CLINICS

REVIEW ARTICLE

Homologous recombination deficiency in ovarian cancer:
a review of its epidemiology and management

Renata Rodrigues da Cunha Colombo Bonadio,* Rodrigo Nogueira Fogace, Vanessa Costa Miranda,

Maria del Pilar Estevez Diz

Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR.

Bonadio RR, Fogace RN, Miranda VC, Dis MP. Homologous recombination deficiency in ovarian cancer: a review of its epidemiology and management. Clinics.

2018;73(suppl 1):e450s

*Corresponding author. E-mail: rrccbonadio@gmail.com

Ovarian cancer patients with homologous recombination deficiencies exhibit specific clinical behaviors, and
improved responses to treatments, such as platinum-based chemotherapy and poly (ADP-ribose) polymerase
(PARP) inhibitors, have been observed. Germline mutations in the BRCA 1/2 genes are the most well-known
mechanisms of homologous recombination deficiency. However, other mechanisms, such as germline and
somatic mutations in other homologous recombination genes and epigenetic modifications, have also been
implicated in homologous recombination deficiency. The epidemiology and implications of these other mech-
anisms need to be better understood to improve the treatment strategies for these patients. Furthermore, an
evaluation of various diagnostic tests to investigate homologous recombination deficiency is essential. Compre-
hension of the role of homologous recombination deficiency in ovarian cancer also allows the development of
therapeutic combinations that can improve the efficacy of treatment. In this review, we discuss the epidemio-
logy and management of homologous recombination deficiency in ovarian cancer patients.
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B INTRODUCTION

In ovarian cancer, patients harboring BRCA 1/2 mutations
exhibit different patterns of clinical behavior and respond
to treatment differently. The BRCA gene plays a role in
repairing DNA repair via homologous recombination (HR),
and mutation of this gene leads to HR deficiency (HRD).

HRD can also occur due to other mechanisms, such as ger-
mline mutations, somatic mutations and epigenetic modifi-
cations of other genes involved in the HR pathway. Ovarian
cancers with these alterations behave similarly to those with
BRCA mutations, and this behavior is termed the “BRCA-
ness” phenotype.

Using poly (ADP-ribose) polymerase (PARP) inhibitors in
patients with HRD compromises two pathways of DNA
repair, resulting in synthetic lethality. Recent studies have
confirmed that the efficacy of PARP inhibitors is improved
not only in ovarian cancers displaying germline or somatic
BRCA mutations but also in cancers in which HRD is caused
by other underlying etiologies.

In this review, we discuss how to evaluate HRD as well as
the epidemiology and management of HRD in ovarian cancer.
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Homologous recombination deficiency and
PARP inhibitors

DNA breaks are repaired via different mechanisms to
protect the genome. For example, double-stranded breaks
are repaired by HR and non-homologous end joining
(NHE]) (1). HR is more efficient at maintaining genomic
stability because it uses a homologous template, whereas
NHE] is error-prone.

Unrepaired DNA damage can result in accumulated muta-
tions and unregulated cell division, and HRD is thus related
to cancer susceptibility (2,3). Moreover, large amounts of
DNA damage can lead to cell apoptosis. However, when
only HR is deficient, the activities of other DNA repair
mechanisms can prohibit the accumulation of excessive DNA
damage and apoptosis (2).

Base excision repair (BER) serves as another DNA repair
mechanism that acts on single-stranded breaks, and mem-
bers of the PARP protein family play essential roles in the
BER mechanism. PARPs bind to single-stranded break sites
and initiate the repair process, and these proteins are targe-
ted in oncology via the use of PARP inhibitors.

As mentioned previously, HRD by itself does not
always induce cellular apoptosis. However, when PARP
inhibitors are used in HRD cells, impairment of these
two DNA repair mechanisms together results in synthetic
lethality. In other words, mutations occurring in one of
two genes separately do not result in apoptosis, but the
impairment of both genes simultaneously leads to cell
death (synthetic lethality). In this situation, the accumu-
lation of DNA damage might be sufficient to induce
cell death (apoptosis), and clinical trials showing the
benefits of PARP inhibitors in HRD cancers support this
concept (4,5).
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Mechanisms implicated in homologous
recombination deficiency

The most described etiology of HRD is the mutation of
genes involved in HR repair. Mutations can occur in ger-
mline cells, which represent individual characteristics, or
somatic cells, which is a trait of tumor cells.

Germline BRCA 1 and BRCA 2 mutations are the most
well-known HRD etiology. Germline mutations are impor-
tant not only for treatment decisions but also for the evalua-
tion of cancer susceptibility and prevention strategies for
the patients and their relatives. BRCA 1/2 are involved in
hereditary breast and ovarian cancer syndrome, and numer-
ous trials evaluating PARP inhibitors have been performed
on patients presenting germline BRCA 1/2 mutations (5-8).
Patients without BRCA 1/2 mutations presented similar cli-
nical behaviors and responses to PARP inhibitors (4,9), and
these patients define the “BRCAness” phenotype (10,11). The
mechanisms underlying BRCAness are varied and include
somatic BRCA 1/2 mutations and germline or somatic muta-
tions in other genes related to HR repair.

Another possible etiology of HRD is the epigenetic modi-
fication of HR genes, such as methylation of the BRCA 1
promoter. Gene expression signatures present in germline
BRCA1 mutations were also observed in BRCA1-methylated
cancers (12). However, the implication of epigenetic mod-
ifications in HRD remain controversial. While Cunningham
et al. reported a survival advantage in patients with BRCA 1
promoter hypermethylation compared with BRCA wild-type
patients (13), other researchers found no survival advantage
(14,15) or worse survival for patients with the methylated
phenotype (16).

How to evaluate homologous
recombination deficiency
HRD can be tested using three main strategies:

e Germline mutation screening of genes related to HR
repair;

o somatic mutation screening of genes related to HR repair;
and

evaluation of a genomic scar, which represents the geno-
mic instability secondary to HRD. An HRD score can be
calculated based on the loss of heterozygosity (LOH),
telomeric allelic imbalance, and large-scale transitions.

Germline mutation screening can be performed using next
generation sequencing (NGS) analysis of DNA from blood,
which has the advantage of being easy to obtain. Moreover,
the identification of a germline mutation allows the possibility
of genetic counseling.

Somatic mutation screening, on the other hand, is perfo-
rmed on DNA from tumor samples. This analysis can eval-
uate any mutation (germline and/or somatic) in HR genes
and is thus a broader evaluation, which is helpful for defining
treatment strategies, such as the use of PARP inhibitors. How-
ever, when a mutation is identified with this strategy, germline
analysis of normal cells is still necessary to determine whether
the mutation is germline or somatic (present in only the tumor)
(17). Limitations of somatic screening include the variability of
tumor samples available and intratumoral heterogeneity, which
potentially compromises the representativeness of the sample.

Finally, HRD can be assessed in a more functional way.
When HRD is present, genomic alterations accumulate, and
allelic imbalances can result in a “genomic scar”, allowing
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the investigation of HRD regardless of the underlying genetic
or epigenetic mechanism responsible. A high LOH (>14-16%),
for example, suggests the presence HRD. In the ARIEL2 trial,
which evaluated rucaparib in platinum-sensitive recurrent
ovarian cancer, LOH-high was defined by NGS using a cutoff
of 14%. The results showed that patients with BRCA 1/2 wild-
type and LOH-high benefited from rucaparib (9). LOH can
also be evaluated together with telomeric allelic imbalance and
large-scale transitions to generate an HRD score (MyChoice™
HRD test, Myriad Genetics Inc., Salt Lake City, Utah).
Patients determined to have HRD (defined as any tumor that
scored >42 on the MyChoice™ HRD test) benefited from
maintenance niraparib in the NOVA trial (4).

Despite the ability of NGS to assess many genes during
germline or somatic mutation screening, the implications of
some mutations remain unknown. Moreover, NGS cannot
evaluate HRD due to other etiologies, such as epigenetic
modifications. Thus, functional evaluations of HRD can help
overcome these limitations.

In conclusion, each of these tests have different properties
and can be used in a complementary manner.

Epidemiology of HRD in ovarian cancer

Approximately 41-50% of ovarian carcinomas are esti-
mated to exhibit HRD (17,18). However, the frequency
of HRD varies according to the method utilized for its
evaluation (germline mutations, somatic mutations or HRD
score) and histological subtype. Table 1 shows the frequen-
cies of HRD in different studies according to the histolo-
gical subtype.

Pennington et al. (19) found HR gene germline mutations
in 24% of patients with epithelial ovarian cancer and soma-
tic mutations in 9% of these patients. Elvin et al. (18) eval-
uated the presence of BRCA mutations or LOH in different
histological subtypes. The serous subtype was associated
with a higher prevalence of HRD, with 43.8% of the patients
presenting BRCA mutations (BRCAmut, 18.7%) or BRCA
wild-type/LOH-high (BRCAwt/LOH-high, 25.1%). Other
epithelial ovarian carcinomas also exhibited elevated propor-
tions of HRD which occurred in 37.6% of endometrioid (12.6%
BRCAmut and 25% BRCAwt/LOH-H), 23.5% of carcino-
sarcoma (8.2% BRCAmut and 15.3% BRCAwt/LOHH)
and 12.6% of clear cell histologies (4.7% BRCAmut and 8.9%
BRCAwt/LOHH). The mucinous subtype, however, exhib-
ited no BRCA mutations, and only 8.1% of the patients
presented with BRCAwt/LOH-H. Upon specifically eval-
uating the presence of somatic mutations, Aghajanian et al.

Table 1 - Frequency of homologous recombination deficiency
according to the histological subtype.

Method Elvin et al. Norquist et al.  Pennington et al.
(N=4114) (18) (N=1915) (21) (N=367) (19)
BRCA + HR gene HR gene
LOH-H mutations mutations
Serous 43.8% 27% 31%
Endometrioid 37.6% 23.8% 27%
Carcinosarcoma 23.5% - 33%
Clear Cell 13.6% 21.4% 26%
Epithelial NOS 47.7% - -
Mucinous 8.1% 28.6% 0%

LOH-H: Loss of heterozygosity; HR: homologous recombination; NOS: not
otherwise specified.
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Table 2 - Frequency of germline mutations in ovarian carcinoma.
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(N) TCGA (14) Pennington et al. (19) Cunningham et al. (13) Harter et al. (49) Norquist et al. (50) Yates et al. (51)
(316) (390) (899) (522) (1915) (299)

BRCA1 8.5% 13.4% 3.5% 15.3% 9.5% 9%

BRCA2 6.3% 4.6% 3% 5.6% 5.1% 5.4%

EMSY

PTEN 0%

RAD51C 0.7% 3% 2.5% 0.6% 1%

RAD51D 1% 0.6% 0.6%

RAD50 0.2% 0.2%

ATM/ATR 0.4% 0.6% 0.5%

FANC 0.7%

BARD1 0.5% 0% 0.2% 0.5%

BRIP1 1% 0.4% 1.4% 2.5%

CHEK1 0.25% 0.2%

CHEK2 0.7% 0.6% 0.6%

FAM175A 0.5% 0.2% 0.2%

NBN 0.25% 0.4% 0.5% 0.5%

PALB2 0.5% 1.1% 0.6% 0.5%

MRE11A 0.4% 0.1%

MMR 0.6% 0.5%

TP53 0% 0.3%

FANC: Fanconi anemia complementation group; MMR: mismatch repair genes.

found similar prevalences of somatic mutations in high-grade
serous ovarian carcinoma (HGSOC) and other histologies
(16% wvs 18%, respectively, p=0.07). Once again, no somatic
mutations in HR genes were observed in mucinous ovarian
cancer.

In relation to high-grade versus low-grade serous carci-
noma, Norquist et al. (21) found a significant difference in the
germline and somatic mutation rates of HR genes, which
were 10.9% for low-grade versus 27% for HGSOC (odds ratio
(OR), 0.33; 95% confidence interval (CI), 0.1-0.8; p=0.02).

Regarding the specific genes compromised, in an evalua-
tion of HR gene mutations in ovarian cancer patients who
participated in the GOG 218 and GOG 262 trials, Norquist
et al. (21) showed germline or somatic mutations in BRCA1
gene in 12.3% of the cases, in BRCA2 gene in 6.5% and in
other non-BRCA HR genes in 6.8%. Elvin et al. (18) reported
similar results, with mutations in BRCA 1 gene in 11.6% of the
cases and BRCA 2 gene in 5.7%.

BRCA mutations occur more frequently in HGSOC, with
20% of these patients presenting germline or somatic muta-
tions in BRCA 1 or BRCA 2 (21). However, in the Norquist
et al. study (21), other histologies also presented consider-
able rates of BRCA 1 or 2 mutations (approximately 9% for
endometrioid ovarian cancer, 11% for clear cell ovarian cancer
and 8% for low-grade serous ovarian cancer). Alsop et al. (22)
exclusively evaluated the frequencies of germline BRCA 1 and
BRCA 2 mutations, finding mutations in 17% of patients
with HGSOC, 8.4% of patients with the endometrioid
histology and 6.3% of patients with the clear cell histology.
Somatic BRCA 1 and BRCA 2 mutations occur less often, with
prevalences of 2-5% and 2-3%, respectively (14,19).

The frequency of changes (mutation, deletion or amplifica-
tion) in each non-BRCA HR gene is much lower and more
heterogeneous. Table 2 lists the genes implicated in HR repair
and the frequencies of germline mutations reported in dif-
ferent studies. Table 3 describes the frequencies of somatic
gene changes. NGS was utilized in all the studies described in
the tables. Blood samples were utilized in trials that evaluated
germline mutations, and tumor samples were utilized in trials
evaluating somatic gene mutations.

Table 3 - Frequency of somatic gene changes (mutation,
deletion or amplification) in ovarian carcinoma.

(N) TCGA Pennington  Cunningham Hahnen Aghajanian
(14) etal. (19) etal. (13) et al. (52) et al. (20)
(316) (390) (279) (431) (260)

BRCA1 3.2% 4.9% 2% 3% 4.4%

BRCA2 2.9% 1.5% 1.4% 1.4% 2.2%

EMSY 8%

PTEN 7% 4.4%

RAD51C 0.3% 0.3%

RAD51D 0.2%

RAD50 0.6%

ATM/ATR 2% 0.8% 0.2% 2.2%

FANC 5% 0.2% 0.3%

BARD1 0.6%

BRIP1 0.5% 0.6%

CHEK1 0% 0.3%

CHEK2 0.3% 0.8% 0.3%

FAM175A

NBN 0.3%

PALB2 0.2% 0.3%

MRE11A 0.3%

MMR 0.4%

TP53

FANC: Fanconi anemia complementation group; MMR: mismatch repair
genes.

Treatment of ovarian cancer with HRD

HRD carcinomas exhibit an increased responsiveness to
cytotoxic chemotherapy, especially platinum agents, in diffe-
rent treatment lines (19,23-25). Platinum agents act via directly
damaging DNA, and when HRD is present, the reduction of
DNA repair increases the accumulation of DNA damage,
leading to apoptosis. Pennington et al. showed that somatic
BRCA 1/2 mutations and mutations in other HR genes predict
platinum responsiveness and positively impact overall survi-
val, similar to germline BRCA 1/2 mutations (19).

Regarding PARP inhibitors, their benefit in HRD was first
shown in patients with BRCA 1/2 mutations. In a phase I
trial, the activity of olaparib was evaluated in heavily pre-
treated patients (mainly ovarian and breast cancer patients)
(26). Twelve of the 23 patients harboring BRCA mutations
presented a response or stable disease for at least 4 months,
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while no response was observed in patients without BRCA
mutations.

A benefit of olaparib in patients with BRCA mutations
was also suggested in the phase II study 19 trial (27). This
trial evaluated olaparib maintenance in platinum-sensitive
patients with or without BRCA mutations and showed
improved progression free survival (PFS) in comparison to
that of patients receiving the placebo (8.4 months versus
4.8 months; hazard ratio, 0.35; 95% CI, 0.25-0.49; p<0.001).
However, the benefit was greater in patients with BRCA
mutations (11.2 vs 4.3 months; hazard ratio, 0.18; 95% CI,
0.10-0.31; p<0.0001) than in BRCA wild-type patients (7.4 vs
5.5 months; hazard ratio, 0.54; 95% CI, 0.34-0.85, p=0.0075).
Furthermore, in a post hoc analysis, when excluding patients
who crossed over to olaparib after progression, an improved
overall survival with olaparib was observed in the group with
BRCA mutations (hazard ratio, 0.52; 95% CI, 0.28-0.97) (28).

Another single-arm phase II study evaluated olaparib in
patients with germline BRCA mutations previously treated
with at least three lines of chemotherapy (5). The results were
impressive in this heavily pretreated population, with a
response rate of 31.1% in ovarian cancer patients, a median
PFS of 7 months and a median overall survival of 16.6 months.
These results lead to the Food and Drug Administration
(FDA) approval of olaparib for this scenario.

Recently, results of the phase III SOLO 2 trial were pub-
lished, showing that patients with BRCA mutations that had
previously received at least two lines of chemotherapy benef-
ited from olaparib maintenance after response to platinum-
based chemotherapy for the treatment of relapsed ovarian
cancer. The risk of progression was reduced by 70%, with an
absolute gain in PFS of 13.6 months (median PFS of 19.1 months
with olaparib versus 5.5 months with the placebo; hazard ratio,
0.3; 95% CI, 0.22-041; p<0.0001).

Another PARP inhibitor, niraparib, also demonstrated
efficacy in patients with ovarian cancer with or without
BRCA mutations. The NOVA trial showed that as a main-
tenance therapeutic, niraparib improves the PFS of platinum-
sensitive patients (4). In that trial, the presence of BRCA
mutations and HRD determined using the Myriad Genetics
HRD score were investigated. While a benefit was observed
in all subgroups, the PFS of patients with BRCA mutations
(21.0 months vs 5.5 months; hazard ratio, 0.27; 95% CI, 0.17-
0.41) and BRCA wild-type/HRD-high (20.9 months wvs
11.0 months; hazard ratio, 0.27; 95% CI, 0.08-0.90) was increa-
sed to a greater extent than that of BRCA wild-type/HRD-low
patients (6.9 months vs 3.8 months; hazard ratio, 0.58; 95% CI,
0.36-0.92).

The phase II Ariel 2 trial also confirmed the benefit of
PARP inhibitors to patients with HRD in general (9). In this
trial, rucaparib was used in advanced ovarian cancer patients
previously treated with two or more lines of chemotherapy
(regardless of their platinum sensitivity). HRD was assessed
by evaluating both BRCA germline mutations and LOH. Once
again, the response rate (RR) and PFS were higher in BRCA
germline mutation carrier patients (RR, 69%; PFS, 12.8 months;
hazard ratio, 0.27; 95% CI, 0.16-0.44; p<0.0001) and BRCA
wild-type LOH-high patients (RR, 39%; PFS, 5.7 months;
hazard ratio, 0.62; 95% CI, 0.42-0.9; p=0.011) than in BRCA
wild-type/LOH-low patients (RR, 11%; PFS, 5.1 months).

The phase III Ariel 3 trial showed that rucaparib also
improved the PFS as a maintenance therapeutic in ovarian
cancer patients in comparison with the placebo after treat-
ment with at least two lines of platinum-based therapy with
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response to the last treatment (29). PFS was improved in the
three nested cohorts: patients with BRCA mutations (median
PFS, 16.6 months vs 5.4 months; hazard ratio, 0.23; 95% CI,
0.16-0.34; p<0.0001), patients with HRD (including BRCA-
mut and BRCAwt/high-LOH carcinomas) (median PFS, 13.6
months vs 5.4 months; hazard ratio, 0.32; 95% CI, 0.24-0.42;
p<0.0001) and the intention-to-treat population (median PFS,
10.8 months wversus 5.4 months; hazard ratio, 0.36; 95% CI,
0.30-0.45; p<0.0001). In a non-nested subgroup analysis,
the absolute gain in median PFS was 4.3 months for BRCA
wild-type patients with LOH-high (9.7 months vs 4 months;
hazard ratio, 0.44; p<0.001) and 1.3 months for those with
LOH-low (6.7 months vs 5.4 months; hazard ratio, 0.58;
p=0.0049).

In conclusion, the trials show that the benefits of PARP
inhibitors extend beyond BRCA 1/2 mutations. Patients with
HRDs of different etiologies might benefit from these drugs,
increasing the number of patients who might benefit from
these treatments. Some studies also showed a statistically
significant benefit for the PFS of patients with HR profi-
ciency, but the clinical relevance of the gain in this scenario
was smaller.

Perspectives

Studies are ongoing to investigate whether combinations
of PARP inhibitors and other drugs might improve their
efficacy in patients with or without HRD.

As mentioned previously, when HRD is present, the use
of PARP inhibitors induces synthetic lethality. In patients
without HRD, using drugs in combination might exert a
similar effect, defined as ‘contextual” synthetic lethality (30).

Hypoxic conditions, for example, appear to downregulate
DNA repair and generate genomic instability (30,31). Thus,
the combination of antiangiogenic agents and PARP inhibi-
tors represents a potential mechanism underlying contextual
synthetic lethality. In a phase II trial, olaparib was combined
with the VEGEFR inhibitor cediranib, and an improved in PFS
was observed (17.7 months versus 9 months with olaparib
alone; hazard ratio, 0.42; 95% CI, 0.23-0.76; p=0.005) (32).
Upon subgroup analysis, patients with HR proficiency bene-
fited the most from the synergism of the two drugs (PFS of
16.5 vs 5.7 months with olaparib alone; hazard ratio, 0.32;
p=0.008). Patients with germline BRCA mutations had a good
response to olaparib alone, as expected, and an improvement
trend in PFS was observed with the combination (PFS of
19.5 months vs 16.5 months with olaparib alone).

For patients with HRD who develop resistance to PARP
inhibitors, the association of VEGFR and PARP inhibitors
represents a potential strategy to overcome resistance. Thus,
a study evaluating the combination of cediranib and olaparib
in advanced ovarian cancer after progression on a PARP
inhibitor is currently ongoing (ClinicalTrials.gov, NCT02681237).

PI3K inhibitors are also associated with decreased HR repair.
Preclinical studies showed that PI3K inhibitors decrease the
expression of RAD51 and are synergistic with olaparib (33,34).

In addition to PI3K and VEGFR inhibitors, other agents
that decrease DNA repair with the potential to function syn-
ergistically with PARP inhibitors include inhibitors of CHK1,
ATR, Wee, BET (35-39). Preclinical studies have shown pro-
mising results when these agents are used in combination
with PARP inhibitors.

Furthermore, cytotoxic chemotherapy might potentiate the
effect of PARP inhibitors via the association of DNA damage
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and inhibition of DNA repair. In a phase I trial, the com-
bination of olaparib and carboplatin yielded an overall RR of
44% in patients with germline BRCA mutations and ovarian
cancer (40).

Another important point to consider is that adaptive
resistance develops over time when a drug is used as mono-
therapy, and combination therapy could help avoid or retard
the development of adaptive resistance.

Different mechanisms are implicated in the resistance to
PARP inhibitors. In BRCA-mutated tumors, the development
of secondary reversion mutations that restore BRCA func-
tion and HR activity appears to be an important mechanism
underlying resistance (41,42).

Resistance might also occur upon the activation of signal-
ing cascades implicated in tumorigenesis, such as the PI3K/
AKT and RAS/MAPK pathways (34,43).

As mentioned previously, PI3K inhibitors improve the
activity of olaparib (33,34), and PARP and MEK inhibitors
also function synergistically when used in combination both
in vitro and in vivo (43). RAS mutant lines, for example, are
resistant to PARP inhibitors but sensitive to the combination
of PARP and MEK inhibitors (43). A study on using the MEK
inhibitor selumetinib and olaparib in combination to treat
RAS-activated tumors is currently ongoing (ClinicalTrials.
gov, NCT03162627).

Importantly, the combinations described above are poten-
tial treatment strategies for improving the efficacy of PARP
inhibitors in patients with HR proficiency and patients with
HRD that acquire resistance to PARP inhibitors.

The increase in drug efflux by P-glycoproteins (P-gp) also
leads to PARP resistance, which was reversed by the coad-
ministration of the P-gp inhibitor tariquidar in a preclinical
study (44). Moreover, differences exist between PARP inhi-
bitors, and while olaparib appears to be a substrate of P-gp,
veliparib does not (45).

Alterations in PARP expression might also play a role in
PARP resistance, and these effects may vary among different
PARP inhibitors. While olaparib and veliparib specifically
inhibit PARP1 and PARP2, niraparib, rucaparib and talazo-
parib inhibit a broader range of PARP enzymes (46). Thus,
the possibility exist that after progression on one PARP
inhibitor, another could still be active. However, this hypo-
thesis needs to be investigated further.

Finally, the combination of PARP inhibitors with immu-
notherapy is also being studied (47). BRCA 1/2-mutated
HGSOC exhibits a higher mutational load, more tumor-
specific antigens, more tumor-infiltrating lymphocytes and
higher PD-1 and PD-L1 expression in tumor-associated
immune cells than HR-proficient HGOSC (48). These find-
ings suggest that BRCA 1/2-mutated HGSOC may be more
sensitive to PD1/PL-L1 inhibitors. Furthermore, the inhibi-
tion of DNA repair pathways propagating DNA damage
and neoantigen formation could improve the activity of
immunotherapy.

B CONCLUSIONS

The prevalence of HRD is high in ovarian cancer. Further
understanding HRD and recognizing the existence of the
BRCAness phenotype could lead to a broader group of
patients benefiting from PARP inhibitors.

The best strategy to evaluate HRD still needs to be defined.
Germline or somatic mutations can be assessed using NGS,
while genomic instability can be determined by evaluating
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the LOH, telomeric allelic imbalance, and large-scale transi-
tions. Each of these options has advantages and disadvan-
tages, and they should be used in a complementary manner.
Future studies on PARP inhibitors should continue to vali-
date the clinical utility of these strategies to assess HRD.

Finally, the combination of PARP inhibitors with other
drugs is promising. Currently, contextual synthetic lethality
and strategies to overcome adaptive resistance have been
studied using a combination of PARP inhibitors and other
drugs, such as cytotoxic chemotherapy, angiogenesis inhibi-
tors, MEK inhibitors and immunotherapy. These combina-
tions might improve the efficacy of PARP inhibitors even
in patients without HRD, extending the benefit of these
drugs even further. We eagerly await further results from
these studies.

B AUTHOR CONTRIBUTIONS

Bonadio RR, Fogace RN, Miranda VC and Dis MP contributed to the
conception and design of the study, data collection, data analysis, and
manuscript writing and revision.

B REFERENCES

1. Li X, Heyer WD. Homologous recombination in DNA repair and DNA
damage tolerance. Cell Res. 2008;18(1):99-113, http://dx.doi.org/10.1038/
cr.2008.1.

2. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer.
Nature. 2001;411(6835):366-74, http:/ /dx.doi.org/10.1038/35077232.

3. Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer
due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245-59,
http://dx.doi.org/10.1097 / GIM.0b013e3181d38f2f.

4. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al.
Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian
Cancer. N Engl ] Med. 2016;375(22):2154-64, http://dx.doi.org/10.1056/
NEJMoal611310.

5. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander
M, Balmania J, et al. Olaparib monotherapy in patients with advanced
cancer and a germline BRCA1/2 mutation. ] Clin Oncol. 2015;33(3):244-50,
http:/ /dx.doi.org/10.1200/JCO.2014.56.2728.

6. Matulonis UA, Penson RT, Domchek SM, Kaufman B, Shapira-Frommer
R, Audeh MW, et al. Olaparib monotherapy in patients with advanced
relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy
analysis of response rates and safety. Ann Oncol. 2016;27(6):1013-9,
http://dx.doi.org/10.1093 /annonc/mdw133.

7. Kiristeleit RS, Shapira-Frommer R, Oaknin A, Balmana J, Ray-Coquard IL,
Domchek S, et al. Clinical activity of the poly(ADP-ribose) polymerase
(PARP) inhibitor rucaparib in patients (pts) with high-grade ovarian
carcinoma (HGOC) and a BRCA mutation (BRCAmut): Analysis of pooled
data from Study 10 (parts 1, 2a, and 3) and ARIEL2 (parts 1 and 2). Ann
Oncol. 2016;27 Suppl 6:296-312, http://dx.doi.org/10.1093/annonc/
mdw374.03.

8. Coleman RL, Sill MW, Bell-McGuinn K, Aghajanian C, Gray HJ, Tewari
KS, et al. A phase II evaluation of the potent, highly selective PARP
inhibitor veliparib in the treatment of persistent or recurrent epithelial
ovarian, fallopian tube, or primary peritoneal cancer in patients who carry
a germline BRCA1 or BRCA2 mutation - An NRG Oncology / Gynecologic
Oncology Group study. Gynecol Oncol. 2015;137(3):386-91, http:/ /dx.doi.
org/10.1016/j.ygyno.2015.03.042.

9. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al.
Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma
(ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
Lancet Oncol. 2017;18(1):75-87, http://dx.doi.org/10.1016/51470-2045(16)
30559-9.

10. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic
cancers. Nat Rev Cancer. 2004;4(10):814-9, http://dx.doi.org/10.1038/
nrc1457.

11. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):
110-20, http:/ /dx.doi.org/10.1038 /nrc.2015.21.

12. George ], Alsop K, Etemadmoghadam D, Hondow H, Mikeska T,
Dobrovic A, et al. Nonequivalent gene expression and copy number
alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2
mutations. Clin Cancer Res. 2013;19(13):3474-84, http:/ /dx.doi.org/10.1158/
1078-0432.CCR-13-0066.

13. Cunningham JM, Cicek MS, Larson NB, Davila J, Wang C, Larson MC,
et al. Clinical characteristics of ovarian cancer classified by BRCAI,


http://dx.doi.org/10.1038/cr.2008.1
http://dx.doi.org/10.1038/cr.2008.1
http://dx.doi.org/10.1038/35077232
http://dx.doi.org/10.1097/GIM.0b013e3181d38f2f
http://dx.doi.org/10.1056/NEJMoa1611310
http://dx.doi.org/10.1056/NEJMoa1611310
http://dx.doi.org/10.1200/JCO.2014.56.2728
http://dx.doi.org/10.1093/annonc/mdw133
http://dx.doi.org/10.1093/annonc/mdw374.03
http://dx.doi.org/10.1093/annonc/mdw374.03
http://dx.doi.org/10.1016/j.ygyno.2015.03.042
http://dx.doi.org/10.1016/j.ygyno.2015.03.042
http://dx.doi.org/10.1016/S1470-2045(16)30559-9
http://dx.doi.org/10.1016/S1470-2045(16)30559-9
http://dx.doi.org/10.1038/nrc1457
http://dx.doi.org/10.1038/nrc1457
http://dx.doi.org/10.1038/nrc.2015.21
http://dx.doi.org/10.1158/1078-0432.CCR-13-0066
http://dx.doi.org/10.1158/1078-0432.CCR-13-0066

HRD in ovarian cancer
Bonadio RR et al.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

BRCA2, and RAD51C status. Sci Rep. 2014;4:4026, http:/ /dx.doi.org/
10.1038/srep04026.

Cancer Genome Atlas Research Network. Integrated genomic analyses
of ovarian carcinoma. Nature. 2011;474(7353):609-15, http://dx.doi.org/
10.1038 /nature10166.

Kalachand R, Ruscito I, Dimitrova D, Panici PB, Sehouli J, Olek S,
et al. Clinical characteristics and survival Pooled, outcomes in BRCA1-
methylated epithelial ovarian cancer (Bmeth-OC): A analysis of data for
1,278 patients across five studies. ] Clin Oncol. 2015;33:15 Suppl; abstr 5526,
http:/ /dx.doi.org/10.1200/jco.2015.33.15_suppl.5526.

Chiang JW, Karlan BY, Cass L, Baldwin RL. BRCA1 promoter methylation
predicts adverse ovarian cancer prognosis. Gynecol Oncol. 2006;101(3):
403-10, http:/ /dx.doi.org/10.1016/j.ygyno.2005.10.034.

Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations
and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol.
2016;27(8):1449-55, http:/ /dx.doi.org/10.1093 /annonc/mdw142.

Elvin JA, He Y, Sun J, Odunsi K, Szender JB, Moore KN, et al. Compre-
hensive Genomic Profiling (CGP) with Loss of Heterozygosity (LOH)
Identifies Therapeutically Relevant Subsets of Ovarian Cancer (OC). J Clin
Oncol. 2017;34:15 Suppl; abstr 5512, http://dx.doi.org/10.1200/JCO.2017.
35.15_suppl.5512.

Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al.
Germline and somatic mutations in homologous recombination genes
predict platinum response and survival in ovarian, fallopian tube, and
peritoneal carcinomas. Clin Cancer Res. 2014;20(3):764-75, http:/ /dx.doi.
org/10.1158/1078-0432.CCR-13-2287.

Aghajanian C, DeLair D, Grisham RN, Hensley ML, Konner JA, Makker
V, et al. Somatic mutations in homologous recombination pathway genes
in ovarian cancer. J Clin Oncol. 2017;35:15 Suppl; abstr 5545, http://dx.
doi.org/10.1200/JCO.2017.35.15_suppl.5545.

Norquist BS, Brady MF, Harrell MI, Walsh T, Lee MK, Gulsuner SI, et al.
Mutations in homologous recombination genes and response to treatment
in GOG 218: an NRG Oncology study. Gynecol Oncol. 2016;141:2, http:/ /
dx.doi.org/10.1016/j.ygyno.2016.04.033.

Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George ],
et al. BRCA mutation frequency and patterns of treatment response in
BRCA mutation-positive women with ovarian cancer: a report from the
Australian Ovarian Cancer Study Group. ] Clin Oncol. 2012;30(21):2654-63,
http://dx.doi.org/10.1200/JCO.2011.39.8545.

Tan DS, Rothermundt C, Thomas K, Bancroft E, Eeles R, Shanley S, et al.
“BRCAness” syndrome in ovarian cancer: a case-control study describing
the clinical features and outcome of patients with epithelial ovarian cancer
associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008;26(34):
5530-6, http:/ /dx.doi.org/10.1200/JC0O.2008.16.1703.

Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E,
Francoeur N, et al. Gene expression profile of BRCAness that correlates
with responsiveness to chemotherapy and with outcome in patients with
epithelial ovarian cancer. J Clin Oncol. 2010;28(22):3555-61, http:/ /dx.doi.
org/10.1200/JC0O.2009.27.5719.

Dann RB, DeLoia JA, Timms KM, Zorn KK, Potter J, Flake DD 2nd, et al.
BRCA1/2 mutations and expression: response to platinum chemotherapy
in patients with advanced stage epithelial ovarian cancer. Gynecol Oncol.
2012;125(3):677-82, http:/ /dx.doi.org/10.1016/j.ygyno.2012.03.006.

Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al.
Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA muta-
tion carriers. N Engl J Med. 2009;361(2):123-34, http://dx.doi.org/
10.1056/ NE]M0a0900212.

Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G,
et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian
cancer. N Engl ] Med. 2012;366(15):1382-92, http://dx.doi.org/10.1056 /
NEJMoa1105535.

Matulonis UA, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G,
et al. Olaparib maintenance therapy in patients with platinum-sensitive,
relapsed serous ovarian cancer and a BRCA mutation: Overall survival
adjusted for postprogression poly(adenosine diphosphate ribose) poly-
merase inhibitor therapy. Cancer. 2016;122(12):1844-52, http://dx.doi.
org/10.1002/cncr.29995.

Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A,
et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma
after response to platinum therapy (ARIEL3): a randomised, double-
blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10106):1949-61,
http://dx.doi.org/10.1016 /S0140-6736(17)32440-6.

Ivy SP, de Bono J, Kohn EC. The ‘Pushmi-Pullyu’ of DNA REPAIR:
Clinical Synthetic Lethality. Trends Cancer. 2016;2(11):646-56, http://dx.
doi.org/10.1016/j.trecan.2016.10.014.

Hasvold G, Lund-Andersen C, Lando M, Patzke S, Hauge S, Suo Z, et al.
Hypoxia-induced alterations of G2 checkpoint regulators. Mol Oncol.
2016;10(5):764-73, http:/ /dx.doi.org/10.1016/j.molonc.2015.12.015.

Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich R], Fleming GF, et al.
Combination cediranib and olaparib versus olaparib alone for women
with recurrent platinum-sensitive ovarian cancer: a randomized phase 2
study. Lancet Oncol. 2014;15(11):1207-14, http://dx.doi.org/10.1016/
51470-2045(14)70391-2.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

CLINICS 2018;73(suppl 1):e450s

Wang D, Li C, Zhang Y, Wang M, Jiang N, Xiang L, et al. Combined
inhibition of PI3K and PARP is effective in the treatment of ovarian cancer
cells with wild-type PIK3CA genes. Gynecol Oncol. 2016;142(3):548-56,
http:/ /dx.doi.org/10.1016 /j.ygyno.2016.07.092.

Wang D, Wang M, Jiang N, Zhang Y, Bian X, Wang X, et al. Effective use
of PI3K inhibitor BKM120 and PARP inhibitor Olaparib to treat PIK3CA
mutant ovarian cancer. Oncotarget. 2016;7(11):13153-66, http://dx.doi.
org/10.18632/ oncotarget.7549.

Lin AB, McNeely SC, Beckmann RP. Achieving Precision Death with
Cell-Cycle Inhibitors that Target DNA Replication and Repair. Clin Cancer
Res. 2017;23(13):3232-40, http:/ /dx.doi.org/10.1158 /1078-0432.CCR-16-0083.
Yin Y, Shen Q, Zhang P, Tao R, Chang W, Li R, et al. Chkl inhibition
potentiates the therapeutic efficacy of PARP inhibitor BMN673 in gastric
cancer. Am ] Cancer Res. 2017;7(3):473-83.

Kim H, George E, Ragland R, Rafial S, Zhang R, Krepler C, et al. Targeting
the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression
in BRCA-Mutant Ovarian Cancer Models. Clin Cancer Res. 2017;23(12):
3097-108, http:/ /dx.doi.org/10.1158 /1078-0432.CCR-16-2273.

Karnak D, Engelke CG, Parsels LA, Kausar T, Wei D, Robertson JR, et al.
Combined inhibition of Weel and PARP1/2 for radiosensitization in
pancreatic cancer. Clin Cancer Res. 2014;20(19):5085-96, http://dx.doi.
org/10.1158/1078-0432.CCR-14-1038.

Yang L, Zhang Y, Shan W, Hu Z, Yuan ], Pi ], et al. Repression of BET
activity sensitizes homologous recombination-proficient cancers to PARP
inhibition. Sci Transl Med. 2017;9(400):eaal1645, http:/ /dx.doi.org/10.1126/
scitranslmed.aal1645.

Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA,
et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2
mutation-associated breast or ovarian cancer with biomarker analyses.
J Natl Cancer Inst. 2014;106(6):dju089, http:/ /dx.doi.org/10.1093 /jnci/dju089.
Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, et al.
Secondary somatic mutations restoring BRCA1/2 predict chemotherapy
resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011;29(22):
3008-15, http:/ /dx.doi.org/10.1200/JCO.2010.34.2980.

Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, Lloyd P, et al.
Analysis of Circulating Cell-Free DNA Identifies Multiclonal Hetero-
geneity of BRCA2 Reversion Mutations Associated with Resistance to
PARP Inhibitors. Cancer Discov. 2017;7(9):999-1005, http://dx.doi.org/
10.1158/2159-8290.CD-17-0146.

Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, et al. Rational combination
therapy with PARP and MEK inhibitors capitalizes on therapeutic liabil-
ities in RAS mutant cancers. Sci Transl Med. 2017;9(392):eaal5148, http://
dx.doi.org/10.1126 /scitranslmed.aal5148.

Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO,
Zander SA, et al. High sensitivity of BRCA1-deficient mammary tumors
to the PARP inhibitor AZD2281 alone and in combination with platinum
drugs. Proc Natl Acad Sci U S A. 2008;105(44):17079-84, http:/ /dx.doi.
org/10.1073/pnas.0806092105.

Lawlor D, Martin P, Busschots S, Thery J, O'Leary JJ, Hennessy BT, et al.
PARP Inhibitors as P-glyoprotein Substrates. ] Pharm Sci. 2014;103(6):
1913-20, http:/ /dx.doi.org/10.1002/jps.23952.

Antolin AA, Mestres ]J. Linking off-target kinase pharmacology to the
differential cellular effects observed among PARP inhibitors. Oncotarget.
2014;5(10):3023-8, http://dx.doi.org/10.18632/oncotarget.1814.

Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annun-
ziata CM, et al. Safety and Clinical Activity of the Programmed Death-
Ligand 1 Inhibitor Durvalumab in Combination With Poly (ADP-Ribose)
Polymerase Inhibitor Olaparib or Vascular Endothelial Growth Factor
Receptor 1-3 Inhibitor Cediranib in Women'’s Cancers: A Dose-Escalation,
Phase I Study. J Clin Oncol. 2017;35(19):2193-202, http://dx.doi.org/
10.1200/]JC0O.2016.72.1340.

Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF,
et al. Association and prognostic significance of BRCA1/2-mutation
status with neoantigen load, number of tumor-infiltrating lymphocytes
and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Onco-
target. 2016,7(12):13587-98, http://dx.doi.org/10.18632/oncotarget.7277.
Harter P, Hauke J, Heitz F, Reuss A, Kommoss S, Marme F, et al. Incidence
of germline mutations in risk genes including BRCA1/2 in consecutive
ovarian cancer (OC) patients (AGO TR-1). J Clin Oncol. 2016;34:15 Suppl;
abstr 5538.

Norquist BM, Harrell MI, Brady MF, Walsh T, Lee MK, Gulsuner S, et al.
Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol.
2016;2(4):482-90, http:/ /dx.doi.org/10.1001/jamaoncol.2015.5495.

Yates MS, Timms K, Daniels MS, Oakley HD, Munsell MF, Lanchbury JS,
et al. Evaluation of BRCA1/2 and Homologous Recombination Defects
in Ovarian Cancer and Impact on Clinical Outcomes. J Clin Oncol.
2017;35:15 Suppl; abstr 5511, http:/ /dx.doi.org/10.1200/JCO.2017.35.15_
suppl.5511.

Hahnen E, Baumann KH, Heimbach A, Reuss A, Jackisch C, Hauke J,
et al. Prevalence of somatic mutations in risk genes including BRCA1/2 in
consecutive ovarian cancer patients (AGO-TR-1 study). J Clin Oncol.
2016;34:15 Suppl; abstr 5544, http://dx.doi.org/10.1200/JC0O.2016.34.15_
suppl.5544.


http://dx.doi.org/10.1038/srep04026
http://dx.doi.org/10.1038/srep04026
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1038/nature10166
http://dx.doi.org/10.1200/jco.2015.33.15_suppl.5526 
http://dx.doi.org/10.1016/j.ygyno.2005.10.034
http://dx.doi.org/10.1093/annonc/mdw142
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5512
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5512
http://dx.doi.org/10.1158/1078-0432.CCR-13-2287
http://dx.doi.org/10.1158/1078-0432.CCR-13-2287
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5545 
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5545 
http://dx.doi.org/10.1016/j.ygyno.2016.04.033
http://dx.doi.org/10.1016/j.ygyno.2016.04.033
http://dx.doi.org/10.1200/JCO.2011.39.8545
http://dx.doi.org/10.1200/JCO.2008.16.1703
http://dx.doi.org/10.1200/JCO.2009.27.5719
http://dx.doi.org/10.1200/JCO.2009.27.5719
http://dx.doi.org/10.1016/j.ygyno.2012.03.006
http://dx.doi.org/10.1056/NEJMoa0900212
http://dx.doi.org/10.1056/NEJMoa0900212
http://dx.doi.org/10.1056/NEJMoa1105535
http://dx.doi.org/10.1056/NEJMoa1105535
http://dx.doi.org/10.1002/cncr.29995
http://dx.doi.org/10.1002/cncr.29995
http://dx.doi.org/10.1016/S0140-6736(17)32440-6
http://dx.doi.org/10.1016/j.trecan.2016.10.014
http://dx.doi.org/10.1016/j.trecan.2016.10.014
http://dx.doi.org/10.1016/j.molonc.2015.12.015
http://dx.doi.org/10.1016/S1470-2045(14)70391-2
http://dx.doi.org/10.1016/S1470-2045(14)70391-2
http://dx.doi.org/10.1016/j.ygyno.2016.07.092
http://dx.doi.org/10.18632/oncotarget.7549
http://dx.doi.org/10.18632/oncotarget.7549
http://dx.doi.org/10.1158/1078-0432.CCR-16-0083
http://dx.doi.org/10.1158/1078-0432.CCR-16-2273
http://dx.doi.org/10.1158/1078-0432.CCR-14-1038
http://dx.doi.org/10.1158/1078-0432.CCR-14-1038
http://dx.doi.org/10.1126/scitranslmed.aal1645
http://dx.doi.org/10.1126/scitranslmed.aal1645
http://dx.doi.org/10.1093/jnci/dju089
http://dx.doi.org/10.1200/JCO.2010.34.2980
http://dx.doi.org/10.1158/2159-8290.CD-17-0146
http://dx.doi.org/10.1158/2159-8290.CD-17-0146
http://dx.doi.org/10.1126/scitranslmed.aal5148
http://dx.doi.org/10.1126/scitranslmed.aal5148
http://dx.doi.org/10.1073/pnas.0806092105
http://dx.doi.org/10.1073/pnas.0806092105
http://dx.doi.org/10.1002/jps.23952
http://dx.doi.org/10.18632/oncotarget.1814
http://dx.doi.org/10.1200/JCO.2016.72.1340
http://dx.doi.org/10.1200/JCO.2016.72.1340
http://dx.doi.org/10.18632/oncotarget.7277
http://dx.doi.org/10.1001/jamaoncol.2015.5495
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5511 
http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.5511 
http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.5544 
http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.5544 

	title_link
	INTRODUCTION
	Homologous recombination deficiency and PARP&#146;inhibitors
	Mechanisms implicated in homologous recombination&#146;deficiency
	How to evaluate homologous recombination&#146;deficiency
	Epidemiology of HRD in ovarian&#146;cancer

	Table  Table 1. Frequency of homologous recombination deficiency according to the histological subtype
	Treatment of ovarian cancer with&#146;HRD

	Table  Table 2. Frequency of germline mutations in ovarian carcinoma
	Table  Table 3. Frequency of somatic gene changes lparmutation, deletion or amplificationrpar in ovarian carcinoma
	Perspectives

	Conclusions
	AUTHOR&#146;CONTRIBUTIONS

	REFERENCES
	REFERENCES


