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OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical
properties of skeletal muscle of weaned and young adult rats.

INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From
a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch.

METHODS: Male Wistar rats were divided into two groups according to their mother’s diet during pregnancy: a
control group (mothers fed a 17% protein diet) and an isocaloric low-protein group (mothers fed a 7.8% protein
diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle
and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A
first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s)
enabling us to measure, for each extension stepwise, the dynamic stress (sd) and the steady stress (ss). A second test
consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–
strain relationship.

RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the
soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats.

CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine
undernutrition it is most likely due to changes in muscle passive stiffness.
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INTRODUCTION

Numerous studies have shown the influence of nutrient
supply on development in utero.1–4

A poor nutrition supply during fetal development affects
physiological functions of the fetus and has long-term
consequences at adulthood.5,6 This concept of ‘‘program-
ming’’ represents the mechanism whereby a stimulus or an
insult during a critical developmental period has permanent
effects on structure, physiology, and metabolism.7 There is
evidence of programming affecting structure and function
of skeletal muscles postnatally.4 For example, Ozanne et
al.3,8 showed alterations in muscle metabolic capacities in
rats undernourished during fetal development and lacta-

tion. Modifications in muscle fiber type distribution in both
young and adult mammals have been reported as well as a
decrease in the fiber density in the diaphragm of pups
whose mothers had suffered nutritional deprivation.1,9,10

However, few studies have examined the consequence of
early undernutrition in mechanical muscle properties.

In a previous study, we have shown modifications in both
contractile and series elastic properties of rat muscles
undernourished during fetal development.11 From a
mechanical point of view, skeletal muscle can also be
characterized by its resistance to passive stretch. From a
functional point of view, muscle passive properties are
important to take into account because (1) these character-
istics contribute in part to the maximal joint range of
motion, (2) part of the force developed by the contracting
muscle will be devoted to the stretch of passive antagonist
and (3) a relation between passive stiffness and spindle
discharge has been shown.12

The aim of this study was to evaluate the effect of a low-
protein diet during fetal life on the passive mechanical
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properties of a postural muscle (soleus) and a nonpostural
muscle (extensor digitorum longus, EDL). This study was
conducted in weaned rats and in young adult rats to analyze
the short- and long-term effects of this early nutritional
manipulation.

MATERIALS AND METHODS

Experimental animals
Virgin female Wistar rats (body mass 281.86 ¡ 14.97 g)

were housed individually with males under standardized
conditions. On the day the copulation plug was found, the
females were isolated and assigned to one of two experi-
mental groups: a control group (C, n = 11) and an under-
nourished group (UN, n = 11). During gestation, rats of
group C were fed a control diet (17% protein) according to
the recommendations of AIN-93G,13 and UN animals
received a low-protein isocaloric diet (7.8%) ad libitum
(Table 1). On the first day after birth, all mothers received a
control diet (17% of protein) ad libitum and litters were
limited to six male pups per mother. At weaning, pups were
fed a standardized meal (17% of protein) ad libitum until
60 days old.13 Afterwards, offspring received a 12% protein
diet ad libitum until 90 days of age.

The protocols used in the present study were in
accordance with the guidelines and regulations of the
Ethical Hygiene and Safety Committee of the Compiègne
University of Technology.

Biomechanical analysis
Rats 25 days old (n = 14) and 90 days old (n = 16) were

anesthetized with an intraperitoneal injection of sodium
pentobarbital (30 mg/kg of body mass). The soleus and EDL
muscles were carefully excised from the hind limb and
placed in a dissection chamber containing Ringer’s solution
(composition in mM: NaCl, 115; NaHCO3, 28; CaCl2, 2.5,
MgSO4, 3.1, KCl, 3.5, KH2PO4, 1.4; glucose, 11.1) maintained
at 25 C̊ and oxygenated with a gas mixture of 95% O2 and
5% CO2 that resulted in a pH of 7.3. At the end of the
experiment all animals was killed in accordance with the
animal committee at Compiègne University of Technology.
The proximal part of the muscle was fixed to a force
transducer and the distal extremity was linked to the

moving part of a servocontrolled ergometer described in
detail elsewhere.14 The muscle was adjusted from its slack
length (Ls), i.e., the muscle length from which a resting
tension of 10 mN was obtained. It was then submitted to
two different procedures: an incremental stepwise extension
test and a stretch-release test at slow velocity. For each test
type, three tests were performed, the first two tests were
used for preconditioning the muscle and the third test
served for data analysis.

With regard to the incremental stepwise extension test,
the muscle was stretched by four successive stepwise
extensions, initially imposed from Ls. Each stepwise exten-
sion consisted of a 5% Ls step at fast velocity (500 mm/s)
that was maintained for 80 s to observe a reduction in
tension toward a plateau value. After the fourth stepwise
extension, the muscle was suddenly released to Ls. This test
enabled us to measure, for each extension stepwise, the
dynamic force (Fd) that corresponded to the maximal force
developed by muscle at the end of the fast extension and the
steady force (Fs) at the end of the plateau in length (Fig. 1).
Then, Fd and Fs were divided by the physiological cross-
sectional area (PCSA) of the muscle, which yields the
dynamic tension (sd) and the steady tension (ss). PCSA of
muscle was calculated using the equation PCSA = MW/
(1.06 6 Lf), where MW is muscle mass, 1.06 is the muscle
density (in g/cm3), and Lf is the fiber length. Lf corresponds
to 72% and 44% of the length of the soleus and the EDL
muscles, respectively.15,16

The stretch–release test consisted of stretching the
muscles at amplitude up to 125% Ls with a slow velocity
(0.1 mm/s) following by a release until Ls with the same
velocity (Fig. 2). From these data, stress (i.e., passive force
normalized in respect of PCSA) and strain (i.e., deforma-
tion/Ls) were calculated to construct the stress–strain curve.
From this curve, tension at 125% Ls (F125/PCSA), stiffness at
125% Ls and tangent modulus (i.e., slope in the linear
portion of the stress-strain curve) were calculated.

Statistical analysis
All data are presented as mean ¡ SEM. A two-way (to

evaluate the effect of the age and diet on body mass) and
three-way (to evaluate the effect of age, diet and muscle on
the other parameters) Analysis of variance (ANOVA) for
repeated measurements followed by the Holm Sidak post
hoc test were performed. A level of 95% was set as the
statistical difference. The statistical treatment of the data
was performed with the Sigmastat software (Systat
Software, Inc., Chicago, IL).

RESULTS

The body mass of pups from UN mothers was signifi-
cantly lower at 25 days (92.6 ¡ 5.18 g vs 71.3 ¡ 1.3 g for the
C and UN groups, respectively; p,0.05) and 90 days (449.5
¡ 9.2g vs 413.2 ¡ 14g for C and UN group, respectively;
p,0.05).

Absolute and relative mass of the soleus and EDL muscles
was significantly smaller in the UN group than in C group
in weaned and young adult rats (Fig. 3).

Results of the incremental stepwise extension test
indicated increases in resistance to passive stretch for each
extension in both soleus and EDL muscles in weaned rats
(Fig. 4). At this age, soleus muscle of UN rats showed an
increase in dynamic tensions by 40%, 48%, 57%, and 52% for

Table 1 - Composition of the experimental diets.

Ingredient (g/kg)

Control diet

(17% protein)

Low-protein diet

(7.8% protein)

Casein ($92.5 protein) 183.8 84.3

Cornstarch 645.7 745.2

Soybean oil 70.0 70.0

Fibre 50.0 50.0

Vitamin mix* 10.0 10.0

Mineral mix{ 35.0 35.0

Choline bitartrate 2.5 2.5

L-metionine 3.0 3.0

Total 1000 1000

*American Institute of Nutrition 93G;13 vitamin mix provided (mg/kg diet):

nicotinic acid 30.0, calcium pantothenate 16.0, pyridoxine-HCl 7.0,

thiamin-HCl 6.0, riboflavin 6.0, folic acid 2.0, biotin 2.0, cyanocobalamin,

25.0, a-tocopherol 150.0, retinyl palmitate 8.0, cholecalciferol 2.5, and

phylloquinone 0.75.
{American Institute of Nutrition 93;13 mineral mix provided (mg/kg diet):

calcium 5.0, phosphorus 1.6, sodium 1.0, potassium 2.3, magnesium 0.5,

iron 0.03, zinc 0.03, and copper 0.01.
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the first, second, third, and fourth increment, respectively
(Fig. 4). Similar increases were obtained in EDL muscle. In
addition, undernutrition induced an increase in steady
tension of about 65% in the soleus and 100% in the EDL
(Fig. 4). At 90 days, no difference in either dynamic tension
or steady tension was observed in the soleus and the EDL
between the control group and the undernourished group.

Passive force developed at 25% strain during the stretch–
release test and was not modified in the soleus and EDL
muscles of weaned and young adult rat (Fig. 5). When
passive force was expressed in terms of normalized tension
(i.e., force divided by PCSA), there was an increase in the
passive tension in both the soleus and the EDL muscles in
weaned rats (Fig. 5). This increase in resistance to passive
stretch observed in the soleus and EDL of the UN group was
also confirmed by the increase in the tangent modulus and
in normalized stiffness. In young adult rats, no difference
was observed in these parameters between groups in either
the soleus or the EDL muscles.

DISCUSSION

The results of present study are in accordance with
numerous studies showing poor maternal nutrition during
gestation affects fetal growth and development.1,3,6,8,11

Thus, the decrease in the pup weight can be associated
with the availability of nutrients for transfer to the fetus,
possibly involving metabolic parameters such as glucose
and insulin.17 Consequent to maternal nutrient restriction,
the soleus and EDL muscle weight was significantly
reduced in weaned and young adult rats. This muscle
atrophy is consistent with the programming of skeletal
muscle insulin sensitivity during fetal development8 as it
has been shown that insulin-sensitive tissues undergo
important changes in response to maternal protein restric-
tion.18,19

A previous study had shown that maternal protein
restriction during gestation induced changes in both
contractile and series elastics properties.11 In addition to
these mechanical changes, the present work has demon-
strated that the passive elastic properties are also changed
by this early nutritional manipulation. In effect, even if
passive force that developed during the slow velocity
stretch was not different between nutritional groups, the
normalized tension showed an increase in soleus and EDL
muscles in UN weaned rats. This increase in resistance to
passive stretch was also perceived by the increase in the
normalized stiffness and the increase in the tangent
modulus. Results of the incremental stepwise test showed
that passive stiffness was increased during both the

Figure 1 - Typical recording of passive tension induced by an incremental stepwise extension test. Fd: dynamic force; Fs: steady force.
Upper trace, change in length; bottom trace, change in force.

Figure 2 - Typical stress–strain curve obtained from the stretch–release test.
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dynamic and the static phases and for short and long
stretches.

Muscle passive stiffness is a function of the parallel elastic
component described in Hill’s model.20 Its properties are
affected by membrane structure and specifically by the
concentration and type of collagen.21–25 The effects of
nutritional status on the regulation of skeletal muscle
collagen content are varied. Roy et al.26 reported no
influence of nutritional level in muscle collagen content in
pectoralis muscle of broilers but with some differences in
the collagen structure of the perimysium. In the gastro-
cnemius muscle of adult mice deprived of food for 2 days,
Jagoe et al.27 showed a decrease in gene expression for many
extracellular matrix proteins like collagen. More recently,
Stevenson et al.28 studied the transcriptional profile of
myotube under starvation conditions. These authors
reported a downregulation of genes involved in collagen
synthesis and maturation. Nevertheless, the effect of
nutritional supply during fetal development seems to be
different in the development of connective tissue in skeletal
muscle. In swine, Karunaratne et al.29 reported that the
smallest littermate, reflecting a poor level of in utero
nutritional supply, contained a higher concentration of type
I collagen than the largest littermate. In our study, such an
increase in the content of collagen could explain the increase
in the passive tension observed in the soleus and EDL
muscles of undernourished rats.

In addition to collagen, other connective proteins are a
source of muscle passive tension. Titin, a 3-MDa elastic
filamentous protein, links the Z line to the myosin filament
in sarcomeres. Wang et al.30 reported that passive elastic
properties of muscle fibers are related to expression of the
titin isoform. Moreover, Toursel et al.31 showed a decrease
in passive tension in soleus fiber of unloaded rat in relation
to a decrease in titin content. Passive stiffness results also
from the relation between endosarcomeric and exosarco-
meric protein networks constituted by different structural
proteins like desmin.32 Lastly, telethonin (Titin-cap), an
important component of the N-terminal titin anchor in the Z
line,33 seems to act on passive stiffness.34 Interestingly, it has
been shown that nutritional status changes the gene
expression of these proteins. Byrne et al.35 reported an
upregulation of cytoskeletal proteins like desmin or tele-
thonin in the muscles of steers after nutritional restriction.
Oumi et al.36 reported muscle ultrastructure damages
induced in rats nourished with a low-protein diet for
2 weeks after weaning. More precisely, they showed
disorganization in some sarcomeres, with a disruption of
the Z line appearing jagged. As postulated by Oumi et al.,36

these sarcomere damages could be the result of the
‘‘disintegration’’ of structural proteins like desmin and titin.
Muscle disorganization, such as those observed by these
authors, could induce an increase in passive stiffness. As a
matter of fact, Anderson et al.37 reported an increase in

Figure 3 - Absolute muscle mass (MM) and ratio muscle mass to body mass (MM/BM) of soleus and EDL muscles at 25 and 90 days of age.
C: control group; UN: undernourished group. *p,0.05 vs control.
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passive stiffness in desmin knockout mice and ascribed this
mechanical change to the adaptation of passives structures
consequent to the lack of desmin.

Lastly, no modification in the passive stiffness properties
was observed between groups in young adult rats. The total

recovery of these elastic properties reveals that the changes
observed in the weaning rats can be completely reversed
after nutritional recovery before the animal reaches the
adult age. Nevertheless, it will be interesting to evaluate
older animals in order to confirm or invalidate that the in

Figure 4 - Effects of undernutrition on dynamic tension (sd) (left) and steady tension (ss) (right) in soleus and EDL muscles at 25 and
90 days of age induced by incremental stepwise extensions. C: control group; UN: undernourished group. The number of muscles is
indicated in parentheses. *p,0.05 vs control.
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utero low-protein diet supply has no long-term conse-
quences in muscle passive mechanical properties.

CONCLUSIONS

This study has permitted understanding of the effect of a
prenatal undernutrition on the passive elastic component of
the postural muscle (soleus) and a nonpostural muscle
(EDL). Prenatal undernutrition showed short-term altera-
tions in passive stiffness that can be explained in terms of
adaptations in passive structures and/or distribution of
endosarcomeric and exosarcomeric proteins in the skeletal
muscle. However, further biochemical investigations are
necessary to establish the effects of this particular nutri-
tional manipulation in a noncontractile protein profile of
skeletal muscle.
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