA, VICENTE G. CANCHO and GLADYS D.C. BARRIGA 629

Figure 3 – Top panel: Surviving function of REP model. Bottom panel: Failure rate

function of REP model.

The benefit of the combining treatment can be observed from Figure 3, which

displays the surviving (top panel) and failure rate (bottom panel) functions for

56 years old (age mean) patients stratified by treatment, implying in an increas-

ing in survival and a decreasing in failure rate when the combining treatment is

used instead of considering the control treatment.

Although the Poisson-exponential regression model under the last activation

scheme was firstly suggested by the TTT plot graphical procedure presented

Comp. Appl. Math., Vol. 31, N. 3, 2012
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above, for sake of comparison we fitted the Poisson-exponential regression

model under the other two activation schemes, namely, first and random ac-

tivation schemes. We fitted these models with the same covariates as to our final

model (see Table 4). The estimated AIC and SIC for the models are reported in

the Table 5. Notice that the Poisson-exponential regression model under the last

activation scheme outperforms the other two schemes irrespective of the criterion

considered. Finally, we fitted the usual Weibull regression model, with AIC and

SIC values equals to 103.90 and 108.93, respectively, which also was outper-

formed by our Poisson-exponential regression model under the last activation

scheme.

Activation scheme
Criterion

First Random Last

AIC 108.80 106.80 102.75

SIC 113.83 110.56 107.78

Table 5 – AI C and SI C criterion values for the adjusted Poisson-exponential regression

model under first, random and last activation schemes.

6 Concluding remarks

In this paper we proposed the Poisson-exponential regression model, as a possi-

ble extension of the well known exponential regression model. The model was

built based on a latent competing risk structure with three different activation

schemes, minimum, maximum or random. We discussed parameter maximum

likelihood estimation and a straightforwardly modeling comparison procedure.

The flexibility of our modeling was illustrated in on a real data set on ovarian

cancer.

We considered the number of latent competing risks modeled by a zero trun-

cated Poisson distribution, directly generalizing the models proposed by Kuş

(2007) (minimum activation scheme) and Cancho et al. (2011) (maximum acti-

vation scheme). However, at least in principle, other distributions may be consid-

ered to represent the random behavior of the number of latent competing risks,

such as the geometric, negative binomial and logarithmic distributions, or even

a more general one such as the power series distribution. Chahkandi and Gan-

jali (2009) has unified the models proposed by Adamidis and Loukas (1998),

Comp. Appl. Math., Vol. 31, N. 3, 2012
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Kuş (2007) and Tahmasbi and Rezaei (2008) by compounding an exponential

distribution and power series distribution, but they only considered a minimum

activation scheme. A possible study involving the power series distribution in

the context of our modeling with three different activation schemes shall be

considered elsewhere.

Models for survival data with a surviving fraction take a prominent position

in survival studies, covering situations where there are sampling units insuscep-

tible to the occurrence of the event of interest (Rodrigues et al., 2009; Louzada

et al., 2011; Perdona and Louzada, 2011). The proposed Poisson-exponential

regression model for survival data in presence of a survival fraction should be

considered in a future study, as well as modeling considering the shape parameter

depending on covariates (Louzada-Neto, 1997). Diagnostic methods have been

an important tool in survival regression analysis. Influential diagnostics should

be investigated further in the context of the proposed Poisson-exponential re-

gression model (Fachini et al., 2008).
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