
CLINICS 2010;65(6):635-43

Copyright © 2010 CLINICS – This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.
org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

BRINGING IDEAS TOGETHER

I Faculty of Pharmacy, University of Burgundy – Dijon, France.
II INSERM – Villeurbanne, France.
III Association REMEDES – Orlienas, France.
Tel : 33 4723-10579
Email: jeanrobert.rapin@gmail.com
Received for publication on January 27, 2010
First review completed on February 17, 2010
Accepted for publication on March 04, 2010

POSSIBLE LINKS BETWEEN INTESTINAL PERMEABLITY AND FOOD PROCESSING: 
A POTENTIAL THERAPEUTIC NICHE FOR GLUTAMINE 

Jean Robert Rapin,I,III Nicolas WiernspergerII,III 
 
doi: 10.1590/S1807-59322010000600012

Rapin JR, Wiernsperger N. Possible links between intestinal permeablity and food processing: a potential therapeutic niche 
for glutamine. Clinics. 2010;65(6):635-43.

Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular 
disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel 
syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic cir-
culation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid 
glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition 
of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxida-
tive stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely 
unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes.
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INTRODUCTION

The intestinal wall represents a first-line, very efficient 
barrier for many potentially harmful alimentary or bacterial 
substances.1 Increased intestinal permeability (IP) is a 
common problem found in several diseases that directly 
affect the gut, including common conditions such as irritable 
bowel disease (IBD) and more severe diseases such as 
Crohn’s disease, celiac diseases2,3 and other pathologies.4 
Therefore, it is conceivable that substances that normally 
do not or only slightly cross the intestinal wall can exert 
pathological effects under such disease circumstances.

Food allergies5,6 and metabolic syndrome are common 
complaints in daily general practice, and the reported 
increases in the prevalence of these disorders may be 
associated with the abnormal passage of elements into the 

general circulation. The present article will show supporting 
evidence for this hypothesis and suggest that natural 
inhibitors of IP, such as glutamine, may be useful for these 
disorders. However, severe clinical conditions will not be 
addressed herein. A role for the diet in modulating IP will 
be discussed.7 In view of the rising problem of modern food 
processing (solid aliments, beverages),8 we have selected 
glycated proteins and lipids as particularly relevant and 
interesting examples to illustrate how diet modulates IP.

INTESTINAL BARRIER / INTESTINAL  
PERMEABILITY

Prevention of the entrance of toxic or infectious 
molecules, such as solutes, antigens and microorganisms, 
is ensured by the gastrointestinal lining. A key structure of 
the intercellular space is the tight junction, which plays a 
major role in regulating the paracellular passage of luminal 
elements.9,10 Therefore, proper functioning and regulation 
of tight junctions is crucial. These junctions are under the 
influence of intestinal microflora, inflammation and even 
alimentary components, which can compromise tight 
junctions. Detailed information on the structures involved 
in tight junctions and their connections with the immediate 
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anatomical environment can be found in dedicated 
reviews.11,12

Active debate has focused on the causal mechanisms 
of increased IP. This phenomenon may be directly due to 
local contact with luminal stimuli or may be secondary 
to increased transcellular transfer of antigens, thereby 
activating mast cells and disrupting tight junctions via 
inflammation.11,13,14 Cytokines such as TNF-a and various 
interleukins play a prominent role in tight junction 
disruption15,16

Increased permeability (or “leaky gut”) is typically 
observed in IBD,2,17,18 but it is also seen in various 
pathologies that are initially indirectly related to gut 
disorders, including inflammatory response syndrome, 
allergies, asthma and even autism.19 The autoimmune 
disorder type 1 diabetes may involve IP,20,21 whereas type 
2 diabetes does not seem to present this disturbance.22 
Infections or stress can also lead to perturbations of 
the intestinal barrier, meaning that initial structural 
defects of the barrier are not necessary to develop food 
allergies.23 Conversely, the presence of IP is not uniform 
among patients, although the majority of IBD patients 
and subjects with pseudoallergic reactions in chronic 
urticaria present IP.24 In patients with food intolerance, 
hyperpermeability was observed in approximately half of 
the studied population,25 whereas other investigators have 
reported a very high prevalence in patients with either 
food allergies or hypersensitivity.16 The reversibility of the 
defect is controversial, given that some data suggest that 
withdrawal of the food allergen for six months was not 
accompanied by IP improvements.16

Taken together, these data strongly support the 
hypothesis that in cases of elevated IP, the increased passage 
of substances that are normally largely or completely 
blocked by the intestinal barrier do gain systemic access. 
These substances may cause deleterious effects on health, 
producing allergies and metabolic and/or vascular changes.

FOOD PROCESSING AND NON-ENZYMATIC  
GLYCATION

Glycation, AGEs and ALEs

A normal diet contains relatively low levels of glycated 
proteins or lipids. Non-enzymatic glycation occurs in a 
series of conditions, the best known of which is elevated 
temperature. The combination of high temperatures in 
industrial food conservation, flavoring and daily home 
cooking with increased use of sugars has led researchers to 
investigate the content of advanced glycation end products 
(AGEs) and glycated lipids (ALEs) in modern food and 

to study their possible harmfulness. AGEs are the final 
product of a chain of reactions in which reducing sugars 
spontaneously react with aminopeptides, lipids and nucleic 
acids. This reaction initially creates so-called browning 
products (glycotoxins) due to the Maillard reaction. Amadori 
products are formed later in the reaction, and AGE is finally 
formed via recombination. The best-known AGEs are 
carboxymethyllysine (CML) and pentosidine, for which 
several measurement techniques have been developed based 
on their fluorescent nature. However, amino-containing 
lipids are also subjected to glycation and represent an 
important component of high-fat diets. Various chemical 
reactions during this process generate free radicals.26 Once 
formed, AGEs induce inflammation,27,28 which may further 
exacerbate IP. The formation of AGE/ALE is strongly 
accelerated by cooking in the moderate to high temperature 
range.

Pharmacokinetics

Normally, dietary AGEs cross the intestinal wall 
poorly;29,30 AGE transport across the intestinal epithelium 
is low and occurs via simple diffusion.31 After intravenous 
administration, AGEs are largely eliminated by hepatic 
sinusoidal Kupffer and endothelial cells.32 However, 
elimination might be very different if IP is elevated and 
may be more threatening if renal function is also impaired, 
limiting urinary excretion of AGEs. Minimal data exist 
regarding the pharmacokinetics of AGEs, and data on 
absorption rate of glycated products are variable; pyrroline 
and pentosidine appear to be well absorbed, while peptide-
bound Amadori products are not.33 These varying findings 
may be due to the capacity of intestinal epithelial cells to 
degrade these various compounds. However, it should be 
noted that data exist only for some selected, measurable 
AGEs, while myriad different AGEs exist due to permanent 
recombination among AGEs. Consequently, the actual 
amount of AGEs absorbed may exceed the values obtained 
thus far.

Glycation in food

Comparison of different cooking methods has shown 
that identical substances can behave very differently. For 
example, strongly roasting typically increases allergenicity 
of peanuts.34 In addition, carboxymethyllysine content is 
significantly higher in infant formulas than in breast milk.35-

37 High-fat meals have the highest AGE content, more than 
meat and carbohydrate-rich meals. This also depends on 
the cooking method because broiling and frying generates 
more glycated compounds than roasting, and the least 
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amount of glycated compounds is generated by boiling.38 
Thus, the safest cooking method appears to be slow boiling 
at reasonable temperatures. Alpha-dicarbonyls (the most 
prone to form glycation), which are found naturally in 
green coffee, increase if beans are subjected to light or 
medium roasting, while dark roasted coffee contains fewer 
of these compounds.39 Therefore, very high temperatures 
during food processing denaturate proteins that have lower 
glycation capacity. Consequently, the recognition of epitopes 
by IgE is diminished.40,41 In parallel, protein digestibility is 
lower if the diet is rich in browning products.42 Glycation 
of food allergens increases T-cell immunogenicity of food 
allergens.43 Finally, postprandial leptin concentrations, which 
are lower in diabetics, improve if meals are heated with low 
temperatures.44

Recently, strong concerns were raised regarding 
increasing consumption of sweetened beverages. 
Researchers have begun to suspect a link between the 
high intake of reducing sugars and the incidence of 
metabolic dysregulation, such as metabolic syndrome, in 
younger populations. Sweetened fruit juices contain high 
levels of fructose, and levels are significantly greater than 
those found in whole, fresh fruits.45 Fructose is linked to 
metabolic syndrome, hyperlipidemia and type 2 diabetes.46 
Methylglyoxal, a strong glycating agent, is also present in 
many beverages.47 Tea, coffee, diet coke and soy sauce have 
a high AGE content. In diabetic patients, fructose absorption 
is increased by prevailing hyperglycemia. In addition, 
kidney function is often compromised in these patients, 
which suggests that dietary AGEs add to those synthesized 
endogenously by the high glucose levels.30

The impact of glycated products on health

Increased passage of glycated compounds into the 
systemic circulation is expected to induce at least two 
pathological situations: allergies and metabolic disorders.

Allergies

Although only minimal data exit on AGEs and allergies, 
the existing data are consistent with our hypothesis. 
The induction of IP by tacrolimus leads to more food 
allergies.11,48 Exposure of intestinal CaCO2 cells to 
methylglyoxal or glyoxal, two potent glycating metabolites, 
in vitro is followed by increased IL-6 and IL-8 formation, 
which amplify the effects of TNF-α and IL-1β.49 Some data 
suggest that AGEs may cause intestinal inflammation on 
their own.50 IL-9 has been reported to play a particularly 
important role in allergy by mediating the mast cell 
response. Indeed, IL-9 deficient mice do not develop 

anaphylaxis, whereas IL-9 overexpression does produce 
anaphylaxis.51 IL-17 has also been suggested to be important 
in food allergies.52 These inflammation signs have been 
confirmed in vivo. When dietary AGEs from casein form 
a complex with serum albumin, the receptor for AGE 
(RAGE) is stimulated and induces inflammation.27,53 RAGE 
is expressed in the intestinal epithelium and increases when 
interferon γ or TNF-α are high, such as in IBD.54,55 Samples 
from IBD patients have confirmed that RAGE increases 
and that NF-B is activated.56 As a sign of allergenicity, IBD 
subjects were shown to have elevated IgG levels response 
to some foods,57 confirming the findings of various studies 
of gastrointestinal diseases in dogs.58 When compared with 
raw food antigens, IgE antibodies were elevated four-fold 
against processed food antigens in 30% of humans.59 The 
allergenicity of peanuts relates to their curing temperature 
(77 °C) and roasting.60 Similar findings have been reported 
for soybean-based products.61 Finally, AGEs can also modify 
the gut microbiota.62 Thus, although we could not find 
direct data on food allergy prevalence among patients with 
increased IP, this set of surrogate measurements strongly 
supports an association between food allergies and IP.63

Metabolic disorders

The recent recognition that dietary AGEs are absorbed 
and the fact that AGE consumption is constantly increasing 
in the westernized diet have prompted investigations on 
possible causal relationships between AGEs and observed 
metabolic disturbances. A first-line candidate for a link 
in the causal relationship is fructose, a relatively strong 
glycating sugar widely used in sweetened beverages and 
corn syrup.64 For example fructose consumption correlates 
with worldwide obesity and diabetes prevalence. Chronic 
intake of sweetened beverages increases triglycerides and 
ApoB concentrations in obese patients.65,66 Recently, a 
Brazilian study revealed that high intake of dietary fructose 
was associated with glucose intolerance.45 Approximately 
one-third of IBD patients present with fructose intolerance.67 
In these subjects at least, fructose may have harmful effects. 
Fructose is lipogenic and can provoke non-alcoholic steatotic 
hepatitis (NASH).68 Whether normal levels of dietary 
fructose intake increase glycation in healthy subjects remains 
a matter of debate.69-71 One reason for the debate is that while 
fructose is more reactive than glucose in AGE formation, 
blood concentrations of fructose are low.72 When rats are 
fed a high-fructose diet, the AGE pentosidine accumulates 
in the aorta and skin.73 Similarly, comparison of different 
sugars in rats showed that glycation and oxidative stress 
occurred preferentially in fructose-fed animals.74 While it 
is not known whether humans handle dietary fructose like 
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rodents, it should be stressed that chronic fructose-feeding, 
whether in pellets or in the drinking water, is one of the best 
experimental models to simulate metabolic syndrome and 
the evolution toward human diabetes. Recent studies have 
suggested that the diabetogenic effect of fructose occurs via 
increases in uric acid.46,75 Therefore, fructose consumption 
should be kept to a minimum.76-78

A chronic diet including 1% methylglyoxal induces 
insulin resistance and salt-sensitivity in Sprague-Dawley 
rats.79 A high-fat diet has also been shown to be a good 
model to simulate human metabolic syndrome. Accordingly, 
rodents chronically kept on high-fat diets exhibit insulin 
resistance, dyslipidemia and finally diabetes in a majority of 
animals within six months.80

As described above, high-fat diets contain high levels 
of AGEs and ALEs. Thus, high AGE and ALE levels 
may represent risk factors for human health by favoring 
inflammation in various organs, at least if subjects 
have compromised organ function.81 The processing 
of food to induce high AGE levels leads to adipocyte 
dysfunction, as shown by reduced leptin and adiponectin 
production as well as the increased oxidative stress.82 The 
autoimmune origin of type 1 diabetes has been linked to 
increased IP, and a prominent involvement of gliadin in 
IP activation, which can activate pancreatic T cells, has 
been proposed..20 Gliadin stimulates zonulin signaling, 
leading to intestinal hyperpermeability.83 Very interestingly, 
type 2 diabetic patients were shown to have increased 
zonulin.84 Furthermore, in diabetic db/db mice, restricted 
intake of oral AGEs improved insulin sensitivity.85 Several 
mechanisms have been proposed to explain how AGEs lead 
to insulin resistance via the AGE receptor,86,87 but direct 
structural modifications of insulin itself by methylglyoxal 
have also been shown.88 The harmful association between 
nutrition, hyperglycemia and impaired renal function may 
relate to AGE intake in humans.89 Nevertheless, the causal 
implication of food-derived AGEs on these three outcomes 
is still debated and worthy of further investigation.90,91 Two 
clinical studies are presently being conducted to more 
closely evaluate the impact of AGEs on human health.92,93

A high-fat diet increases visceral AGEs and promotes 
DNA fragmentation and apoptosis in the liver.94 Obese mice 
have NASH and increased IP, rendering hepatic stellate cells 
sensitive to bacterial endotoxins.95 Moreover, chronic liver 
diseases are linked to increased IP,96 which is important 
when considering that most prediabetic and diabetic patients 
have NASH.

Other pathologies

Lifespan was shown to be extended in mice fed low-

AGE diets, suggesting that AGEs are involved in aging.97,98 
In addition, atopic dermatitis has been proposed to involve 
dietary antigens; however, this proposal remains a matter of 
debate.12 Furthermore, patients with ankylosing spondylitis 
and their relatives present with increased permeability in the 
small intestine,99 and Campylobacter infection increases IP, 
which can last up to one year postinfection.100

Cardiovascular disturbances

In certain rodent strains, fructose can lead to 
hypertension. For example, vascular reactivity in fructose-
fed animals showed a 35% reduction in flow-mediated 
dilatation,82 and adhesion molecules were also increased,101 
reflecting endothelial dysfunction. In diabetic patients, high 
AGE-containing meals are more harmful to microvascular 
function and oxidative stress than low-AGE food.102

TREATMENTS

As described above, strong support suggests that higher 
prevalence and severity of various diseases can be expected 
in the presence of intestinal hyperpermeability. Most of 
these diseases are chronic and can be treated by simple 
nutraceutical approaches. Consequently, improving IP may 
be a simple an inexpensive way to prevent aggravation of 
chronic diseases.

Glutamine

Glutamine is presently the best known compound for 
reducing IP, and nutritional depletion is known to result 
in increased IP.103-106 Major abnormalities in IP have 
been demonstrated in glutamine-deprived rat pups.107 
Furthermore, glutamine has been shown to maintain 
transepithelial resistance and to reduce permeability in 
intestinal cell culture monolayers.108 In addition, glutamine 
supplementation has been shown to increase intestinal 
barrier function in malnourished children.109 However, 
glutamine has no effect if administered parenterally to 
depleted patients.110 Glutamine is the preferential substrate 
for enterocytes, and it works in concert with other amino 
acids, such as leucine and arginine, to maintain integrity and 
function.111 Several studies have demonstrated the beneficial 
effects of glutamine on IP. For example, improvements 
in the intestinal barrier have been shown in experimental 
biliary obstruction,112 after ischemia/reperfusion113 and even 
in severe clinical situations, such as in critically ill patients, 
in whom glutamine lowered the frequency of infections114 

following abdominal surgery.115 Furthermore, in IBD 
treatment, the use glutamine alone or in combination with 
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other amino acids is considered promising.116 In low birth 
weight children, allergies were improved by glutamine 
treatment during the first year of life.117 These non-nutritive 
effects of glutamine have recently been reviewed,118 and 
these effects have been ascribed to the antioxidant properties 
of glutamine and the enhanced expression of heat shock 
proteins.119

Curcumin

Curcumin (turmeric) has remarkable properties in 
inflammation and oxidative stress120,121 and is a potent 
immunomodulator.122 It is able to reduce acrylamide-induced 
injury in HepG2 cells.123 In addition, it partly inhibits the 
fibrogenic evolution and oxidative stress in the steatotic 
mouse liver in vivo.124 Curcumin has also been shown 
to be efficacious in experimental colitis125 as well as in 
colonic inflammation in multidrug-resistant mice, which 
exhibit IBD.126 Thus, curcumin might be a good candidate 
to treat IBD,127 but it presents some theoretical limits. 
Indeed, like most antioxidants, curcumin should be used 
at moderate doses because at high doses it can enhance 
oxidative stress.128 Moreover, curcumin is rapidly cleared and 
conjugated, which may limit its therapeutic effectiveness as 
a single agent.129

Although the precise mechanisms of action of both 
compounds (in particular glutamine) must be further 
elucidated, an association between glutamine and curcumin 
is interesting in view of their complementary mechanistic 
properties, which correspond well to the pathological 
disturbances characterizing intestinal epithelial cell injury. 
We believe that testing the association between the two 
compounds would be clinically worthwhile.

Other treatments

Pre- and probiotics are also of potential interest. In obese 
and diabetic mice, which exhibit increased IP, prebiotic 

carbohydrates lowered IP and hepatic expression of markers 
of inflammation and oxidative stress.130 In humans, prebiotics 
reduced gut permeability in atopic dermatitis.131 In addition, 
probiotic carbohydrates lowered IP and inflammation 
in metabolic diseases.132,133 A mixture of streptococcus 
thermophilus and lactobacillus acidophilus protected the 
intestinal barrier in experimental colitis.134 Leaky gut was 
also improved by the probiotic Escherichia coli Nissle 
1917.135 In addition, various substances have been tested and 
have been reported to have protective effects on IP; however, 
qualified studies on these substances are lacking.136-138 
Overall, approaches using pre- and probiotics still need 
confirmatory investigations.139-141

CONCLUSION

Intestinal hyperpermeability is found in many diseases, 
from specific mild or severe gastrointestinal diseases to 
various pathologies linked to metabolic disorders. The 
abnormal transfer of pathogens from the intestinal lumen 
into the systemic circulation leads to disturbances in various 
organs, including the liver where it seems to be closely 
linked to non-alcoholic steatotic hepatitis. Allergies and 
vascular problems also appear to involve elevated IP. We 
have attempted to illustrate how alimentary compounds 
induced via modern cooking, food conservation and 
food processing methods may be associated with these 
pathologies when IP is increased. These associations are 
certainly largely unrecognized and not necessarily easy to 
identify. The aim of this overview was to increase scientist 
awareness of this simple idea and draw attention to what 
we believe is a very common clinical situation. Although 
still at the conceptual level, we feel that much supporting 
data can be found through the literature to suggest that early 
use of natural compounds, such as glutamine or curcumin 
(or a combination of both), and possible probiotics in the 
near future might represent a simple method to prevent the 
appearance or aggravation of many chronic pathologies.
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